Cellular and Molecular Neurobiology

, Volume 34, Issue 1, pp 31–42 | Cite as

Cannabinoid Effects on β Amyloid Fibril and Aggregate Formation, Neuronal and Microglial-Activated Neurotoxicity In Vitro

  • Emelie Janefjord
  • Jesper L. V. Mååg
  • Benjamin S. Harvey
  • Scott D. SmidEmail author
Original Research


Cannabinoid (CB) ligands have demonstrated neuroprotective properties. In this study we compared the effects of a diverse set of CB ligands against β amyloid-mediated neuronal toxicity and activated microglial-conditioned media-based neurotoxicity in vitro, and compared this with a capacity to directly alter β amyloid (Aβ) fibril or aggregate formation. Neuroblastoma (SH-SY5Y) cells were exposed to Aβ1–42 directly or microglial (BV-2 cells) conditioned media activated with lipopolysaccharide (LPS) in the presence of the CB1 receptor-selective agonist ACEA, CB2 receptor-selective agonist JWH-015, phytocannabinoids Δ9-THC and cannabidiol (CBD), the endocannabinoids 2-arachidonoyl glycerol (2-AG) and anandamide or putative GPR18/GPR55 ligands O-1602 and abnormal-cannabidiol (Abn-CBD). TNF-α and nitrite production was measured in BV-2 cells to compare activation via LPS or albumin with Aβ1–42. Aβ1–42 evoked a concentration-dependent loss of cell viability in SH-SY5Y cells but negligible TNF-α and nitrite production in BV-2 cells compared to albumin or LPS. Both albumin and LPS-activated BV-2 conditioned media significantly reduced neuronal cell viability but were directly innocuous to SH-SY5Y cells. Of those CB ligands tested, only 2-AG and CBD were directly protective against Aβ-evoked SH-SY5Y cell viability, whereas JWH-015, THC, CBD, Abn-CBD and O-1602 all protected SH-SY5Y cells from BV-2 conditioned media activated via LPS. While CB ligands variably altered the morphology of Aβ fibrils and aggregates, there was no clear correlation between effects on Aβ morphology and neuroprotective actions. These findings indicate a neuroprotective action of CB ligands via actions at microglial and neuronal cells.


Amyloid β Cannabinoid Microglia Neuroprotection Neurotoxicity 



The funding for this project was provided by internal Faculty of Health Sciences sources at The University of Adelaide

Conflict of interest

Scott Smid, Emelie Janefjord, Jesper Mååg and Benjamin Harvey have no conflict of interest in this regard.


