Advertisement

Cellular and Molecular Neurobiology

, Volume 35, Issue 5, pp 741–753 | Cite as

Extracellular Matrix Glycoprotein-Derived Synthetic Peptides Differentially Modulate Glioma and Sarcoma Cell Migration

  • Nicole Brösicke
  • Muhammad Sallouh
  • Lisa-Marie Prior
  • Albert Job
  • Ralf Weberskirch
  • Andreas FaissnerEmail author
Original Research

Abstract

Glycoproteins of the extracellular matrix (ECM) regulate proliferation, migration, and differentiation in numerous cell lineages. ECM functions are initiated by small peptide sequences embedded in large constituents that are recognized by specific cellular receptors. In this study, we have investigated the biological effects of peptides derived from collagen type IV and tenascin-C compared to the well-known RGD peptide originally discovered in fibronectin. The influence of glycoproteins and corresponding peptides on the migration of the glioma cell lines U-251-MG and U-373-MG and the sarcoma line S-117 was studied. When the cell lines were tested in a modified Boyden chamber assay on filters coated with the ECM glycoproteins, glioma cells showed a strong migration response on tenascin-C and the basal lamina constituent collagen IV, in contrast to S-117 cells. In order to identify relevant stimulatory motifs, peptides derived from fibronectin (6NHX-GRGDSF), tenascin-C (TN-C, VSWRAPTA), and collagen type IV (MNYYSNS) were compared, either applied in solution in combination with ECM glycoprotein substrates, in solution in the presence of untreated membranes, or coated on the filters of the Boyden chambers. Using this strategy, we could identify the novel tenascin-C-derived peptide motif VSWRAPTA as a migration stimulus for glioma cells. Furthermore, while kin peptides generally blocked the effects of the respective homologous ECM proteins, unexpected effects were observed in heterologous situations. There, in several cases, addition of soluble peptides strongly boosted the response to the coated ECM proteins. We propose that peptides may synergize or antagonize each other by stimulating different signaling pathways.

Keywords

Synthetic peptides Extracellular matrix Glioblastoma Migration 

Notes

Acknowledgments

We thank S. Kindermann for his excellent technical assistance and purification of human TN-C and M. Kirchberg for elaborating the tables. We acknowledge grant support by the Mercator Research Center Ruhr (Mercur Foundation, Pr-2011-0010 to RW and AF) and the COST Action BM 1001 “Brain ECM in Health and Disease” (to AF).

Conflict of interest

The authors declare that they have no conflict of interest related to the publication of this manuscript.

