Cellular and Molecular Neurobiology

, Volume 36, Issue 3, pp 417–427 | Cite as

Delivery of Therapeutic Proteins via Extracellular Vesicles: Review and Potential Treatments for Parkinson’s Disease, Glioma, and Schwannoma

  • Justin Hall
  • Shilpa Prabhakar
  • Leonora Balaj
  • Charles P. Lai
  • Richard A. Cerione
  • Xandra O. Breakefield
Review Paper

Abstract

Extracellular vesicles present an attractive delivery vehicle for therapeutic proteins. They intrinsically contain many proteins which can provide information to other cells. Advantages include reduced immune reactivity, especially if derived from the same host, stability in biologic fluids, and ability to target uptake. Those from mesenchymal stem cells appear to be intrinsically therapeutic, while those from cancer cells promote tumor progression. Therapeutic proteins can be loaded into vesicles by overexpression in the donor cell, with oligomerization and membrane sequences increasing their loading. Examples of protein delivery for therapeutic benefit in pre-clinical models include delivery of: catalase for Parkinson’s disease to reduce oxidative stress and thus help neurons to survive; prodrug activating enzymes which can convert a prodrug which crosses the blood–brain barrier into a toxic chemotherapeutic drug for schwannomas and gliomas; and the apoptosis-inducing enzyme, caspase-1 under a Schwann cell specific promoter for schwannoma. This therapeutic delivery strategy is novel and being explored for a number of diseases.

Keywords

Exosomes Extracellular vesicles Parkinson’s disease Glioma Schwannoma Therapeutic protein delivery 

References

  1. Abels ER, Breakefield XO (2016) Introduction into extracellular vesicles—biogenesis, secretion, uptake and RNA cargo loading. Cell Mol Neuobiol (in press)Google Scholar
  2. Abraham S, Soundararajan CC, Vivekanandhan S, Behari M (2005) Erythrocyte antioxidant enzymes in Parkinson’s disease. Indian J Med Res 121(2):111–115PubMedGoogle Scholar
  3. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10(5):619–624. doi:10.1038/ncb1725 CrossRefPubMedGoogle Scholar
  4. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4):341–345. doi:10.1038/nbt.1807 CrossRefPubMedGoogle Scholar
  5. Amano T, Furuno T, Hirashima N, Ohyama N, Nakanishi M (2001) Dynamics of intracellular granules with CD63-GFP in rat basophilic leukemia cells. J Biochem 129(5):739–744CrossRefPubMedGoogle Scholar
  6. Ambani LM, Van Woert MH, Murphy S (1975) Brain peroxidase and catalase in Parkinson disease. Arch Neurol 32(2):114–118CrossRefPubMedGoogle Scholar
  7. Antonyak MA, Li B, Boroughs LK, Johnson JL, Druso JE, Bryant KL, Holowka DA, Cerione RA (2011) Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Proc Natl Acad Sci U S A 108(12):4852–4857. doi:10.1073/pnas.1017667108 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ausman JI, Shapiro WR, Rall DP (1970) Studies on the chemotherapy of experimental brain tumors: development of an experimental model. Cancer Res 30:2394–2400PubMedGoogle Scholar
  9. Busciglio J, Yankner BA (1995) Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature 378(6559):776–779CrossRefPubMedGoogle Scholar
  10. Chaput N, Théry C (2011) Exosomes: immune properties and potential clinical implementations. Semin Immunopathol 33(5):419–440. doi:10.1007/s00281-00010-00233-00289 CrossRefPubMedGoogle Scholar
  11. Cheng Y, Schorey JS (2013) Exosomes carrying mycobacterial antigens can protect mice against Mycobacterium tuberculosis infection. Eur J Immunol 43(12):3279–3290. doi:10.1002/eji.201343727 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cocucci E, Meldolesi J (2015) Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol 25(6):364–372. doi:10.1016/j.tcb.2015.1001.1004 CrossRefPubMedGoogle Scholar
