Cellular and Molecular Neurobiology

, Volume 37, Issue 1, pp 29–36 | Cite as

Atorvastatin Upregulates the Expression of miR-126 in Apolipoprotein E-knockout Mice with Carotid Atherosclerotic Plaque

  • Xudong Pan
  • Rongyao Hou
  • Aijun MaEmail author
  • Ting Wang
  • Mei Wu
  • Xiaoyan Zhu
  • Shaonan Yang
  • Xing Xiao
Original Research


Carotid atherosclerosis (AS) is a chronic inflammatory disease of the carotid arterial wall, which is very important in terms of the occurrence of cerebral vascular accidents. Studies have demonstrated that microRNAs (miRNAs) and their target genes are involved in the formation of atherosclerosis and that atorvastatin might reduce atherosclerotic plaques by regulating the expression of miRNAs. However, the related mechanism is not yet known. In this study, we first investigated the effects of atorvastatin on miR-126 and its target gene, i.e., vascular cell adhesion molecule-1 (VCAM-1) in apolipoprotein E-knockout (ApoE−/−) mice with carotid atherosclerotic plaque in vivo. We compared the expressions of miR-126 and VCAM-1 between the control, atherosclerotic model and atorvastatin treatment groups of ApoE−/− mice using RT-PCR and Western blot. We found the miR-126 expression was significantly down-regulated, and the VCAM-1 expression was significantly up-regulated in the atherosclerotic model group, which accelerated the progression of atherosclerosis in the ApoE−/− mice. These results following atorvastatin treatment indicated that miR-126 expression was significantly up-regulated, VCAM-1 expression was significantly down-regulated and atherosclerotic lesions were reduced. The present results might explain the mechanism by which miR-126 is involved in the formation of atherosclerosis in vivo. Our study first indicated that atorvastatin might exert its anti-inflammatory effects in atherosclerosis by regulating the expressions of miR-126 and VCAM-1 in vivo.


Carotid atherosclerosis miR-126 VCAM-1 Atorvastatin Apolipoprotein E-knockout mice 



The authors gratefully acknowledge the financial support from the National Natural Sciences Foundation of China (No. 81571112).

Compliance with Ethical Standards

Conflict of interest

We declare that we have no financial or personal relationships with other people or organizations that could have inappropriately influenced our work. There are no professional or other personal interests of any nature or type in any product, service and/or company that could be construed as influencing the positions presented in this manuscript.