  1. Ashton JC (2012) The atypical cannabinoid O-1602: targets, actions, and the central nervous system. Cent Nerv Syst Agents Med Chem 12(3):233–239PubMedCrossRefGoogle Scholar
  2. Bieschke J, Russ J, Friedrich RP, Ehrnhoefer DE, Wobst H, Neugebauer K, Wanker EE (2010) EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. Proc Natl Acad Sci USA 107(17):7710–7715PubMedCrossRefGoogle Scholar
  3. Bisogno T, Di Marzo V (2008) The role of the endocannabinoid system in Alzheimer’s disease: facts and hypotheses. Curr Pharm Des 14(23):2299–3305PubMedCrossRefGoogle Scholar
  4. Camacho IE, Serneels L, Spittaels K, Merchiers P, Dominguez D, De Strooper B (2004) Peroxisome-proliferator-activated receptor gamma induces a clearance mechanism for the amyloid-beta peptide. J Neurosci 24(48):10908–10917PubMedCrossRefGoogle Scholar
  5. Cecchi C, Pensalfini A, Liguri G, Baglioni S, Fiorillo C, Guadagna S, Zampagni M, Formigli L, Nosi D, Stefani M (2008a) Differentiation increases the resistance of neuronal cells to amyloid toxicity. Neurochem Res 33(12):2516–2531PubMedCrossRefGoogle Scholar
  6. Cecchi C, Pensalfini A, Stefani M, Baglioni S, Fiorillo C, Cappadona S, Caporale R, Nosi D, Ruggiero M, Liguri G (2008b) Replicating neuroblastoma cells in different cell cycle phases display different vulnerability to amyloid toxicity. J Mol Med (Berl) 86(2):197–209CrossRefGoogle Scholar
  7. Chen X, Zhang J, Chen C (2011) Endocannabinoid 2-arachidonoylglycerol protects neurons against beta-amyloid insults. Neuroscience 178:159–168PubMedCentralPubMedCrossRefGoogle Scholar
  8. Chen R, Zhang J, Wu Y, Wang D, Feng G, Tang YP, Teng Z, Chen C (2012) Monoacylglycerol lipase is a therapeutic target for Alzheimer’s disease. Cell Rep 2(5):1329–1339PubMedCentralPubMedCrossRefGoogle Scholar
  9. Dirikoc S, Priola SA, Marella M, Zsurger N, Chabry J (2007) Nonpsychoactive cannabidiol prevents prion accumulation and protects neurons against prion toxicity. J Neurosci 27(36):9537–9544PubMedCrossRefGoogle Scholar
  10. Egger T, Schuligoi R, Wintersperger A, Amann R, Malle E, Sattler W (2003) Vitamin E (alpha-tocopherol) attenuates cyclo-oxygenase 2 transcription and synthesis in immortalized murine BV-2 microglia. Biochem J 370(Pt 2):459–467PubMedCrossRefGoogle Scholar
  11. Esposito G, De Filippis D, Maiuri MC, De Stefano D, Carnuccio R, Iuvone T (2006) Cannabidiol inhibits inducible nitric oxide synthase protein expression and nitric oxide production in β-amyloid stimulated PC12 neurons through p38 MAP kinase and NF-κB involvement. Neurosci Lett 399(1–2):91–95PubMedCrossRefGoogle Scholar
  12. Esposito G, Scuderi C, Savani C, Steardo L Jr, De Filippis D, Cottone P, Iuvone T, Cuomo V, Steardo L (2007) Cannabidiol in vivo blunts β-amyloid induced neuroinflammation by suppressing IL-1β and iNOS expression. Br J Pharmacol 151(8):1272–1279PubMedCrossRefGoogle Scholar
  13. Esposito G, Scuderi C, Valenza M, Togna GI, Latina V, De Filippis D, Cipriano M, Carratu MR, Iuvone T, Steardo L (2011) Cannabidiol reduces Aβ-induced neuroinflammation and promotes hippocampal neurogenesis through PPARγ involvement. PLoS One 6(12):e28668PubMedCentralPubMedCrossRefGoogle Scholar
  14. Fernandez-Ruiz J, Garcia C, Sagredo O, Gomez-Ruiz M, de Lago E (2010) The endocannabinoid system as a target for the treatment of neuronal damage. Expert Opin Ther Targets 14(4):387–404PubMedCrossRefGoogle Scholar
  15. Fernandez-Ruiz J, Sagredo O, Pazos MR, Garcia C, Pertwee R, Mechoulam R, Martinez-Orgado J (2013) Cannabidiol for neurodegenerative disorders: important new clinical applications for this phytocannabinoid? Br J Clin Pharmacol 75(2):323–333PubMedCrossRefGoogle Scholar
  16. Fraga D, Raborn ES, Ferreira GA, Cabral GA (2011) Cannabinoids inhibit migration of microglial-like cells to the HIV protein Tat. J Neuroimmune Pharmacol 6(4):566–577PubMedCrossRefGoogle Scholar
