Advertisement

Cellular and Molecular Neurobiology

, Volume 36, Issue 5, pp 647–655 | Cite as

Enhanced Neuroprotection of Minimally Invasive Surgery Joint Local Cooling Lavage against ICH-induced Inflammation Injury and Apoptosis in Rats

  • Xi-chang Liu
  • Li-yan Jing
  • Ming-feng Yang
  • Kun Wang
  • Yuan Wang
  • Xiao-yan Fu
  • Jie Fang
  • Ya-jun Hou
  • Jing-yi Sun
  • Da-wei Li
  • Zong-yong Zhang
  • Lei-lei Mao
  • You-mei Tang
  • Xiao-ting Fu
  • Cun-dong FanEmail author
  • Xiao-yi Yang
  • Bao-liang SunEmail author
Original Research

Abstract

Hypothermia treatment is one of the neuroprotective strategies that improve neurological outcomes effectively after brain damage. Minimally invasive surgery (MIS) has been an important treatment of intracerebral hemorrhage (ICH). Herein, we evaluated the neuroprotective effect and mechanism of MIS joint local cooling lavage (LCL) treatment on ICH via detecting the inflammatory responses, oxidative injury, and neuronal apoptosis around the hematoma cavity in rats. ICH model was established by type IV collagenase caudatum infusion. The rats were treated with MIS 6 h after injection, and then were lavaged by normothermic (37 °C) and hypothermic (33 °C) normal saline in brain separately. The results indicated that MIS joint LCL treatment showed enhanced therapeutic effects against ICH-induced inflammation injury and apoptosis in rats, as convinced by the decline of TUNEL-positive cells, followed by the decrease of IL-1β and LDH and increase of IL-10 and SOD. This study demonstrated that the strategy of using MIS joint LCL may achieve enhanced neuroprotection against ICH-induced inflammation injury and apoptosis in rats with potential clinic application.

Keywords

Minimally invasive surgery Local cooling lavage Intracerebral hemorrhage Neuronal cell apoptosis 

Notes

Acknowledgments

This study was supported by the National Natural Science Foundation of China Nos. 81471212, 81271275, 81070947, 30770759 to B.-L. Sun; and Natural Science Foundation of Shandong No. ZR2012HZ006 to B.-L. Sun.

Compliance with Ethical Standards

Conflict of interest

The authors declare that there is no conflict of interests for all authors.