References

  1. Adair-Kirk TL, Senior RM (2008) Fragments of extracellular matrix as mediators of inflammation. Int J Biochem Cell Biol 40:1101–1110. doi: 10.1016/j.biocel.2007.12.005 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Barczyk M, Carracedo S, Gullberg D (2010) Integrins cell and tissue research 339:269–280. doi: 10.1007/s00441-009-0834-6
  3. Barlos K, Gatos D, Kallitsis J, Papaphtiu G, Sotiriu P, Wenqing Y, Schäfer W (1989) Darstellung geschützter Peptid-Fragmente unter Einsatz substituierter Triphenylmethyl-Harze. Tetrahedron Lett 30:3943–3946. doi: 10.1016/S0040-4039(00)99290-6 CrossRefGoogle Scholar
  4. Bhadriraju K, Chung KH, Spurlin TA, Haynes RJ, Elliott JT, Plant AL (2009) The relative roles of collagen adhesive receptor DDR2 activation and matrix stiffness on the downregulation of focal adhesion kinase in vascular smooth muscle cells. Biomaterials 30:6687–6694. doi: 10.1016/j.biomaterials.2009.08.036 PubMedCrossRefGoogle Scholar
  5. Brosicke N, van Landeghem FK, Scheffler B, Faissner A (2013) Tenascin-C is expressed by human glioma in vivo and shows a strong association with tumor blood vessels. Cell Tissue Res 354:409–430. doi: 10.1007/s00441-013-1704-9 PubMedCrossRefGoogle Scholar
  6. Buck CA, Horwitz AF (1987) Cell surface receptors for extracellular matrix molecules. Annu Rev Cell Biol 3:179–205. doi: 10.1146/annurev.cb.03.110187.001143 PubMedCrossRefGoogle Scholar
  7. Castro-Sanchez L, Soto-Guzman A, Navarro-Tito N, Martinez-Orozco R, Salazar EP (2010) Native type IV collagen induces cell migration through a CD9 and DDR1-dependent pathway in MDA-MB-231 breast cancer cells. Eur J Cell Biol 89:843–852. doi: 10.1016/j.ejcb.2010.07.004 PubMedCrossRefGoogle Scholar
  8. Cattaruzza S et al (2013) NG2/CSPG4-collagen type VI interplays putatively involved in the microenvironmental control of tumour engraftment and local expansion J. Mol Cell Biol 5:176–193. doi: 10.1093/jmcb/mjt010 CrossRefGoogle Scholar
  9. Chatterjee S, Matsumura A, Schradermeier J, Gillespie GY (2000) Human malignant glioma therapy using anti-alpha(v)beta3 integrin agents. J Neurooncol 46:135–144PubMedCrossRefGoogle Scholar
  10. Chen AK, Delrio FW, Peterson AW, Chung KH, Bhadiraju K, Plant AL (2013) Cell spreading and proliferation in response to the composition and mechanics of engineered fibrillar extracellular matrices. Biotechnol Bioeng. doi: 10.1002/bit.24921 Google Scholar
  11. Chiquet-Ehrismann R, Chiquet M (2003) Tenascins: regulation and putative functions during pathological stress. J Pathol 200:488–499PubMedCrossRefGoogle Scholar
  12. Chiquet-Ehrismann R, Kalla P, Pearson CA, Beck K, Chiquet M (1988) Tenascin interferes with fibronectin action. Cell 53:383–390PubMedCrossRefGoogle Scholar
  13. Claes A, Idema AJ, Wesseling P (2007) Diffuse glioma growth: a guerilla war. Acta Neuropathol 114:443–458. doi: 10.1007/s00401-007-0293-7 PubMedCentralPubMedCrossRefGoogle Scholar
  14. Deryugina EI, Strongin A, Yu C, Bourdon MA (1996) A novel monoclonal antibody, L1A3, is directed to the functional site of the alpha v integrin subunit. Hybridoma 15:279–288PubMedCrossRefGoogle Scholar
  15. Erat MC, Slatter DA, Lowe ED, Millard CJ, Farndale RW, Campbell ID, Vakonakis I (2009) Identification and structural analysis of type I collagen sites in complex with fibronectin fragments. Proc Natl Acad Sci USA 106:4195–4200. doi: 10.1073/pnas.0812516106 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Erat MC, Sladek B, Campbell ID, Vakonakis I (2013) Structural analysis of collagen type I interactions with human fibronectin reveals a cooperative binding mode. J Biol Chem 288:17441–17450. doi: 10.1074/jbc.M113.469841 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Faissner A (1997) The tenascin gene family in axon growth and guidance. Cell Tissue Res 290:331–341PubMedCrossRefGoogle Scholar
  18. Faissner A, Kruse J, Kuhn K, Schachner M (1990) Binding of the J1 adhesion molecules to extracellular matrix constituents. J Neurochem 54:1004–1015PubMedCrossRefGoogle Scholar
  19. Floquet N et al (2004) The antitumor properties of the alpha3(IV)-(185-203) peptide from the NC1 domain of type IV collagen (tumstatin) are conformation-dependent. J Biol Chem 279:2091–2100. doi: 10.1074/jbc.M307736200 PubMedCrossRefGoogle Scholar
  20. Gladson CL, Cheresh DA (1991) Glioblastoma expression of vitronectin and the alpha v beta 3 integrin. Adhesion mechanism for transformed glial cells. J Clin Invest 88:1924–1932. doi: 10.1172/JCI115516 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Gladson CL, Wilcox JN, Sanders L, Gillespie GY, Cheresh DA (1995) Cerebral microenvironment influences expression of the vitronectin gene in astrocytic tumors. J Cell Sci 108(Pt 3):947–956PubMedGoogle Scholar