  17. Galante D, Corsaro A, Florio T, Vella S, Pagano A, Sbrana F, Vassalli M, Perico A, D’Arrigo C (2012) Differential toxicity, conformation and morphology of typical initial aggregation states of Aβ1–42 and Aβpy3–42 beta-amyloids. Int J Biochem Cell Biol 44(11):2085–2093PubMedCrossRefGoogle Scholar
  18. Hampson AJ, Grimaldi M, Axelrod J, Wink D (1998) Cannabidiol and Δ9-tetrahydrocannabinol are neuroprotective antioxidants. Proc Natl Acad Sci USA 95(14):8268–8273PubMedCrossRefGoogle Scholar
  19. Harvey BS, Musgrave IF, Ohlsson KS, Fransson Å, Smid SD (2011) The green tea polyphenol (–)-epigallocatechin-3-gallate inhibits amyloid-β evoked fibril formation and neuronal cell death in vitro. Food Chem 129(4):1729–1736CrossRefGoogle Scholar
  20. Harvey BS, Ohlsson KS, Maag JL, Musgrave IF, Smid SD (2012) Contrasting protective effects of cannabinoids against oxidative stress and amyloid-beta evoked neurotoxicity in vitro. Neurotoxicology 33(1):138–146PubMedCrossRefGoogle Scholar
  21. Hooper C, Pinteaux-Jones F, Fry VA, Sevastou IG, Baker D, Heales SJ, Pocock JM (2009) Differential effects of albumin on microglia and macrophages; implications for neurodegeneration following blood-brain barrier damage. J Neurochem 109(3):694–705PubMedCrossRefGoogle Scholar
  22. Hu X, Crick SL, Bu G, Frieden C, Pappu RV, Lee JM (2009) Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide. Proc Natl Acad Sci USA 106(48):20324–20329PubMedCrossRefGoogle Scholar
  23. Hudson SA, Ecroyd H, Kee TW, Carver JA (2009) The thioflavin T fluorescence assay for amyloid fibril detection can be biased by the presence of exogenous compounds. FEBS J 276(20):5960–5972PubMedCrossRefGoogle Scholar
  24. Iuvone T, Esposito G, Esposito R, Santamaria R, Di Rosa M, Izzo AA (2004) Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on beta-amyloid-induced toxicity in PC12 cells. J Neurochem 89(1):134–141PubMedCrossRefGoogle Scholar
  25. Jucker M, Walker LC (2011) Pathogenic protein seeding in alzheimer disease and other neurodegenerative disorders. Ann Neurol 70(4):532–540PubMedCentralPubMedCrossRefGoogle Scholar
  26. Karl T, Cheng D, Garner B, Arnold JC (2012) The therapeutic potential of the endocannabinoid system for Alzheimer’s disease. Expert Opin Ther Targets 16(4):407–420PubMedCrossRefGoogle Scholar
  27. Kerr DM, Harhan B, Okine BN, Egan LJ, Finn DP, Roche M (2012) The monoacylglycerol lipase inhibitor JZL184 attenuates LPS-induced increases in cytokine expression in the rat frontal cortex and plasma: differential mechanisms of action. Br J Pharmacol. doi: 10.1111/j.1476-5381.2012.02237.x Google Scholar
  28. Khurana R, Coleman C, Ionescu-Zanetti C, Carter SA, Krishna V, Grover RK, Roy R, Singh S (2005) Mechanism of thioflavin T binding to amyloid fibrils. J Struct Biol 151(3):229–238PubMedCrossRefGoogle Scholar
  29. Koppel J, Davies P (2008) Targeting the endocannabinoid system in Alzheimer’s disease. J Alzheimers Dis 15(3):495–504PubMedCentralPubMedGoogle Scholar
  30. Kreutz S, Koch M, Bottger C, Ghadban C, Korf HW, Dehghani F (2009) 2-Arachidonoylglycerol elicits neuroprotective effects on excitotoxically lesioned dentate gyrus granule cells via abnormal-cannabidiol-sensitive receptors on microglial cells. Glia 57(3):286–294PubMedCrossRefGoogle Scholar
  31. Ladiwala AR, Lin JC, Bale SS, Marcelino-Cruz AM, Bhattacharya M, Dordick JS, Tessier PM (2010) Resveratrol selectively remodels soluble oligomers and fibrils of amyloid Aβ into off-pathway conformers. J Biol Chem 285(31):24228–24237PubMedCrossRefGoogle Scholar
  32. Langer F, Eisele YS, Fritschi SK, Staufenbiel M, Walker LC, Jucker M (2011) Soluble Aβ seeds are potent inducers of cerebral β-amyloid deposition. J Neurosci 31(41):14488–14495PubMedCentralPubMedCrossRefGoogle Scholar