References

  1. Agnihotri S, Czap A, Staff I, Fortunato G, McCullough LD (2011) Peripheral leukocyte counts and outcomes after intracerebral hemorrhage. J Neuroinflammation 16:8–160Google Scholar
  2. Aronowski J, Hall CE (2005) New horizons for primary intracerebral hemorrhage treatment: experience from preclinical studies. Neurol Res 27:268–279CrossRefPubMedGoogle Scholar
  3. Babu R, Bagley JH, Di C, Friedman AH, Adamson C (2012) Thrombin and hemin as central factors in the mechanisms of intracerebral hemorrhage-induced secondary brain injury and as potential targets for intervention. Neurosurg Focus 32:E8CrossRefPubMedGoogle Scholar
  4. Broderick JP, Brott T, Tomsick T, Huster G, Miller R (1992) The risk of subarachnoid and intracerebral hemorrhages in blacks as compared with whites. New Engl J Med 326:733–736CrossRefPubMedGoogle Scholar
  5. Bruno A, Carter S, Qualls C, Nolte KB (1996) Incidence of spontaneous intracerebral hemorrhage among Hispanics and non-Hispanic whites in New Mexico. Neurology 47:405–408CrossRefPubMedGoogle Scholar
  6. Busto R, Dietrich WD, Globus MY, Valds I, Scheinberg P, Ginsberg MD (1987) Small differences in intraischemic brain temperature critically determine the extent of ischemic neuroprotective effects of focal brain cooling on photochemically-induced cerebral infarction in rats: analysis from a neurophysiological perspective Yeting Hea, Masami Fujia. Brain Res 1497:53–60Google Scholar
  7. Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Met 21:2–24CrossRefGoogle Scholar
  8. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, Chopp M (2001) Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32:1005–1011CrossRefPubMedGoogle Scholar
  9. Chen J, Qin J, Su Q, Liu Z, Yang J (2012) Treadmill rehabilitation treatment enhanced BDNF-TrkB but not NGF-TrkA signaling in a mouse intracerebral hemorrhage model. Neurosci Lett 529:28–32CrossRefPubMedGoogle Scholar
  10. Clark DL, Penner M, Wowk S, Orellana-Jordan I, Colbourne F (2009) Treatments (12 and 48 h) with systemic and brain-selective hypothermia techniques after permanent focal cerebral ischemia in rat. Exp Neurol 220:391–399CrossRefPubMedGoogle Scholar
  11. Cordonnier C, Klijn CJ, van Beijnum J, Al-Shahi Salman R (2010) Radiological investigation of spontaneous intra-cerebral hemorrhage: systematic review and trinational survey. Stroke 41:685–690CrossRefPubMedGoogle Scholar
  12. Diringer MN (1993) Intracerebral hemorrhage: pathophysiology and management. Crit Care Med 21:1591–1603CrossRefPubMedGoogle Scholar
  13. Dziedzic T, Bartus S, Klimkowiez A, Motyl M, Slowik A, Szczudlik A (2002) Intracerebral hemorrhage triggers interleukin-6 and interleukin-10 release in blood. Stroke 33:2334–2335CrossRefPubMedGoogle Scholar
  14. Elliott J, Smith M (2010) The acute management of intracerebral hemorrhage: a clinical review. Anesth Analg 110:1419–1427CrossRefPubMedGoogle Scholar
  15. Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V (2009) Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol 8:355–369CrossRefPubMedGoogle Scholar
  16. Felberg RA, Grotta JC, Shirzadi AL, Strong R, Narayana P, Hill-Felberg SJ, Aronowski J (2002) Cell death in experimental intracerebral hemorrhage: the black hole model of hemorrhagic damage. Ann Neurol 51:517–524CrossRefPubMedGoogle Scholar
  17. Gao Z, Wang J, Thiex R, Rogove AD, Heppner FL, Tsirka SE (2008) Microglial activation and intracerebral hemorrhage. Acta Neurochir Suppl 105:51–53CrossRefPubMedGoogle Scholar
  18. Godoy-Torres DA, PiHeiro G (2005) Inflammatory response in spontaneous intracerebral hemorrhage. Rev Neurol 40:492–497PubMedGoogle Scholar
  19. Gong C, Hoff JT, Keep RF (2000) Acute inflammatory reaction following experimental intracerebral hemorrhage in rat. Brain Res 871:57–65CrossRefPubMedGoogle Scholar
  20. Hall NC, Packard BA, Hall CL, De Courten-Myers G, Wagner KR (2000) Protein oxidation and enzyme susceptibility in white and gray matter with in vitro oxidative stress: relevance to brain injury from intracerebral hemorrhage. Cell Mol Biol (Noisy-le-Grand, France) 46:673–683Google Scholar