  22. Götz B et al (1996) Tenascin-C contains distinct adhesive. Anti-adhesive, and neurite outgrowth promoting sites for neurons. J Cell Biol 132:681–699PubMedCrossRefGoogle Scholar
  23. Hadden HL, Henke CA (2000) Induction of lung fibroblast apoptosis by soluble fibronectin peptides. Am J Respir Crit Care Med 162:1553–1560. doi: 10.1164/ajrccm.162.4.2001015 PubMedCrossRefGoogle Scholar
  24. Hayes MJ, Shao D, Bailly M, Moss SE (2006) Regulation of actin dynamics by annexin 2. EMBO J 25:1816–1826. doi: 10.1038/sj.emboj.7601078 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Hegemann JD et al (2014) Rational improvement of the affinity and selectivity of integrin binding of grafted lasso peptides. J Med Chem 57:5829–5834. doi: 10.1021/jm5004478 PubMedCrossRefGoogle Scholar
  26. Huang W, Chiquet-Ehrismann R, Moyano JV, Garcia-Pardo A, Orend G (2001) Interference of tenascin-C with syndecan-4 binding to fibronectin blocks cell adhesion and stimulates tumor cell proliferation. Cancer Res 61:8586–8594PubMedGoogle Scholar
  27. Huijbers IJ, Iravani M, Popov S, Robertson D, Al-Sarraj S, Jones C, Isacke CM (2010) A role for fibrillar collagen deposition and the collagen internalization receptor endo180 in glioma invasion. PLoS ONE 5:e9808. doi: 10.1371/journal.pone.0009808 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Hynes RO (1986) Fibronectins. Sci Am 254:42–51PubMedCrossRefGoogle Scholar
  29. Ingham KC, Brew SA, Erickson HP (2004) Localization of a cryptic binding site for tenascin on fibronectin. J Biol Chem 279:28132–28135PubMedCrossRefGoogle Scholar
  30. Iyer S, Visse R, Nagase H, Acharya KR (2006) Crystal structure of an active form of human MMP-1. J Mol Biol 362:78–88. doi: 10.1016/j.jmb.2006.06.079 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Kabir-Salmani M et al (2003) Alphavbeta3 integrin signaling pathway is involved in insulin-like growth factor I-stimulated human extravillous trophoblast cell migration. Endocrinology 144:1620–1630PubMedCrossRefGoogle Scholar
  32. Kanu OO et al (2009) Glioblastoma Multiforme Oncogenomics and Signaling Pathways. Clin Med Oncol 3:39–52PubMedCentralPubMedGoogle Scholar
  33. Lee HT, Kay EP (2003) FGF-2 induced reorganization and disruption of actin cytoskeleton through PI 3-kinase, Rho, and Cdc42 in corneal endothelial cells. Mol Vis 9:624–634PubMedGoogle Scholar
  34. Lightner VA, Erickson HP (1990) Binding of hexabrachion (tenascin) to the extracellular matrix and substratum and its effect on cell adhesion. J Cell Sci 95(Pt 2):263–277PubMedGoogle Scholar
  35. Lim SK, Llaguno SR, McKay RM, Parada LF (2011) Glioblastoma multiforme: a perspective on recent findings in human cancer and mouse models. BMB Rep 44(158–164):2011. doi: 10.5483/BMBRep.44.3.158 Google Scholar
  36. Liu G et al. (2013) N-glycosylation induces collagen triple helix repeat containing 1 (CTHRC1) and drives oral cancer cell migration. J Biol Chem. doi: 10.1074/jbc.M113.473785
  37. Lochter A, Vaughan L, Kaplony A, Prochiantz A, Schachner M, Faissner A (1991) J1/tenascin in substrate-bound and soluble form displays contrary effects on neurite outgrowth. J Cell Biol 113:1159–1171PubMedCrossRefGoogle Scholar
  38. Mattern RH, Read SB, Pierschbacher MD, Sze CI, Eliceiri BP, Kruse CA (2005) Glioma cell integrin expression and their interactions with integrin antagonists: research article. Cancer Ther 3A:325–340PubMedCentralPubMedGoogle Scholar
  39. Menendez JA, Vellon L, Mehmi I, Teng PK, Griggs DW, Lupu R (2005) A novel CYR61-triggered ‘CYR61-alphavbeta3 integrin loop’ regulates breast cancer cell survival and chemosensitivity through activation of ERK1/ERK2 MAPK signaling pathway. Oncogene 24:761–779. doi: 10.1038/sj.onc.1208238 PubMedCrossRefGoogle Scholar
  40. Midwood KS, Orend G (2009) The role of tenascin-C in tissue injury and tumorigenesis. J Cell Commun Signal. doi: 10.1007/s12079-009-0075-1 PubMedCentralPubMedGoogle Scholar
  41. Midwood KS, Hussenet T, Langlois B, Orend G (2011) Advances in tenascin-C biology. Cell Mol Life Sci 68:3175–3199. doi: 10.1007/s00018-011-0783-6 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Nabors LB et al (2010) A phase 1 trial of ABT-510 concurrent with standard chemoradiation for patients with newly diagnosed glioblastoma. Arch Neurol 67:313–319. doi: 10.1001/archneurol.2010.16 PubMedGoogle Scholar