  33. McHugh D, Tanner C, Mechoulam R, Pertwee RG, Ross RA (2008) Inhibition of human neutrophil chemotaxis by endogenous cannabinoids and phytocannabinoids: evidence for a site distinct from CB1 and CB2. Mol Pharmacol 73(2):441–450PubMedCrossRefGoogle Scholar
  34. McHugh D, Hu SS, Rimmerman N, Juknat A, Vogel Z, Walker JM, Bradshaw HB (2010) N-arachidonoyl glycine, an abundant endogenous lipid, potently drives directed cellular migration through GPR18, the putative abnormal cannabidiol receptor. BMC Neurosci 11:44PubMedCentralPubMedCrossRefGoogle Scholar
  35. Milton NGN (2002) Anandamide and noladin ether prevent neurotoxicity of the human amyloid-β peptide. Neurosci Lett 332(2):127–130PubMedCrossRefGoogle Scholar
  36. Pan X-d, Zhu Y-g, Lin N, Zhang J, Ye Q-y, Huang H-p, Chen X-c (2011) Microglial phagocytosis induced by fibrillar beta-amyloid is attenuated by oligomeric beta-amyloid: implications for Alzheimer’s disease. Mol Neurodegener 6(1):45PubMedCentralPubMedCrossRefGoogle Scholar
  37. Panikashvili D, Mechoulam R, Beni SM, Alexandrovich A, Shohami E (2005) CB1 cannabinoid receptors are involved in neuroprotection via NF-kappa B inhibition. J Cereb Blood Flow Metab 25(4):477–484PubMedCrossRefGoogle Scholar
  38. Papa VM, Shen ML, Ou DW (1990) The effects of pH and temperature on the in vitro bindings of delta-9-tetrahydrocannabinol and other cannabinoids to bovine serum albumin. J Pharm Biomed Anal 8(4):353–356PubMedCrossRefGoogle Scholar
  39. Pertwee RG, Howlett AC, Abood ME, Alexander SPH, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA (2010) International union of basic and clinical pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62(4):588–631PubMedCrossRefGoogle Scholar
  40. Piro JR, Benjamin DI, Duerr JM, Pi Y, Gonzales C, Wood KM, Schwartz JW, Nomura DK, Samad TA (2012) A dysregulated endocannabinoid-eicosanoid network supports pathogenesis in a mouse model of Alzheimer’s disease. Cell Rep 1(6):617–623PubMedCentralPubMedCrossRefGoogle Scholar
  41. Ramirez BG, Blazquez C, Gomez del Pulgar T, Guzman M, de Ceballos ML (2005) Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci 25(8):1904–1913PubMedCrossRefGoogle Scholar
  42. Ryan D, Drysdale AJ, Lafourcade C, Pertwee RG, Platt B (2009) Cannabidiol targets mitochondria to regulate intracellular Ca2+ levels. J Neurosci 29(7):2053–2063PubMedCrossRefGoogle Scholar
  43. Schicho R, Bashashati M, Bawa M, McHugh D, Saur D, Hu HM, Zimmer A, Lutz B, Mackie K, Bradshaw HB, McCafferty DM, Sharkey KA, Storr M (2011) The atypical cannabinoid O-1602 protects against experimental colitis and inhibits neutrophil recruitment. Inflamm Bowel Dis 17(8):1651–1664PubMedCentralPubMedCrossRefGoogle Scholar
  44. Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, Burton MA, Goldstein LE, Duong S, Tanzi RE, Moir RD (2010) The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One 5(3):e9505PubMedCentralPubMedCrossRefGoogle Scholar
  45. Stella N (2009) Endocannabinoid signaling in microglial cells. Neuropharmacology 56(Supplement 1 (0)):244–253PubMedCentralPubMedCrossRefGoogle Scholar
  46. Sun Y, Alexander SP, Garle MJ, Gibson CL, Hewitt K, Murphy SP, Kendall DA, Bennett AJ (2007) Cannabinoid activation of PPAR alpha; a novel neuroprotective mechanism. Br J Pharmacol 152(5):734–743PubMedCrossRefGoogle Scholar
  47. Tahara K, Kim HD, Jin JJ, Maxwell JA, Li L, Fukuchi K (2006) Role of toll-like receptor signalling in Abeta uptake and clearance. Brain 129(Pt 11):3006–3019PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Emelie Janefjord
    • 1
  • Jesper L. V. Mååg
    • 2
  • Benjamin S. Harvey
    • 3
  • Scott D. Smid
    • 3
    Email author
  1. 1.Institute of Neuroscience and Physiology, The Sahlgrenska AcademyGöteborg UniversityGöteborgSweden
  2. 2.Department of Pharmaceutical BiosciencesUppsala UniversityUppsalaSweden
  3. 3.Discipline of Pharmacology, Faculty of Health Sciences, School of Medical SciencesThe University of AdelaideAdelaideAustralia

Personalised recommendations