  21. Haussen DC, Henninger N, Kumar S, Selim M (2012) Statin use and microbleeds in patients with spontaneous intracerebral hemorrhage. Stroke 43:2677–2681CrossRefPubMedGoogle Scholar
  22. Huang FP, Xi G, Keep RF, Hua Y, Nemoianu A, Hoff JT (2002) Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. J Neurosurg 96:287–293CrossRefPubMedGoogle Scholar
  23. Jawa RS, Kulaylat MN, Baumann H, Dayton MT (2006) What is new in cytokine research related to trauma/critical care. Intensive Care Med 21:63–85CrossRefGoogle Scholar
  24. Jawien J (2008) New insights into immunological aspects of atherosclerosis. Pol Arch Med Wewn 118:127–131PubMedGoogle Scholar
  25. Labovitz DL, Halim A, Boden-Albala B, Hauser WA, Sacco RL (2005) The incidence of deep and lobar intracerebral hemorrhage in whites, blacks, and Hispanics. Neurology 65:518–522CrossRefPubMedGoogle Scholar
  26. Lee ST, Chu K, Jung KH, Kang KM, Kim JH, Bahn JJ, Jeon D, Kim M, Lee SK, Roh JK (2010) Cholinergic anti-inflammatory pathway in intracerebral hemorrhage. Brain Res 1039:164–171CrossRefGoogle Scholar
  27. Liew HK, Hsu CW, Wang MJ, Kuo JS, Li TY, Peng HF, Wang JY, Pang CY (2012a) Therapeutic benefit of urocortin in rats with intracerebral hemorrhage. J Neurosurg 116:193–200CrossRefPubMedGoogle Scholar
  28. Liew HK, Pang CY, Hsu CW, Wang MJ, Li TY, Peng HF, Kuo JS, Wang JY (2012b) Systemic administration of urocortin after intracerebral hemorrhage reduces neurological deficits and neuroinflammation in rats. J Neuroinflammation 19:13CrossRefGoogle Scholar
  29. Lin S, Yin Q, Zhong Q, Lv FL, Zhou Y, Li JQ, Wang JZ, Su BY, Yang QW (2012) Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J Neuroinflammation 9:46–60CrossRefPubMedPubMedCentralGoogle Scholar
  30. Liu M, Wu B, Wang WZ, Lee LM, Zhang SH, Kong LZ (2007) Stroke in China: epidemiology, prevention, and management strategies. Lancet Neurol 6:456–464CrossRefPubMedGoogle Scholar
  31. MacLellan CL, Girgis J, Colbourne F (2004) Delayed onset of prolonged hypothermia improves outcome after intracerebral hemorrhage in rats. J Cereb Blood Flow Metab 24:432–440CrossRefPubMedGoogle Scholar
  32. Matz PG, Fujimura M, Lewen A, Morita-Fujimura Y, Chan PH (2001) Increased cytochrome c-mediated DNA fragmentation and cell death in manganese-superoxide dismutase-deficient mice after exposure to subarachnoid hemolysate. Stroke 32:506–515CrossRefPubMedGoogle Scholar
  33. Mc YN, Toktamis S, Haas E, Hollerhage HG (2005) Benefits of adapting minimal invasive techniques to selected patients with spontaneous supratentorial intracerebral hematomas. Neurol Res 27:755–761CrossRefGoogle Scholar
  34. Munakata M, Shirakawa H, Nagayasu K, Miyanohara J, Miyake T, Nakagawa T, Katsuki H, Kaneko S (2013) Transient receptor potential canonical 3 inhibitor Pyr3 improves outcomes and attenuates astrogliosis after intracerebral hemorrhage in mice. Stroke 44:1981–1987CrossRefPubMedGoogle Scholar
  35. Narayanan S (1999) Multifunctional roles of thrombin. Ann Clin Lab Sci 29:275–280PubMedGoogle Scholar
  36. Naval NS, Nyquist P, Carhuapoma JR (2007) ICH aspiration and thrombolysis. J Neurol Sci 261:80–83CrossRefPubMedGoogle Scholar
  37. Park HK, Chu K, Lee ST, Jung KH, Kim EH, Lee KB, Song YM, Jeong SW, Kim M, Roh JK (2005) Granulocyte colony-stimulating factor induces sensorimotor recovery in intracerebral hemorrhage. Brain Res 1041:125–131CrossRefPubMedGoogle Scholar
  38. Pelidou SH, Kostulas N, Matusevicius D, Kivisäkk P, Kostulas V, Link H (1999) Hiss levels of IL-10 secreting cells am present in blood in cerebral vascular disease. Eur J Neurol 6:437–442CrossRefPubMedGoogle Scholar
  39. Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF (2001) Spontaneous intracerebral hemorrhage. New Engl J Med 344:1450–1460CrossRefPubMedGoogle Scholar
  40. Qureshi AI, Suri MF, Nasar A, Kirmani JF, Ezzeddine MA, Divani AA, Giles WH (2007) Changes in cost and outcome among US patients with stroke hospitalized in 1990 to 1991 and those hospitalized in 2000 to 2001. Stroke 38:2180–2184CrossRefPubMedGoogle Scholar
  41. Ren J (2011) Clinical research of minimally invasive surgery joint local cooling naloxone lavage treat the patients with ICH. Chin J Pract Med 10:52–54Google Scholar
