Advertisement

Cellular and Molecular Neurobiology

, Volume 33, Issue 4, pp 489–501 | Cite as

Initial Contact of Glioblastoma Cells with Existing Normal Brain Endothelial Cells Strengthen the Barrier Function via Fibroblast Growth Factor 2 Secretion: A New In Vitro Blood–Brain Barrier Model

  • Keisuke Toyoda
  • Kunihiko Tanaka
  • Shinsuke Nakagawa
  • Dinh Ha Duy Thuy
  • Kenta Ujifuku
  • Kensaku Kamada
  • Kentaro Hayashi
  • Takayuki Matsuo
  • Izumi Nagata
  • Masami Niwa
Original Research

Abstract

Glioblastoma multiforme (GBM) cells invade along the existing normal capillaries in brain. Normal capillary endothelial cells function as the blood–brain barrier (BBB) that limits permeability of chemicals into the brain. To investigate whether GBM cells modulate the BBB function of normal endothelial cells, we developed a new in vitro BBB model with primary cultures of rat brain endothelial cells (RBECs), pericytes, and astrocytes. Cells were plated on a membrane with 8 μm pores, either as a monolayer or as a BBB model with triple layer culture. The BBB model consisted of RBEC on the luminal side as a bottom, and pericytes and astrocytes on the abluminal side as a top of the chamber. Human GBM cell line, LN-18 cells, or lung cancer cell line, NCI-H1299 cells, placed on either the RBEC monolayer or the BBB model increased the transendothelial electrical resistance (TEER) values against the model, which peaked within 72 h after the tumor cell application. The TEER value gradually returned to baseline with LN-18 cells, whereas the value quickly dropped to the baseline in 24 h with NCI-H1299 cells. NCI-H1299 cells invaded into the RBEC layer through the membrane, but LN-18 cells did not. Fibroblast growth factor 2 (FGF-2) strengthens the endothelial cell BBB function by increased occludin and ZO-1 expression. In our model, LN-18 and NCI-H1299 cells secreted FGF-2, and a neutralization antibody to FGF-2 inhibited LN-18 cells enhanced BBB function. These results suggest that FGF-2 would be a novel therapeutic target for GBM in the perivascular invasive front.

Keywords

Glioblastoma Blood–brain barrier Fibroblast growth factor 2 Rat brain endothelial cells 

Notes

Acknowledgments

We thank Ms. Mayumi Sagara of the BBB Laboratory, PharmaCo-Cell Company Ltd., and Mr. Ken Izawa and Mr. Daisuke Watanabe of the Sano Drug Group for their contributions. This study was supported in part by Grant-in-Aid for Scientific Research (#23592094 to K.H. and #23592095 to K.U.) from Ministry of Education, Culture, Sports, Science and Technology of Japan.

Conflict of interest

We have nothing to disclose in terms of financial support or relationships that may pose a conflict of interest.