  1. Ajamieh H, Farrell G, Wong HJ et al (2012) Atorvastatin protects obese mice against hepatic ischemia-reperfusion injury by Toll-like receptor-4 suppression and endothelial nitric oxide synthase activation. J Gastroenterol Hepatol 27(8):1353–1361CrossRefPubMedGoogle Scholar
  2. Antoniades C, Bakogiannis C et al (2011) Rapid, direct effects of statin treatment on arterial redox state and nitric oxide bioavailability in human atherosclerosis via tetrahydrobiopterin-mediated endothelial nitric oxide synthase coupling. Circulation 124(3):335–345CrossRefPubMedGoogle Scholar
  3. Bespalova ID, Riazantseva NV et al (2014) Effect of atorvastatin on pro-inflammatory status (in vivo and in vitro) in patients with essential hypertension and metabolic syndrome. Kardiologiia 54(8):37–43CrossRefPubMedGoogle Scholar
  4. Black AE, Hayes RN et al (1999) Metabolism and excretion of atorvastatin in rats and dogs. Drug Metab Dispos 27(8):916–923PubMedGoogle Scholar
  5. Breslow JL (1996) Mouse models of atherosclerosis. Science 272(5262):685–688CrossRefPubMedGoogle Scholar
  6. Cai X, Li X et al (2015) Adiponectin reduces carotid atherosclerotic plaque formation in ApoE−/− mice: roles of oxidative and nitrosative stress and inducible nitric oxide synthase. Mol Med Rep 11(3):1715–1721PubMedGoogle Scholar
  7. Chu LW, Chen JY et al (2015) Atorvastatin prevents neuroinflammation in chronic constriction injury rats through nuclear NFkappaB downregulation in the dorsal root ganglion and spinal cord. ACS Chem Neurosci 6(6):889–898CrossRefPubMedGoogle Scholar
  8. Delsing DJ, Jukema JW et al (2003) Differential effects of amlodipine and atorvastatin treatment and their combination on atherosclerosis in ApoE*3-Leiden transgenic mice. J Cardiovasc Pharmacol 42(1):63–70CrossRefPubMedGoogle Scholar
  9. Deregibus MC, Cantaluppi V et al (2007) Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110(7):2440–2448CrossRefPubMedGoogle Scholar
  10. Ekstrand M, Gustafsson Trajkovska M et al (2015) Imaging of intracellular and extracellular ROS levels in atherosclerotic mouse aortas ex vivo: effects of lipid lowering by diet or atorvastatin. PLoS ONE 10(6):e0130898CrossRefPubMedPubMedCentralGoogle Scholar
  11. Elewa HF, El-Remessy AB et al (2010) Diverse effects of statins on angiogenesis: new therapeutic avenues. Pharmacotherapy 30(2):169–176CrossRefPubMedGoogle Scholar
  12. Fish JE, Santoro MM et al (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15(2):272–284CrossRefPubMedPubMedCentralGoogle Scholar
  13. Harris TA, Yamakuchi M et al (2008) MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci 105(5):1516–1521CrossRefPubMedPubMedCentralGoogle Scholar
  14. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531CrossRefPubMedGoogle Scholar
  15. Holmberg R, Refai E et al (2011) Lowering apolipoprotein CIII delays onset of type 1 diabetes. Proc Natl Acad Sci USA 108(26):10685–10689CrossRefPubMedPubMedCentralGoogle Scholar
  16. Jansen F, Yang X et al (2013) Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation 128(18):2026–2038CrossRefPubMedGoogle Scholar
  17. Jiang J, Ge X et al (2013) MicroRNA-281 regulates the expression of ecdysone receptor (EcR) isoform B in the silkworm, Bombyx mori. Insect Biochem Mol Biol 43(8):692–700CrossRefPubMedGoogle Scholar
  18. Kasper HU, Schmidt A et al (1996) Expression of the adhesion molecules ICAM, VCAM, and ELAM in the arteriosclerotic plaque. Gen Diagn Pathol 141(5–6):289–294PubMedGoogle Scholar
  19. Khanicheh E, Mitterhuber M, Xu L et al (2013) Noninvasive ultrasound molecular imaging of the effect of statins on endothelial inflammatory phenotype in early atherosclerosis. PLoS ONE 8(3):e58761CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kosik KS (2006) The neuronal microRNA system. Nat Rev Neurosci 7(12):911–920CrossRefPubMedGoogle Scholar
  21. Li LX, Zhao CC et al (2013) Prevalence and clinical characteristics of carotid atherosclerosis in newly diagnosed patients with ketosis-onset diabetes: a cross-sectional study. Cardiovasc Diabetol 12:18CrossRefPubMedPubMedCentralGoogle Scholar
  22. Li G, Wu XW, Lu WH et al (2014) Effect of atorvastatin on the expression of gamma-glutamyl transferase in aortic atherosclerotic plaques of apolipoprotein E-knockout mice. BMC Cardiovasc Disord 14:145CrossRefPubMedPubMedCentralGoogle Scholar
  23. Li C, Wang Z, Wang C et al (2015) Perivascular adipose tissue-derived adiponectin inhibits collar-induced carotid atherosclerosis by promoting macrophage autophagy. PLoS ONE 10(5):e0124031CrossRefPubMedPubMedCentralGoogle Scholar
  24. Meister J, Schmidt MH (2010) miR-126 and miR-126*: new players in cancer. ScientificWorldJournal 10:2090–2100CrossRefPubMedGoogle Scholar
  25. Mendell JT (2008) miRiad roles for the miR-17-92 cluster in development and disease. Cell 133(2):217–222CrossRefPubMedPubMedCentralGoogle Scholar
  26. Miida T, Hirayama S et al (2004) Cholesterol-independent effects of statins and new therapeutic targets: ischemic stroke and dementia. J Atheroscler Thromb 11(5):253–264CrossRefPubMedGoogle Scholar
  27. Minami Y, Satoh M et al (2009) Effect of atorvastatin on microRNA 221/222 expression in endothelial progenitor cells obtained from patients with coronary artery disease. Eur J Clin Invest 39(5):359–367CrossRefPubMedGoogle Scholar
  28. Mondadori dos Santos A, Metzinger L et al (2015) miR-126 is involved in vascular remodeling under laminar shear stress. Biomed Res Int 2015:497280CrossRefPubMedPubMedCentralGoogle Scholar