  13. Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, Becker A, Hoshino A, Mark MT, Molina H, Xiang J, Zhang T, Theilen TM, García-Santos G, Williams C, Ararso Y, Huang Y, Rodrigues G, Shen TL, Labori KJ, Lothe IM, Kure EH, Hernandez J, Doussot A, Ebbesen SH, Grandgenett PM, Hollingsworth MA, Jain M, Mallya K, Batra SK, Jarnagin WR, Schwartz RE, Matei I, Peinado H, Stanger BZ, Bromberg J, Lyden D (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 17(6):816–826. doi:10.1038/ncb3169 CrossRefPubMedGoogle Scholar
  14. Croker BA, Silke J, Gerlic M (2015) Fight or flight: regulation of emergency hematopoiesis by pyroptosis and necroptosis. Curr Opin Hematol 22(4):293–301. doi:10.1097/MOH.0000000000000148 PubMedGoogle Scholar
  15. Di Vizio D, Morello M, Dudley AC, Schow PW, Adam RM, Morley S, Mulholland D, Rotinen M, Hager MH, Insabato L, Moses MA, Demichelis F, Lisanti MP, Wu H, Klagsbrun M, Bhowmick NA, Rubin MA, D’Souza-Schorey C, Freeman MR (2012) Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am J Pathol 181(5):1573–1584. doi:10.1016/j.ajpath.2012.07.030 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ebadi M, Srinivasan SK, Baxi MD (1996) Oxidative stress and antioxidant therapy in Parkinson’s disease. Prog Neurobiol 48(1):1–19CrossRefPubMedGoogle Scholar
  17. El Andaloussi S, Mäger I, Breakefield XO, Wood MJ (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12(5):347–357. doi:10.1038/nrd3978 CrossRefGoogle Scholar
  18. Gabriel K, Ingram A, Austin R, Kapoor A, Tang D, Majeed F, Qureshi T, Al-Nedawi K (2013) Regulation of the tumor suppressor PTEN through exosomes: a diagnostic potential for prostate cancer. PLoS One 8(7):e70047. doi:10.71371/journal.pone.0070047 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, Mu H, Melo LG, Pratt RE, Ingwall JS, Dzau VJ (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20(6):661–669CrossRefPubMedGoogle Scholar
  20. Graner MW, Alzate O, Dechkovskaia AM, Keene JD, Sampson JH, Mitchell DA, Bigner DD (2009) Proteomic and immunologic analyses of brain tumor exosomes. FASEB J 23(5):1541–1557. doi:10.1096/fj.1508-122184 CrossRefPubMedPubMedCentralGoogle Scholar
  21. György B, Hung ME, Breakefield XO, Leonard JN (2015) Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmcol Tox 55:439–464. doi:10.1146/annurev-pharmtox-010814-124630 CrossRefGoogle Scholar
  22. Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, Patel T, Piroyan A, Sokolsky M, Kabanov AV, Batrakova EV (2015) Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 207:18–30. doi:10.1016/j.jconrel.2015.1003.1033 CrossRefPubMedGoogle Scholar
  23. Harding C, Heuser J, Stahl P (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97(2):329–339CrossRefPubMedGoogle Scholar
  24. Hartman ZC, Wei J, Glass OK, Guo H, Lei G, Yang XY, Osada T, Hobeika A, Delcayre A, Le Pecq JB, Morse MA, Clay TM, Lyerly HK (2011) Increasing vaccine potency through exosome antigen targeting. Vaccine 29(50):9361–9367. doi:10.1016/j.vaccine.2011.9309.9133 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Heldring N, Mäger I, Wood M, Le Blanc K, El Andaloussi S (2015) Therapeutic potential of multipotent mesenchymal stromal cells and their extracellular vesicles. Hum Gene Ther 26(8):506–517CrossRefPubMedGoogle Scholar
