Advertisement

Cellular and Molecular Neurobiology

, Volume 37, Issue 1, pp 83–92 | Cite as

Involvement of Fra-1 in Retinal Ganglion Cell Apoptosis in Rat Light-Induced Retina Damage Model

  • Xiaojuan Liu
  • Xiaowei Yang
  • Rongrong Zhu
  • Ming Dai
  • Manhui Zhu
  • Yuntian Shen
  • Hongda Fang
  • Aimin SangEmail author
  • Hui ChenEmail author
Original Research

Abstract

Cell cycle re-entry, in which Fra-1 (transcription factor FOS-related antigen 1) plays an important role, is a key process in neuronal apoptosis. However, the expression and function of Fra-1 in retinal ganglion cell (RGC) apoptosis are unknown. To investigate whether Fra-1 was involved in RGC apoptosis, we performed a light-induced retinal damage model in adult rats. Western blot revealed that up-regulation of Fra-1 expression appeared in retina after light exposure (LE). Immunostaining indicated that increased Fra-1 was mainly expressed in RGCs in retinal ganglion cell layer (GCL) after LE. Co-localization of Fra-1 with active caspase-3 or TUNEL-positive cells in GCL after LE was also detected. In addition, Fra-1 expression increased in parallel with cyclin D1 and phosphorylated mitogen-activated protein kinase p38 (p-p38) expression in retina after LE. Furthermore, Fra-1, cyclin D1, and active caspase-3 protein expression decreased by intravitreal injection of SB203580, a highly selective inhibitor of p38 MAP kinase (p38 MAPK). All these results suggested that Fra-1 may be associated with RGC apoptosis after LE regulated by p38 MAPK through cell cycle re-entry mechanism.

Keywords

Fra-1 Light-induced retinal damage Retinal ganglion cell Cell cycle re-entry Apoptosis P38 MAPK 

Notes

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (No. 81401365) and Nantong Science and Technology Innovation Project (Nos. MS12015056, HS2013014); a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Compliance with Ethical Standards

Conflicts of Interest

The authors claim no conflicts of interest.

