Cellular and Molecular Neurobiology

, Volume 33, Issue 5, pp 715–722 | Cite as

Xanthotoxol Exerts Neuroprotective Effects Via Suppression of the Inflammatory Response in a Rat Model of Focal Cerebral Ischemia

  • Wei He
  • Weiwei Chen
  • Yumei Zhou
  • Yuantong Tian
  • Fang Liao
Original Paper


We previously found that xanthotoxol, one of the major active ingredients in Cnidium monnieri (L.) Cusson, exerts protective effects in a rat model of focal cerebral ischemia/reperfusion injury by alleviating brain edema, inhibiting the neutrophil infiltration, and decreasing the expression of intercellular adhesion molecule-1 (ICAM-1) and E-selectin. The present study was designed to further determine the possible mechanisms of action of neuroprotective properties of xanthotoxol after cerebral ischemia. Transient focal cerebral ischemia/reperfusion model in male Sprague–Dawley rats was induced by 2-h middle cerebral artery occlusion followed by 24-h reperfusion. Xanthotoxol (5 and 10 mg/kg) or vehicle were administered intraperitoneally at 1 and 12 h after the onset of ischemia. At 24 h after reperfusion, we assessed the effect of xanthotoxol on the blood–brain barrier (BBB) permeability, the production of pro-inflammatory mediators such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-8, nitric oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and the p65 subunit of the transcription factor, nuclear factor-κB (NF-κB) in the cortex after ischemic insult. The results showed that xanthotoxol treatment significantly attenuated BBB disruption, reduced the IL-1β, TNF-α, IL-8 and NO level, and attenuated the iNOS activity compared with vehicle-treated animals. Further, xanthotoxol treatment also significantly prevented the ischemia/reperfusion-induced increase in the protein expression of iNOS, COX-2, and the nuclear NF-κB p65. These results, taken together with those of our previous study, suggest that the neuroprotection may be attributed to the ability of xanthotoxol to attenuate the expression of pro-inflammatory mediators and thereby inhibit the inflammatory response after cerebral ischemia.


Xanthotoxol Cerebral ischemia/reperfusion Inflammatory response 



This study was supported by Grants (to Wei He) from the National Natural Science Foundation of China (NSFC, 81060269) and from the Science and Technology Foundation of Educational Department of Jiangxi Province of China (GJJ08391).