  26. Henderson MC, Azorsa DO (2012) The genomic and proteomic content of cancer cell-derived exosomes. Front Oncol 2:38. doi:10.3389/fonc.2012.00038 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Higginbotham JN, Demory Beckler M, Gephart JD, Franklin JL, Bogatcheva G, Kremers GJ, Piston DW, Ayers GD, McConnell RE, Tyska MJ, Coffey RJ (2011) Amphiregulin exosomes increase cancer cell invasion. Curr Biol 21(9):779–786. doi:10.1016/j.cub.2011.1003.1043 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Huber BE, Austin EA, Richards CA, Davis ST, Good SS (1994) Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc Natl Acad Sci U S A 91(17):8302–8306CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hung G, Li X, Faudoa R, Xeu Z, Kluwe L, Rhim JS, Slattery W, Lim D (2002) Establishment and characterization of a schwannoma cell line from a patient with neurofibromatosis 2. Int J Oncol 20(3):475–482PubMedGoogle Scholar
  30. James MF, Han S, Polizzano C, Plotkin SR, Manning BD, Stemmer-Rachamimov AO, Gusella JF, Ramesh V (2009) NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth. Mol Cell Biol 29(15):4250–4261. doi:10.1128/MCB.01581-01508 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ju S, Mu J, Dokland T, Zhuang X, Wang Q, Jiang H, Xiang X, Deng ZB, Wang B, Zhang L, Roth M, Welti R, Mobley J, Jun Y, Miller D, Zhang HG (2013) Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther 21(7):1345–1357. doi:10.1038/mt.2013.1364 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kalamvoki M, Du T, Roizman B (2014) Cells infected with herpes simplex virus 1 export to uninfected cells exosomes containing STING, viral mRNAs, and microRNAs. Proc Natl Acad Sci U S A 111(46):E4991–E4996. doi:10.1073/pnas.1419338111 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P, Askenase P, Bond VC, Borràs FE, Breakefield X, Budnik V, Buzas E, Camussi G, Clayton A, Cocucci E, Falcon-Perez JM, Gabrielsson S, Gho YS, Gupta D, Harsha HC, Hendrix A, Hill AF, Inal JM, Jenster G, Krämer-Albers EM, Lim SK, Llorente A, Lötvall J, Marcilla A, Mincheva-Nilsson L, Nazarenko I, Nieuwland R, Nolte-’t Hoen EN, Pandey A, Patel T, Piper MG, Pluchino S, Prasad TS, Rajendran L, Raposo G, Record M, Reid GE, Sánchez-Madrid F, Schiffelers RM, Siljander P, Stensballe A, Stoorvogel W, Taylor D, Thery C, Valadi H, van Balkom BW, Vázquez J, Vidal M, Wauben MH, Yáñez-Mó M, Zoeller M, Mathivanan S (2012) Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol 10(12):e1001450. doi:10.1001371/journal.pbio.1001450 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kanada M, Bachmann MH, Hardy JW, Frimannson DO, Bronsart L, Wang A, Sylvester MD, Schmidt TL, Kaspar RL, Butte MJ, Matin AC, Contag CH (2015) Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc Natl Acad Sci U S A 112(12):E1433–E1442. doi:10.1073/pnas.1418401112 PubMedPubMedCentralGoogle Scholar
  35. Katakowski M, Chopp M (2016) Exosomes as tools to suppress primary brain tumor. Cell Mol Neurobiol. doi:10.1007/s10571-015-0280-9 PubMedGoogle Scholar
  36. Kreimer S, Belov AM, Ghiran I, Murthy SK, Frank DA, Ivanov AR (2015) Mass-spectrometry-based molecular characterization of extracellular vesicles: lipidomics and proteomics. J Proteome Res 14(6):2367–2384. doi:10.1021/pr501279 CrossRefPubMedGoogle Scholar