References

  1. Bonda DJ, Evans TA, Santocanale C, Llosa JC, Vina J, Bajic V, Castellani RJ, Siedlak SL, Perry G, Smith MA, Lee HG (2009) Evidence for the progression through S-phase in the ectopic cell cycle re-entry of neurons in Alzheimer disease. Aging 1(4):382–388CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bonda DJ, Bajic VP, Spremo-Potparevic B, Casadesus G, Zhu X, Smith MA, Lee HG (2010) Review: cell cycle aberrations and neurodegeneration. Neuropathol Appl Neurobiol 36(2):157–163. doi: 10.1111/j.1365-2990.2010.01064.x CrossRefPubMedGoogle Scholar
  3. Burch PM, Yuan Z, Loonen A, Heintz NH (2004) An extracellular signal-regulated kinase 1- and 2-dependent program of chromatin trafficking of c-Fos and Fra-1 is required for cyclin D1 expression during cell cycle reentry. Mol Cell Biol 24(11):4696–4709. doi: 10.1128/MCB.24.11.4696-4709.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Camins A, Verdaguer E, Folch J, Beas-Zarate C, Canudas AM, Pallas M (2007) Inhibition of ataxia telangiectasia-p53-E2F-1 pathway in neurons as a target for the prevention of neuronal apoptosis. Curr Drug Metab 8(7):709–715CrossRefPubMedGoogle Scholar
  5. Casalino L, Bakiri L, Talotta F, Weitzman JB, Fusco A, Yaniv M, Verde P (2007) Fra-1 promotes growth and survival in RAS-transformed thyroid cells by controlling cyclin A transcription. EMBO J 26(7):1878–1890. doi: 10.1038/sj.emboj.7601617 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chen Z, Song Y, Yao J, Weng C, Yin ZQ (2013) Alterations of sodium and potassium channels of RGCs in RCS rat with the development of retinal degeneration. J Mol Neurosci 51(3):976–985. doi: 10.1007/s12031-013-0082-9 CrossRefPubMedGoogle Scholar
  7. Chidlow G, Wood JP, Casson RJ (2014) Expression of inducible heat shock proteins Hsp27 and Hsp70 in the visual pathway of rats subjected to various models of retinal ganglion cell injury. PLoS One 9(12):e114838. doi: 10.1371/journal.pone.0114838 CrossRefPubMedPubMedCentralGoogle Scholar
  8. De Falco G, Comes F, Simone C (2006) pRb: master of differentiation. Coupling irreversible cell cycle withdrawal with induction of muscle-specific transcription. Oncogene 25(38):5244–5249. doi: 10.1038/sj.onc.1209623 CrossRefPubMedGoogle Scholar
  9. Folch J, Junyent F, Verdaguer E, Auladell C, Pizarro JG, Beas-Zarate C, Pallas M, Camins A (2012) Role of cell cycle re-entry in neurons: a common apoptotic mechanism of neuronal cell death. Neurotox Res 22(3):195–207. doi: 10.1007/s12640-011-9277-4 CrossRefPubMedGoogle Scholar
  10. Galan A, Dergham P, Escoll P, de-la-Hera A, D’Onofrio PM, Magharious MM, Koeberle PD, Frade JM, Saragovi HU (2014) Neuronal injury external to the retina rapidly activates retinal glia, followed by elevation of markers for cell cycle re-entry and death in retinal ganglion cells. PLoS One 9(7):e101349. doi: 10.1371/journal.pone.0101349 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Garcia-Ayuso D, Salinas-Navarro M, Agudo-Barriuso M, Alarcon-Martinez L, Vidal-Sanz M, Villegas-Perez MP (2011) Retinal ganglion cell axonal compression by retinal vessels in light-induced retinal degeneration. Mol Vis 17:1716–1733PubMedPubMedCentralGoogle Scholar
  12. Greene LA, Liu DX, Troy CM, Biswas SC (2007) Cell cycle molecules define a pathway required for neuron death in development and disease. Biochim Biophys Acta 1772(4):392–401. doi: 10.1016/j.bbadis.2006.12.003 CrossRefPubMedGoogle Scholar
  13. Hong S, Lee JE, Kim CY, Seong GJ (2007) Agmatine protects retinal ganglion cells from hypoxia-induced apoptosis in transformed rat retinal ganglion cell line. BMC Neurosci 8:81. doi: 10.1186/1471-2202-8-81 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jiang SY, Zou YY, Wang JT (2012) p38 mitogen-activated protein kinase-induced nuclear factor kappa-light-chain-enhancer of activated B cell activity is required for neuroprotection in retinal ischemia/reperfusion injury. Mol Vis 18:2096–2106PubMedPubMedCentralGoogle Scholar
  15. Lewis PM, Ackland HM, Lowery AJ, Rosenfeld JV (2015) Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses. Brain Res 1595:51–73. doi: 10.1016/j.brainres.2014.11.020 CrossRefPubMedGoogle Scholar
  16. Li GY, Fan B, Ma TH (2011a) Visible light may directly induce nuclear DNA damage triggering the death pathway in RGC-5 cells. Mol Vis 17(349–53):3279–3289PubMedPubMedCentralGoogle Scholar
  17. Li GY, Fan B, Ma TH (2011b) Visible light may directly induce nuclear DNA damage triggering the death pathway in RGC-5 cells. Mol Vis 17:3279–3289PubMedPubMedCentralGoogle Scholar
  18. Liu L, Wu J, Zhou X, Chen Z, Zhou G (2012) The impact of visible light on the immature retina: a model of early light exposure in neonatal mice. Brain Res Bull 87(6):534–539. doi: 10.1016/j.brainresbull.2012.02.009 CrossRefPubMedGoogle Scholar
  19. Lu Y, Lu J, Li X, Zhu H, Fan X, Zhu S, Wang Y, Guo Q, Wang L, Huang Y, Zhu M, Wang Z (2014) MiR-200a inhibits epithelial-mesenchymal transition of pancreatic cancer stem cell. BMC Cancer 14:85. doi: 10.1186/1471-2407-14-85 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Marathe S, Liu S, Brai E, Kaczarowski M, Alberi L (2015) Notch signaling in response to excitotoxicity induces neurodegeneration via erroneous cell cycle reentry. Cell Death Differ. doi: 10.1038/cdd.2015.23 PubMedPubMedCentralGoogle Scholar