  1. Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT (2009) Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J 276(1):13–26PubMedCrossRefGoogle Scholar
  2. Candelario-Jalil E, González-Falcón A, García-Cabrera M, León OS, Fiebich BL (2007) Post-ischaemic treatment with the cyclooxygenase-2 inhibitor nimesulide reduces blood-brain barrier disruption and leukocyte infiltration following transient focal cerebral ischaemia in rats. J Neurochem 100(4):1108–1120PubMedCrossRefGoogle Scholar
  3. Collino M, Aragno M, Mastrocola R, Gallicchio M, Rosa AC, Dianzani C, Danni O, Thiemermann C, Fantozzi R (2006) Modulation of the oxidative stress and inflammatory response by PPAR-gamma agonists in the hippocampus of rats exposed to cerebral ischemia/reperfusion. Eur J Pharmacol 530(1–2):70–80PubMedCrossRefGoogle Scholar
  4. Danielisova V, Burda J, Nemethova M, Gottlieb M (2011) Aminoguanidine administration ameliorates hippocampal damage after middle cerebral artery occlusion in rat. Neurochem Res 36(3):476–486PubMedCrossRefGoogle Scholar
  5. del Zoppo G, Ginis I, Hallenbeck JM, Iadecola C, Wang X, Feuerstein GZ (2000) Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol 10(1):95–112PubMedCrossRefGoogle Scholar
  6. He W, Chen WW, Ye HY, Zhou YM, Huang XH (2009) Inhibitory effects of xanthotoxol on neutrophil infiltration and brain edema induced by focal cerebral ischemia-reperfusion injury in rats. Chin Pharmacol Bull 25(5):668–672Google Scholar
  7. Huang J, Upadhyay UM, Tamargo RJ (2006) Inflammation in stroke and focal cerebral ischemia. Surg Neurol 66(3):232–245PubMedCrossRefGoogle Scholar
  8. Jin R, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 87(5):779–789PubMedCrossRefGoogle Scholar
  9. Khan M, Sekhon B, Jatana M, Giri S, Gilg AG, Sekhon C, Singh I, Singh AK (2004) Administration of N-acetylcysteine after focal cerebral ischemia protects brain and reduces inflammation in a rat model of experimental stroke. J Neurosci Res 76(4):519–527PubMedCrossRefGoogle Scholar
  10. Kleinig TJ, Vink R (2009) Suppression of inflammation in ischemic and hemorrhagic stroke: therapeutic options. Curr Opin Neurol 22(3):294–301PubMedCrossRefGoogle Scholar
  11. Lian QS, Zhang ZZ, Shangguan Z, Zhou L, Pi RB, Xiang RD, Han Y, Zhang XY (1996) Studies on the anti-arrhythmic effect of xanthotoxol in experimental animals. Chin Tradit Herb Drugs 27(6):347–349Google Scholar
  12. Lian QS, Zhang ZZ, Hu X, Zhou L, Ye HY, He W, Zhu ZP (1998) Studies on the anti-inflammatory effect of xanthotoxol in experimental animals. Chin Tradit Herb Drugs 29(2):102–104Google Scholar
  13. Liu J, Lian Q, Zhou L, Zhou Q, He W, Zhu Z, Lai F (2005) Calcium antagonistic effect of xanthotoxol on isolated guinea pig atria. Zhong Yao Cai 28(4):319–321PubMedGoogle Scholar
  14. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20(1):84–91PubMedCrossRefGoogle Scholar
  15. Ng TB, Liu F, Wang ZT (2000) Antioxidative activity of natural products from plants. Life Sci 66(8):709–723PubMedCrossRefGoogle Scholar
  16. Nogawa S, Zhang F, Ross ME, Iadecola C (1997) Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. J Neurosci 17(8):2746–2755PubMedGoogle Scholar
  17. Nogawa S, Forster C, Zhang F, Nagayama M, Ross ME, Iadecola C (1998) Interaction between inducible nitric oxide synthase and cyclooxygenase-2 after cerebral ischemia. Proc Natl Acad Sci USA 95(18):10966–10971PubMedCrossRefGoogle Scholar
  18. Rodríguez-Yáñez M, Castillo J (2008) Role of inflammatory markers in brain ischemia. Curr Opin Neurol 21(3):353–357PubMedCrossRefGoogle Scholar
  19. Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P (1993) Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci USA 90(15):7240–7244PubMedCrossRefGoogle Scholar
  20. Sethi OP, Anand KK, Gulati OD (1992) Evaluation of xanthotoxol for central nervous system activity. J Ethnopharmacol 36(3):239–247PubMedCrossRefGoogle Scholar
  21. Shangguan Z, Lian QS, Zeng J, Zhou Q, Pi RB, Liu JX, Yang JG (1997) Studies on the analgesic effect of xanthotoxol in experimental animals. Tradit Chin Drug Res Clin Pharmacol 8(1):45–46Google Scholar
  22. Tas SW, Vervoordeldonk MJ, Tak PP (2009) Gene therapy targeting nuclear factor-kappaB: towards clinical application in inflammatory diseases and cancer. Curr Gene Ther 9(3):160–170PubMedCrossRefGoogle Scholar
  23. Toda N, Ayajiki K, Okamura T (2009) Cerebral blood flow regulation by nitric oxide: recent advances. Pharmacol Rev 61(1):62–97PubMedCrossRefGoogle Scholar
  24. Vane JR, Bakhle YS, Botting RM (1998) Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol 38:97–120PubMedCrossRefGoogle Scholar
  25. Villa P, Triulzi S, Cavalieri B, Di Bitondo R, Bertini R, Barbera S, Bigini P, Mennini T, Gelosa P, Tremoli E, Sironi L, Ghezzi P (2007) The interleukin-8 (IL-8/CXCL8) receptor inhibitor reparixin improves neurological deficits and reduces long-term inflammation in permanent and transient cerebral ischemia in rats. Mol Med 13(3–4):125–133PubMedGoogle Scholar
  26. Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184(1–2):53–68PubMedCrossRefGoogle Scholar
  27. Xiang RD, Fu XH (1984) Studies on the chemical constituents of common cnidium(cnidium monnieri)(I). Chin Tradit Herb Drugs 15(9):14–15Google Scholar
  28. Zeng J, Lian Q, Zhou Q, Zhou L, Ye H, Huang X (2003) Effect of xanthotoxol on contraction of rabbit thoracic aortic strips. Zhong Yao Cai 26(11):809–811PubMedGoogle Scholar
  29. Zhang W, Potrovita I, Tarabin V, Herrmann O, Beer V, Weih F, Schneider A, Schwaninger M (2005) Neuronal activation of NF-kappaB contributes to cell death in cerebral ischemia. J Cereb Blood Flow Metab 25(1):30–40PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Wei He
    • 1
  • Weiwei Chen
    • 1
  • Yumei Zhou
    • 1
  • Yuantong Tian
    • 1
  • Fang Liao
    • 1
  1. 1.Key Laboratory of Cerebrovascular Pharmacology of Jiangxi Province, Department of PharmacologyGannan Medical CollegeGanzhouPeople’s Republic of China

Personalised recommendations