  37. Lai CP, Breakefield XO (2012) Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol 3:228. doi:10.3389/fphys.2012.00228 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lai CP, Mardini O, Ericsson M, Prabhakar S, Maguire CA, Chen JW, Tannous BA, Breakefield XO (2014) Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano 8:483–494. doi:10.1021/nn404945r CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lai CP, Kim EY, Badr CE, Weissleder R, Mempel TR, Tannous BA, Breakefield XO (2015) Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun 6:7029. doi:10.1038/ncomms8029 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lee YS, Kim SH, Cho JA, Kim CW (2011) Introduction of the CIITA gene into tumor cells produces exosomes with enhanced anti-tumor effects. Exp Mol Med 43:281–290. doi:10.3858/emm.2011.3843.3855.3029 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Li B, Antonyak MA, Zhang J, Cerione RA (2012) RhoA triggers a specific signaling pathway that generates transforming microvesicles in cancer cells. Oncogene 31:4740–4749. doi:10.1038/onc.2011.4636 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lu-Emerson C, Plotkin SR (2009) The Neurofibromatoses. Part 1: NF1. Rev Neurol Dis 6:E47–E53PubMedGoogle Scholar
  43. Mack M, Kleinschmidt A, Bruhl H, Klier C, Nelson PJ, Cihak J, Plachy J, Stangassinger M, Erfle V, Schlondorff D (2000) Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nat Med 6:769–775CrossRefPubMedGoogle Scholar
  44. Martins VR, Dias MS, Hainaut P (2013) Tumor-cell-derived microvesicles as carriers of molecular information in cancer. Curr Opin Oncol 25:66–75. doi:10.1097/CCO.1090b1013e32835b32837c32881 CrossRefPubMedGoogle Scholar
  45. Mcgeer PL, Itagaki S, Boyes BE, Mcgeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38:1285–1291CrossRefPubMedGoogle Scholar
  46. Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, LeBleu VS, Mittendorf EA, Weitz J, Rahbari N, Reissfelder C, Pilarsky C, Fraga MF, Piwnica-Worms D, Kalluri R (2015) Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523(7559):177–182. doi:10.1038/nature14581 CrossRefPubMedGoogle Scholar
  47. Millimaggi D, Mari M, D’Ascenzo S, Carosa E, Jannini EA, Zucker S, Carta G, Pavan A, Dolo V (2007) Tumor vesicle-associated CD147 modulates the angiogenic capability of endothelial cells. Neoplasia 9:349–357CrossRefPubMedPubMedCentralGoogle Scholar
  48. Mizrak A, Bolukbasi MF, Ozdener GB, Brenner GJ, Madlener S, Erkan EP, Ströbel T, Breakefield XO, Saydam O (2013) Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth. Mol Ther 21:101–108. doi:10.1038/mt.2012.1161 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mullen CA, Coale MM, Lowe R, Blaese RM (1994) Tumors expressing the cytosine deaminase suicide gene can be eliminated in vivo with 5-fluorocytosine and induce protective immunity to wild type tumor. Cancer Res 54:1503–1506PubMedGoogle Scholar
  50. Nabhan JF, Hu R, Oh RS, Cohen SN, Lu Q (2012) Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc Natl Acad Sci U S A 109:4146–4151. doi:10.1073/pnas.1200448109 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Nakano I, Garnier D, Minata M, Rak J (2015) Extracellular vesicles in the biology of brain tumour stem cells—Implications for inter-cellular communication, therapy and biomarker development. Semin Cell Dev Biol 40:17–26. doi:10.1016/j.semcdb.2015.1002.1011 CrossRefPubMedGoogle Scholar
  52. Paggetti J, Haderk F, Seiffert M, Janji B, Distler U, Ammerlaan W, Kim YJ, Adam J, Lichter P, Solary E, Berchem G, Moussay E (2015) Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood 126(9):1106–1117CrossRefPubMedPubMedCentralGoogle Scholar
  53. Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:883–891. doi:10.1038/nm.2753 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Peng Q, Zhang S, Yang Q, Zhang T, Wei XQ, Jiang L, Zhang CL, Chen QM, Zhang ZR, Lin YF (2013) Preformed albumin corona, a protective coating for nanoparticles based drug delivery system. Biomaterials 34:8521–8530. doi:10.1016/j.biomaterials.2013.8507.8102 CrossRefPubMedGoogle Scholar