References

  1. Abbott NJ (2005) Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol 25:5–23PubMedCrossRefGoogle Scholar
  2. Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR (2009) VEGF-mediated disruption of endothelial CLN-5 promotes blood–brain barrier breakdown. Proc Natl Acad Sci USA 106:1977–1982PubMedCrossRefGoogle Scholar
  3. Behzadian MA, Wang XL, Windsor LJ, Ghaly N, Caldwell RB (2001) TGF-beta increases retinal endothelial cell permeability by increasing MMP-9: possible role of glial cells in endothelial barrier function. Invest Ophthalmol Vis Sci 42:853–859PubMedGoogle Scholar
  4. Bendfeldt K, Radojevic V, Kapfhammer J, Nitsch C (2007) Basic fibroblast growth factor modulates density of blood vessels and preserves tight junctions in organotypic cortical cultures of mice: a new in vitro model of the blood–brain barrier. J Neurosci 27:3260–3267PubMedCrossRefGoogle Scholar
  5. Bernstein JJ, Woodard CA (1995) Glioblastoma cells do not intravasate into blood vessels. Neurosurgery 36:124–132PubMedCrossRefGoogle Scholar
  6. de Lange EC, Danhof M (2002) Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain. Clin Pharmacokinet 41:691–703PubMedCrossRefGoogle Scholar
  7. Dejana E (2004) Endothelial cell–cell junctions: happy together. Nat Rev Mol Cell Biol 5:261–270PubMedCrossRefGoogle Scholar
  8. Deli MA (2007) Blood–brain barrier models. In: Lajtha A (ed) Handbook of neurochemistry and molecular neurobiology, neural membranes and transport vol 11. Springer, New York, pp 29–56Google Scholar
  9. Deli MA, Szabo C, Dung N, Joo F (1997) Immunohistochemical and electron microscopy detections on primary cultures of rat cerebral endothelial cells. In: Boer AG, Sutant W (eds) Drug transport across the blood–brain barrier: in vivo and in vitro techniques. Harwood Academic Publishers, Amsterdam, pp 23–28Google Scholar
  10. Deli MA, Ábrahám CS, Kataoka Y, Niwa M (2005) Permeability studies on in vitro blood–brain barrier models: physiology, pathology and pharmacology. Cell Mol Neurobiol 25:59–127PubMedCrossRefGoogle Scholar
  11. Dobbie MS, Hurst RD, Klein NJ, Surtees RA (1999) Upregulation of intracellular adhesion molecule-1 expression on human endothelial cells by tumour necrosis factor-α in an in vitro model of the blood–brain barrier. Brain Res 830:330–336PubMedCrossRefGoogle Scholar
  12. Dunn IF, Hesse O, Black P (2000) Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. J Neurooncol 50:121–137PubMedCrossRefGoogle Scholar
  13. Gilbertson RJ, Rich JN (2007) Making a tumour`s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7:733–736PubMedCrossRefGoogle Scholar
  14. Grabb PA, Gilbert MR (1995) Neoplastic and pharmacological influence on the permeability of an in vitro blood–brain barrier. J Neurosurg 82:1053–1058PubMedCrossRefGoogle Scholar
  15. Greenwood J, Pryce G, Devine L, Male DK, dos Santos WL, Calder VL, Adamson P (1996) SV40 large T immortalized cell lines of the rat blood–brain and blood–retinal barriers retain their phenotypic and immunological characteristics. J Neuroimmunol 71:51–63PubMedCrossRefGoogle Scholar
  16. Hoheisel D, Nitz T, Franke H, Wegener J, Hakvoort A, Tilling T, Galla H-J (1998) Hydrocortisone reinforces the blood–brain barrier properties in a serum free cell culture system. Biochem Biophys Res Commun 247:312–315PubMedCrossRefGoogle Scholar
  17. Huang MS, Wang TJ, Liang CL, Huang HM, Yang IC, Yi-Jan H, Hisao M (2002) Establishment of fluorescent lung carcinoma metastasis model and its real-time microscopic detection in SCID mice. Clin Exp Metastasis 19:359–368PubMedCrossRefGoogle Scholar
  18. Ishihara H, Kubota H, Lindberg RL, Leppert D, Gloor SM, Errede M, Virgintino D, Fontana A, Yonekawa Y, Frei K (2008) Endothelial cell barrier impairment induced by glioblastomas and transforming growth factor β2 involves matrix metalloproteinase and tight junction proteins. J Neuropathol Exp Neurol 67:435–448PubMedCrossRefGoogle Scholar
  19. Kato Y, Holm DA, Okollie B, Artemov D (2010) Noninvasive detection of temozolomide in brain tumor xenografts by magnetic resonance spectroscopy. Neuro-Oncology 12:71–79PubMedCrossRefGoogle Scholar
  20. Klint P, Kanda S, Kloog Y, Claesson-Welsh L (1999) Contribution of Src and Ras pathways in FGF-2 induced endothelial cell differentiation. Oncogene 18:3354–3364PubMedCrossRefGoogle Scholar
  21. Lund-Johansen M, Forsberg K, Bjerkvig R, Laerum OD (1992) Effects of growth factors on a human glioma cell line during invasion into rat brain aggregates in culture. Acta Neuropathol 84:190–197PubMedCrossRefGoogle Scholar
  22. Nakagawa S, Deli MA, Nakao S, Honda M, Hayashi K, Nakaoke R, Kataoka Y, Niwa M (2007) Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol 27:687–694PubMedCrossRefGoogle Scholar
  23. Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M (2009) A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int 54:253–263PubMedCrossRefGoogle Scholar