  29. Niesor EJ, Schwartz GG, Perez A et al (2015) Statin-induced decrease in ATP-binding cassette transporter A1 expression via microRNA33 induction may counteract cholesterol efflux to high-density lipoprotein. Cardiovasc Drugs Ther 29(1):7–14CrossRefPubMedGoogle Scholar
  30. Pathak NN, Lingaraju MC et al (2015) Anti-inflammatory and chondroprotective effects of atorvastatin in a cartilage explant model of osteoarthritis. Inflamm Res 64(3–4):161–169CrossRefPubMedGoogle Scholar
  31. Raitoharju E, Lyytikainen LP et al (2011) miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere vascular study. Atherosclerosis 219(1):211–217CrossRefPubMedGoogle Scholar
  32. Scalia R, Gooszen ME et al (2001) Simvastatin exerts both anti-inflammatory and cardioprotective effects in apolipoprotein E-deficient mice. Circulation 103(21):2598–2603CrossRefPubMedGoogle Scholar
  33. Schmidt-Lucke C, Fichtlscherer S et al (2010) Improvement of endothelial damage and regeneration indexes in patients with coronary artery disease after 4 weeks of statin therapy. Atherosclerosis 211(1):249–254CrossRefPubMedGoogle Scholar
  34. Schmitz B, Vischer P et al (2013) Increased monocyte adhesion by endothelial expression of VCAM-1 missense variation in vitro. Atherosclerosis 230(2):185–190CrossRefPubMedGoogle Scholar
  35. Shyu AB, Wilkinson MF et al (2008) Messenger RNA regulation: to translate or to degrade. EMBO J 27(3):471–481CrossRefPubMedPubMedCentralGoogle Scholar
  36. Sparrow CP, Burton CA et al (2001) Simvastatin has anti-inflammatory and antiatherosclerotic activities independent of plasma cholesterol lowering. Arterioscler Thromb Vasc Biol 21(1):115–121CrossRefPubMedGoogle Scholar
  37. Sun C, Alkhoury K et al (2012) IRF-1 and miRNA126 modulate VCAM-1 expression in response to a high-fat meal. Circ Res 111(8):1054–1064CrossRefPubMedGoogle Scholar
  38. Tian HS, Zhou QG et al (2015) Relationship between arterial atheromatous plaque morphology and platelet-associated miR-126 and miR-223 expressions. Asian Pac J Trop Med 8(4):309–314CrossRefPubMedGoogle Scholar
  39. Tu Y, Wan L et al (2013) MicroRNA-22 downregulation by atorvastatin in a mouse model of cardiac hypertrophy: a new mechanism for antihypertrophic intervention. Cell Physiol Biochem 31(6):997–1008CrossRefPubMedGoogle Scholar
  40. Urbich C, Kuehbacher A et al (2008) Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res 79(4):581–588CrossRefPubMedGoogle Scholar
  41. van der Sluis RJ, van den Aardweg T et al (2014) Prolactin receptor antagonism uncouples lipids from atherosclerosis susceptibility. J Endocrinol 222(3):341–350CrossRefPubMedGoogle Scholar
  42. von der Thusen JH, van Berkel TJ et al (2001) Induction of rapid atherogenesis by perivascular carotid collar placement in apolipoprotein E-deficient and low-density lipoprotein receptor-deficient mice. Circulation 103(8):1164–1170CrossRefPubMedGoogle Scholar
  43. Wang S, Aurora AB et al (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15(2):261–271CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wu XD, Zeng K et al (2014) Effect of aerobic exercise on miRNA-TLR4 signaling in atherosclerosis. Int J Sports Med 35(4):344–350PubMedGoogle Scholar
  45. Xu ZR, Li JY et al (2015) Apple polyphenols decrease atherosclerosis and hepatic steatosis in ApoE−/− mice through the ROS/MAPK/NF-kappaB pathway. Nutrients 7(8):7085–7105CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ying SY, Lin SL (2009) Intron-mediated RNA interference and microRNA biogenesis. Methods Mol Biol 487:387–413PubMedGoogle Scholar
  47. Zadelaar S, Kleemann R et al (2007) Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler Thromb Vasc Biol 27(8):1706–1721CrossRefPubMedGoogle Scholar
  48. Zernecke A, Bidzhekov K et al (2009) Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal. 2(100):ra81CrossRefPubMedGoogle Scholar
  49. Zhang Q, Kandic I et al (2011) Dysregulation of angiogenesis-related microRNAs in endothelial progenitor cells from patients with coronary artery disease. Biochem Biophys Res Commun 405(1):42–46CrossRefPubMedGoogle Scholar
  50. Zheng C, Khoo C et al (2010) Apolipoprotein C-III and the metabolic basis for hypertriglyceridemia and the dense low-density lipoprotein phenotype. Circulation 121(15):1722–1734CrossRefPubMedPubMedCentralGoogle Scholar
  51. Zhong QW, Ma AJ, Pan XD, Yang SN, Wang L, Zhang Z, Pang M (2015) Analysis of plasma miRNAs expression profile in different subtypes of ischemic stroke. Chin J Neurol 2015:114–119. doi: 10.3760/cma.j.issn.1006-7876.2015.02.009 Google Scholar
  52. Zhou Q, Liao JK (2010) Pleiotropic effects of statins. Basic research and clinical perspectives. Circ J 74(5):818–826CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xudong Pan
    • 1
  • Rongyao Hou
    • 2
  • Aijun Ma
    • 1
    Email author
  • Ting Wang
    • 1
  • Mei Wu
    • 3
  • Xiaoyan Zhu
    • 4
  • Shaonan Yang
    • 1
  • Xing Xiao
    • 1
  1. 1.Department of NeurologyThe Affiliated Hospital of Qingdao UniversityQingdaoPeople’s Republic of China
  2. 2.Department of NeurologyThe Affiliated Hiser Hospital of Qingdao UniversityQingdaoPeople’s Republic of China
  3. 3.Laboratory of Human Micromorphologythe Medical College of Qingdao UniversityQingdaoPeople’s Republic of China
  4. 4.Department of Critical Care Medicinethe Affiliated Hiser Hospital of Qingdao UniversityQingdaoPeople’s Republic of China

Personalised recommendations