  55. Porosnicu M, Mian A, Barber GN (2003) The oncolytic effect of recombinant vesicular stomatitis virus is enhanced by expression of the fusion cytosine deaminase/uracil phosphoribosyltransferase suicide gene. Cancer Res 63(23):8366–8376PubMedGoogle Scholar
  56. Prabhakar S, Taherian M, Gianni D, Conlon TJ, Fulci G, Brockmann J, Stemmer-Rachamimov AO, Sena-Esteves M, Breakefield XO, Brenner GJ (2013) Regression of schwannomas induced by adeno-associated virus-mediated delivery of caspase-1. Hum Gene Ther 24:152–162. doi:10.1089/hum.2012.1094 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MB (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52:515–520CrossRefPubMedGoogle Scholar
  58. Robbins PD, Morelli AE (2014) Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 14:195–208. doi:10.1038/nri3622 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sarkar A, Mitra S, Mehta S, Raices R, Wewers MD (2009) Monocyte derived microvesicles deliver a cell death message via encapsulated caspase-1. PLoS One 4:e7140. doi:10.1371/journal.pone.0007140 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Saydam O, Ozdener GB, Senol O, Mizrak A, Prabhakar S, Stemmer-Rachamimov AO, Breakefield XO, Brenner GJ (2011) A novel imaging-compatible sciatic nerve schwannoma model. J Neurosci Methods 195:75–77. doi:10.1016/j.jneumeth.2010.1010.1021 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Shen B, Wu N, Yang JM, Gould SJ (2011) Protein targeting to exosomes/microvesicles by plasma membrane anchors. J Biol Chem 286:14383–14395. doi:10.11074/jbc.M14110.208660 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Shimoda M, Khokha R (2013) Proteolytic factors in exosomes. Proteomics 13(10–11):1624–1636. doi:10.1002/pmic.201200458 CrossRefPubMedGoogle Scholar
  63. Sidhu SS, Mengistab AT, Tauscher AN, LaVail J, Basbaum C (2004) The microvesicle as a vehicle for EMMPRIN in tumor-stromal interactions. Oncogene 23:956–963CrossRefPubMedGoogle Scholar
  64. Simpson RJ, Jensen SS, Lim JW (2008) Proteomic profiling of exosomes: current perspectives. Proteomics 8:4083–4099. doi:10.1002/pmic.200800109 CrossRefPubMedGoogle Scholar
  65. Singh R, Pochampally R, Watabe K, Lu Z, Mo YY (2014) Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer. Mol Cancer 13:256. doi:10.1186/1476-4598-1113-1256 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Skog J, Würdinger T, van Rijn S, Meijer D, Gainche L, Curry WTJ, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and protein that promote tumor growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476. doi:10.1038/ncb1800 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Stanuszek A, Piątek P, Kwiatkowski S, Adamek D (2014) Multiple faces of children and juvenile meningiomas: a report of single-center experience and review of literature. Clin Neurol Neurosurg 118:69–75. doi:10.1016/j.clineuro.2013.1012.1019 CrossRefPubMedGoogle Scholar
  68. Stenqvist AC, Nagaeva O, Baranov V, Mincheva-Nilsson L (2013) Exosomes secreted by human placenta carry functional Fas ligand and TRAIL molecules and convey apoptosis in activated immune cells, suggesting exosome-mediated immune privilege of the fetus. J Immunol 191:5515–5523. doi:10.4049/jimmunol.1301885 CrossRefPubMedGoogle Scholar
  69. Taieb J, Chaput N, Schartz N, Roux S, Novault S, Ménard C, Ghiringhelli F, Terme M, Carpentier AF, Darrasse-Jèze G, Lemonnier F, Zitvogel L (2006) Chemoimmunotherapy of tumors: cyclophosphamide synergizes with exosome based vaccines. J Immunol 176:2722–2729CrossRefPubMedGoogle Scholar
  70. Tan A, De La Peña H, Seifalian AM (2010) The application of exosomes as a nanoscale cancer vaccine. Int J Nanomedicine 5:889–900. doi:10.2147/IJN.S13402 PubMedPubMedCentralGoogle Scholar