  42. Sang YH, Liang YX (2013) A rat model of intracerebral hemorrhage permitting hematoma aspiration plus intralesional injection. Exp Anim 62:63–69CrossRefPubMedGoogle Scholar
  43. Shankaran S, Laptook AR, Ehrenkranz RA, Tyson JE, McDonald SA, Donovan EF, Fanaroff AA, Poole WK, Wright LL, Higgins RD, Finer NN, Carlo WA, Duara S, Oh W, Cotten CM, Stevenson DK, Stoll BJ, Lemons JA, Guillet R, Jobe AH (2005) Whole body hypothermia for neonates with hypoxic-ischemic encephalopathy. New Engl J Med 353:1547–1584CrossRefGoogle Scholar
  44. Sun HW, Tang Y, Guan XQ, Li LF, Wang DC (2013) Effects of selective hypothermia on blood-brain barrier integrity and tight junction protein expression levels after intracerebral hemorrhage in rats. Biol Chem 394:1317–1324CrossRefPubMedGoogle Scholar
  45. Sutherland GR, Auer RN (2006) Primary intracerebral hemorrhage. J Clin Neurosci 13:511–517CrossRefPubMedGoogle Scholar
  46. Tang XN, Zheng Z, Giffard RG, Yenari MA (2011) Significance of marrow-derived nicotinamide adenine dinucleotide phosphate oxidase in experimental ischemic stroke. Ann Neurol 70:606–615CrossRefPubMedPubMedCentralGoogle Scholar
  47. Tu EW, Liu QT (2013) Neuroprotective effect of atorvastatin involves suppression of TNF-a and upregulation of IL-10 in a rat model of intracerebral hemorrhage. Cell Biochem Biophys 66:337–346CrossRefGoogle Scholar
  48. Van der Poll T, Van Deventer S (1999) Cytokines and anticytokines in the pathogenesis of sepsis. Infect Dis Clin N Am 13:413–426CrossRefGoogle Scholar
  49. Wang CJ, Wang CX, Zhang L, Wang YL, Wang YJ (2011a) Advances in stroke care and research in 2010. Clin Exp Pharmacol Physiol 38:562–569CrossRefPubMedGoogle Scholar
  50. Wang KW, Cho CL, Chen HJ, Liang CL, Liliang PC, Tsai YD, Wang HK, Lu K (2011b) Molecular biomarker of inflammatory response is associated with rebleeding in spontaneous intracerebral hemorrhage. Eur Neurol 66:322–327CrossRefPubMedGoogle Scholar
  51. Wu J, Yang S, Xi G, Song S, Fu G, Keep RF, Hua Y (2008) Microglial activation and brain injury after intracerebral hemorrhage. Acta Neurochir Suppl 105:59–65CrossRefPubMedGoogle Scholar
  52. Yeting H, Fujii M, Inoue T, Nomura S, Maruta Y, Oka F, Shirao S, Owada Y, Kida H, Kunitsugu I, Yamakawa T, Tokiwa T, Yamakawa T, Suzuki M (2013) Neuroprotective effects of focal brain cooling on photochemically-induced cerebral infarction in rats: analysis from a neurophysiological perspective. Brain Res 1497:53–60CrossRefGoogle Scholar
  53. Yu Z, Chen LF, Li XF, Zhang DP, Chen YM, Wu WF, Hu CL (2009) A double-injection model of intracerebral hemorrhage in rabbits. J Clin Neurosci 16:545–548CrossRefPubMedGoogle Scholar
  54. Zhang X, Li H, Hu S, Zhang L, Liu C, Zhu C, Liu R, Li C (2006) Brain edema after intracerebral hemorrhage in rats: the role of inflammation. Neurol India 54:402–407CrossRefPubMedGoogle Scholar
  55. Zhou X, Chen J, Li Q, Ren G, Yao G, Liu M, Dong Q, Guo J, Li L, Guo J, Xie P (2012) Minimally invasive surgery for spontaneous supratentorial intracerebral hemorrhage: a meta-analysis of randomized controlled trials. Stroke 43:2923–2930CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Xi-chang Liu
    • 1
    • 2
    • 3
  • Li-yan Jing
    • 4
  • Ming-feng Yang
    • 2
  • Kun Wang
    • 2
    • 5
  • Yuan Wang
    • 6
  • Xiao-yan Fu
    • 7
  • Jie Fang
    • 2
  • Ya-jun Hou
    • 2
  • Jing-yi Sun
    • 7
  • Da-wei Li
    • 2
  • Zong-yong Zhang
    • 2
  • Lei-lei Mao
    • 2
  • You-mei Tang
    • 3
  • Xiao-ting Fu
    • 2
  • Cun-dong Fan
    • 2
    Email author
  • Xiao-yi Yang
    • 2
  • Bao-liang Sun
    • 1
    • 2
    • 8
    Email author
  1. 1.Department of NeurologyShandong University School of MedicineJinanChina
  2. 2.Key Lab of Cerebral Microcirculation in Universities of ShandongTaishan Medical UniversityTaianChina
  3. 3.Yantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
  4. 4.Taian Chinese Medicine HospitalTaianChina
  5. 5.Taishan Vocational College of NursingTaianChina
  6. 6.Shandong Provincial Hospital Affiliated To Shandong UniversityJinanChina
  7. 7.School of Basic MedicineTaishan Medical UniversityTaianChina
  8. 8.Affiliated Hospital of Taishan Medical UniversityTaianChina

Personalised recommendations