  43. Nakamura I et al (1999) Role of alpha(v)beta(3) integrin in osteoclast migration and formation of the sealing zone. J Cell Sci 112(Pt 22):3985–3993PubMedGoogle Scholar
  44. Pierschbacher MD, Ruoslahti E (1984a) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30–33PubMedCrossRefGoogle Scholar
  45. Pierschbacher MD, Ruoslahti E (1984b) Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc Natl Acad Sci USA 81:5985–5988PubMedCentralPubMedCrossRefGoogle Scholar
  46. Pierschbacher M, Hayman EG, Ruoslahti E (1983) Synthetic peptide with cell attachment activity of fibronectin. Proc Natl Acad Sci USA 80:1224–1227PubMedCentralPubMedCrossRefGoogle Scholar
  47. Pierschbacher MD, Dedhar S, Ruoslahti E, Argraves S, Suzuki S (1988) An adhesion variant of the MG-63 osteosarcoma cell line displays an osteoblast-like phenotype. Ciba Found Symp 136:131–141PubMedGoogle Scholar
  48. Plate KH, Scholz A, Dumont DJ (2012) Tumor angiogenesis and anti-angiogenic therapy in malignant gliomas revisited. Acta Neuropathol 124:763–775. doi: 10.1007/s00401-012-1066-5 PubMedCentralPubMedCrossRefGoogle Scholar
  49. Pontén J, MacIntyre EH (1968) Long term culture of normal and neoplastic human glia. Acta Pathol Microbiol Scand 74:465–486PubMedCrossRefGoogle Scholar
  50. Pontén J, Westermark B (1978) Properties of human malignant glioma cells in vitro. Med Biol 56:184–193PubMedGoogle Scholar
  51. Reardon DA et al (2011) A review of VEGF/VEGFR-targeted therapeutics for recurrent glioblastoma. J Natl Compr Canc Netw 9:414–427PubMedCentralPubMedGoogle Scholar
  52. Rosca EV, Lal B, Koskimaki JE, Popel AS, Laterra J (2012) Collagen IV and CXC chemokine-derived antiangiogenic peptides suppress glioma xenograft growth. Anticancer Drugs 23:706–712. doi: 10.1097/CAD.0b013e3283531041 PubMedCentralPubMedCrossRefGoogle Scholar
  53. Rozario T, Desimone DW (2009) The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol. doi: 10.1016/j.ydbio.2009.10.026
  54. Ruoslahti E, Yamaguchi Y, Hildebrand A, Border WA (1992) Extracellular matrix/growth factor interactions. Cold Spring Harb Symp Quant Biol 57:309–315PubMedCrossRefGoogle Scholar
  55. Schirren CG, Roth WK, Hein R, Werner S, Krieg T, Braun-Falco O (1990) Invasive migration of epidemic Kaposi’s sarcoma cells in vitro. Br J Dermatol 123:313–318PubMedCrossRefGoogle Scholar
  56. Scientific proceedings. Fifth symposium of the Section of Experimental Cancer Research (SEK) of the German Cancer Society. Heidelberg, 10-12 April, 1989. Abstracts (1989). J Cancer Res Clin Oncol 115(Suppl):S1–70Google Scholar
  57. Su G, Meyer K, Nandini CD, Qiao D, Salamat S, Friedl A (2006) Glypican-1 is frequently overexpressed in human gliomas and enhances FGF-2 signaling in glioma cells. Am J Pathol 168:2014–2026. doi: 10.2353/ajpath.2006.050800 PubMedCentralPubMedCrossRefGoogle Scholar
  58. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507. doi: 10.1056/NEJMra0708126 PubMedCrossRefGoogle Scholar
  59. White DP, Caswell PT, Norman JC (2007) Alpha v beta3 and alpha5beta1 integrin recycling pathways dictate downstream Rho kinase signaling to regulate persistent cell migration. J Cell Biol 177:515–525. doi: 10.1083/jcb.200609004 PubMedCentralPubMedCrossRefGoogle Scholar
  60. Williams SA, Schwarzbauer JE (2009) A shared mechanism of adhesion modulation for tenascin-C and fibulin-1. Mol Biol Cell 20:1141–1149. doi: 10.1091/mbc.E08-06-0621 PubMedCentralPubMedCrossRefGoogle Scholar
  61. Worth DC, Parsons M (2008) Adhesion dynamics: mechanisms and measurements. Int J Biochem Cell Biol 40:2397–2409. doi: 10.1016/j.biocel.2008.04.008 PubMedCrossRefGoogle Scholar
  62. Zaman MH et al (2006) Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc Natl Acad Sci USA 103:10889–10894. doi: 10.1073/pnas.0604460103 PubMedCentralPubMedCrossRefGoogle Scholar
  63. Zheng DQ, Woodard AS, Tallini G, Languino LR (2000) Substrate specificity of alpha(v)beta(3) integrin-mediated cell migration and phosphatidylinositol 3-kinase/AKT pathway activation. J Biol Chem 275:24565–24574PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Nicole Brösicke
    • 1
  • Muhammad Sallouh
    • 2
  • Lisa-Marie Prior
    • 1
    • 3
  • Albert Job
    • 1
  • Ralf Weberskirch
    • 2
  • Andreas Faissner
    • 1
    Email author
  1. 1.Department of Cell Morphology and Molecular NeurobiologyRuhr-University BochumBochumGermany
  2. 2.Department of Chemistry and Chemical BiologyTechnical University of DortmundDortmundGermany
  3. 3.Max Planck Institute for Molecular PhysiologyDortmundGermany

Personalised recommendations