  21. Marc RE, Jones BW, Watt CB, Vazquez-Chona F, Vaughan DK, Organisciak DT (2008) Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration. Mol Vis 14:782–806PubMedPubMedCentralGoogle Scholar
  22. Marco-Gomariz MA, Hurtado-Montalban N, Vidal-Sanz M, Lund RD, Villegas-Perez MP (2006) Phototoxic-induced photoreceptor degeneration causes retinal ganglion cell degeneration in pigmented rats. J Comp Neurol 498(2):163–179. doi: 10.1002/cne.21028 CrossRefPubMedGoogle Scholar
  23. McCubrey JA, Lahair MM, Franklin RA (2006) Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal 8(9–10):1775–1789. doi: 10.1089/ars.2006.8.1775 CrossRefPubMedGoogle Scholar
  24. O’Callaghan C, Fanning LJ, Barry OP (2014) p38delta MAPK: emerging roles of a neglected isoform. Int J Cell Biol 2014:272689. doi: 10.1155/2014/272689 PubMedPubMedCentralGoogle Scholar
  25. Rajabi HN, Takahashi C, Ewen ME (2014) Retinoblastoma protein and MyoD function together to effect the repression of Fra-1 and in turn cyclin D1 during terminal cell cycle arrest associated with myogenesis. J Biol Chem 289(34):23417–23427. doi: 10.1074/jbc.M113.532572 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Rezaie T, McKercher SR, Kosaka K, Seki M, Wheeler L, Viswanath V, Chun T, Joshi R, Valencia M, Sasaki S, Tozawa T, Satoh T, Lipton SA (2012) Protective effect of carnosic acid, a pro-electrophilic compound, in models of oxidative stress and light-induced retinal degeneration. Invest Ophthalmol Vis Sci 53(12):7847–7854. doi: 10.1167/iovs.12-10793 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Sakamoto K, Ohki K, Saito M, Nakahara T, Ishii K (2011) Small molecule cyclin-dependent kinase inhibitors protect against neuronal cell death in the ischemic-reperfused rat retina. J Ocul Pharmacol Ther 27(5):419–425. doi: 10.1089/jop.2010.0141 CrossRefPubMedGoogle Scholar
  28. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85. doi: 10.1146/annurev.biochem.73.011303.073723 CrossRefPubMedGoogle Scholar
  29. Sang A, Xu Y, Jin N, Zhou T, Wang J, Zhu J, Chen C, Shi J, Shuai J, Xu G, Gu Z (2013) Involvement of transcription initiation factor IIB in the light-induced death of rat retinal ganglion cells in vivo. J Mol Histol 44(1):11–18. doi: 10.1007/s10735-012-9446-7 CrossRefPubMedGoogle Scholar
  30. Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4(5):E131–E136. doi: 10.1038/ncb0502-e131 CrossRefPubMedGoogle Scholar
  31. Verdaguer E, Susana Gde A, Clemens A, Pallas M, Camins A (2007) Implication of the transcription factor E2F-1 in the modulation of neuronal apoptosis. Biomed Pharmacother 61(7):390–399. doi: 10.1016/j.biopha.2006.11.001 CrossRefPubMedGoogle Scholar
  32. Wang Y, Wu X, Zhong Y, Shen J, Ju S, Wang X (2014) Effects of histone deacetylase inhibition on the survival, proliferation and migration of Schwann cells, as well as on the expression of neurotrophic factors and genes associated with myelination. Int J Mol Med 34(2):599–605. doi: 10.3892/ijmm.2014.1792 PubMedGoogle Scholar
  33. Wang XF, Zhou QM, Lu YY, Zhang H, Huang S, Su SB (2015) Glycyrrhetinic acid potently suppresses breast cancer invasion and metastasis by impairing the p38 MAPK-AP1 signaling axis. Expert Opin Ther Targets 19(5):577–587. doi: 10.1517/14728222.2015.1012156 CrossRefPubMedGoogle Scholar
  34. Whitmarsh AJ, Davis RJ (1996) Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med (Berl) 74(10):589–607CrossRefGoogle Scholar
  35. Wu Y, Xu F, Huang H, Chen L, Wen M, Jiang L, Lu L, Li L, Song D, Zeng S, Li L, Li M (2014) Up-regulation of SKIP relates to retinal ganglion cells apoptosis after optic nerve crush in vivo. J Mol Histol 45(6):715–721. doi: 10.1007/s10735-014-9589-9 CrossRefPubMedGoogle Scholar
  36. Zhang Q, Adiseshaiah P, Reddy SP (2005) Matrix metalloproteinase/epidermal growth factor receptor/mitogen-activated protein kinase signaling regulate fra-1 induction by cigarette smoke in lung epithelial cells. Am J Respir Cell Mol Biol 32(1):72–81. doi: 10.1165/rcmb.2004-0198OC CrossRefPubMedGoogle Scholar
  37. Zhang C, Wang Z, Zhao J, Li Q, Huang C, Zhu L, Lu D (2015) Neuroprotective effect of lutein on NMDA-induced retinal ganglion cell injury in rat retina. Cell Mol Neurobiol. doi: 10.1007/s10571-015-0231-5 Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xiaojuan Liu
    • 1
    • 4
  • Xiaowei Yang
    • 2
    • 4
  • Rongrong Zhu
    • 2
    • 4
  • Ming Dai
    • 2
    • 4
  • Manhui Zhu
    • 2
    • 4
  • Yuntian Shen
    • 3
  • Hongda Fang
    • 2
    • 4
  • Aimin Sang
    • 2
    • 4
    Email author
  • Hui Chen
    • 2
    • 4
    Email author
  1. 1.Department of Pathogen Biology, Medical CollegeNantong UniversityNantongChina
  2. 2.Department of OphthalmologyAffiliated Hospital of Nantong UniversityNantongChina
  3. 3.Department of Co-innovation Center of NeuroregenerationNantong UniversityNantongChina
  4. 4.Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical CollegeNantong UniversityNantongChina

Personalised recommendations