  71. Tesselaar ME, Romijn FP, Van Der Linden IK, Prins FA, Bertina RM, Osanto S (2007) Microparticle-associated tissue factor activity: a link between cancer and thrombosis? J Thromb Haemost 5:520–527CrossRefPubMedGoogle Scholar
  72. Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, Wei J, Nie G (2014) A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35:2383–2390. doi:10.1016/j.jneumeth.2010.2310.2021 CrossRefPubMedGoogle Scholar
  73. Verweij FJ, van Eijndhoven MA, Hopmans ES, Vendrig T, Wurdinger T, Cahir-McFarland E, Kieff E, Geerts D, van der Kant R, Neefjes J, Middeldorp JM, Pegtel DM (2011) LMP1 association with CD63 in endosomes and secretion via exosomes limits constitutive NF-κB activation. EMBO J 30(11):2115–2129. doi:10.1038/emboj.2011.2123 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–433. doi:10.1038/ncb2210 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Vlassov AV, Magdaleno S, Setterquist R, Conrad R (2012) Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 1820:940–948. doi:10.1016/j.bbagen.2012.1003.1017 CrossRefPubMedGoogle Scholar
  76. Wiklander OP, Nordin JZ, O’Loughlin A, Gustafsson Y, Corso G, Mäger I, Vader P, Lee Y, Sork H, Seow Y, Heldring N, Alvarez-Erviti L, Smith CE, Le Blanc K, Macchiarini P, Jungebluth P, Wood MJ, Andaloussi SE (2015) Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Ves 4:26316. doi:10.23402/jev.v26314.26316 Google Scholar
  77. Wu DC, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, Przedborski S (2003) NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci U S A 100:6145–6150CrossRefPubMedPubMedCentralGoogle Scholar
  78. Yoon YJ, Kim OY, Gho YS (2014) Extracellular vesicles as emerging intercellular communicasomes. BMB Rep 47:531–539CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zeelenberg IS, Ostrowski M, Krumeich S, Bobrie A, Jancic C, Boissonnas A, Delcayre A, Le Pecq JB, Combadière B, Amigorena S, Théry C (2008) Targeting tumor antigens to secreted membrane vesicles in vivo induces efficient antitumor immune responses. Cancer Res 68:1228–1235. doi:10.1158/0008-5472.CAN-1207-3163 CrossRefPubMedGoogle Scholar
  80. Zhang Y, Luo CL, He BC, Zhang JM, Cheng G, Wu XH (2010) Exosomes derived from IL-12-anchored renal cancer cells increase induction of specific antitumor response in vitro: a novel vaccine for renal cell carcinoma. Int J Oncol 36:133–140PubMedGoogle Scholar
  81. Zhao Y, Sun X, Cao W, Ma J, Sun L, Qian H, Zhu W, Xu W (2015) Exosomes derived from human umbilical cord mesenchymal stem cells relieve acute myocardial ischemic injury. Stem Cells Int 2015:761643. doi:10.761155/762015/761643 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Zomer A, Maynard C, Verweij FJ, Kamermans A, Schäfer R, Beerling E, Schiffelers RM, de Wit E, Berenguer J, Ellenbroek SI, Wurdinger T, Pegtel DM, van Rheenen J (2015) In Vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161:1046–1057. doi:10.1016/j.cell.2015.1004.1042 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Justin Hall
    • 1
    • 2
  • Shilpa Prabhakar
    • 2
  • Leonora Balaj
    • 2
  • Charles P. Lai
    • 2
    • 3
  • Richard A. Cerione
    • 1
  • Xandra O. Breakefield
    • 2
    • 4
  1. 1.Departments of Chemistry and Chemical Biology and Molecular MedicineCornell UniversityIthacaUSA
  2. 2.Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery CenterHarvard Medical SchoolBostonUSA
  3. 3.Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
  4. 4.Molecular Neurogenetics UnitMassachusetts General Hospital-EastCharlestownUSA

Personalised recommendations