  24. Nir I, Levanon D, Iosilevsky G (1989) Permeability of blood vessels in experimental gliomas: uptake of 99mTc-glucoheptonate and alteration in blood–brain barrier as determined by cytochemistry and electron microscopy. Neurosurgery 25:523–531PubMedCrossRefGoogle Scholar
  25. Okumura N, Takimoto K, Okada M, Nakagawa H (1989) C6 glioma cells produce basic fibroblast growth factor that can stimulate their own proliferation. Biochemistry 106:904–909Google Scholar
  26. Ostermann S, Csajka C, Buclin T, Leyvraz S, Lejeune F, Decosterd LA, Stupp R (2004) Plasma and cerebrospinal fluid population pharmacokinetics of temozolomide in malignant glioma patients. Clin Cancer Res 10:3728–3736PubMedCrossRefGoogle Scholar
  27. Paradridge WM (2002) Drug and gene targeting to brain with molecular Trojan horses. Nat Rev Drug Discov 1:131–139CrossRefGoogle Scholar
  28. Perrière N, Demeuse P, Garcia E, Regina A, Debray M, Andreux JP, Couvreur P, Scherrmann JM, Temsamani J, Couraud PO, Deli MA, Roux F (2005) Puromycin-based purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood–brain barrier-specific properties. J Neurochem 93:279–289PubMedCrossRefGoogle Scholar
  29. Pitz MW, Desai A, Grossman SA, Blakeley JO (2011) Tissue concentration of systemically administered antineoplastic agents in human brain tumors. J Neurooncol 104:629–638PubMedCrossRefGoogle Scholar
  30. Plate KH, Breier G, Weich HA, Risau W (1992) Vascular endothelial growth factor is a potential tumor angiogenesis factor in human gliomas in vivo. Nature 359:845–848PubMedCrossRefGoogle Scholar
  31. Plowman J, Waud WR, Koutsoukos AD, Rubinstein LV, Moore TD, Grever MR (1994) Preclinical antitumor activity of temozolomide in mice: efficacy against human brain tumor xenografts and synergism with 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Res 54:3793–3799PubMedGoogle Scholar
  32. Reese TS, Karnovsky MJ (1967) Fine structural location of a blood–brain barrier to exogenous peroxidase. J Cell Biol 34:207–217PubMedCrossRefGoogle Scholar
  33. Reuss B, Dono R, Unsicker K (2003) Functions of fibroblast growth factor (FGF)-2 and FGF-5 in astroglial differentiation and blood–brain barrier permeability: evidence from mouse mutants. J Neurosci 23:6404–6412PubMedGoogle Scholar
  34. Scherer HD (1940) Cerebral astrocytomas and their derivatives. Am J Cancer 1:159–198Google Scholar
  35. Sobue K, Yamamoto N, Yoneda K, Hodgson ME, Yamashiro K, Tsuruoka N, Katsuya H, Miura Y, Asai K, Kato T (1999) Induction of blood brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors. Neurosci Res 35:155–164PubMedCrossRefGoogle Scholar
  36. Stefaik DF, Rizlkalla LR, Soi A, Goldblatt SA, Rizkalla WM (1991) Acidic and basic fibroblast growth factors are present in glioblastoma multiforme. Cancer Res 51:5705–5760Google Scholar
  37. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRefGoogle Scholar
  38. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466PubMedCrossRefGoogle Scholar
  39. Tanghetti E, Ria R, Dell`Era P, Urbinati C, Rusnati M, Ennas MG, Presta M (2002) Biological activity of substrate-bound basic fibroblast growth factor (FGF2): recruitment of FGF receptor-1 in endothelial cell adhesion contacts. Oncogene 21:3889–3897PubMedCrossRefGoogle Scholar
  40. Tovi M, Hartman M, Lilja A, Ericsson A (1994) MR imaging in cerebral gliomas. Tissue component analysis in correlation with histopathology of whole-brain specimens. Acta Radiol 35:495–505PubMedGoogle Scholar
  41. Watanabe M, Tanaka R, Taeda N (1992) Magnetic resonance imaging and histopathology of cerebral gliomas. Neuroradiology 34:463–469PubMedCrossRefGoogle Scholar
  42. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507PubMedCrossRefGoogle Scholar
  43. Winkler F, Kienast Y, Fuhrmann M, Von Baumgarten L, Burgold S, Mitteregger G, Kretzschimar H, Herms J (2009) Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis. Glia 57:1306–1315PubMedCrossRefGoogle Scholar
  44. Yamamoto M, Mohanam S, Sawaya R (1998) Differential expression of membrane-type matrix metalloproteinase and its correlation with gelatinase A activation in human malignant brain tumors in vivo and in vitro. Cancer Res 56:384–392Google Scholar
  45. Yang Y, Rosenberg GA (2011) MMP-mediated disruption of claudin-5 in the blood–brain barrier of rat brain after cerebral ischemia. Methods Mol Biol 762:333–345PubMedCrossRefGoogle Scholar
  46. ZagZag D, Goldenberg M, Brem S (1989) Angiogenesis and blood–brain barrier breakdown modulate CT contrast enhancement: an experimental study in a rabbit brain-tumor model. Am J Roentgenol 153:141–146CrossRefGoogle Scholar
  47. Zlokovic BV (2008) The blood–brain barrier in health and neurodegenerative disorders. Neuron 57:178–201PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Keisuke Toyoda
    • 1
  • Kunihiko Tanaka
    • 2
  • Shinsuke Nakagawa
    • 2
    • 3
  • Dinh Ha Duy Thuy
    • 2
    • 3
  • Kenta Ujifuku
    • 1
  • Kensaku Kamada
    • 1
  • Kentaro Hayashi
    • 1
  • Takayuki Matsuo
    • 1
  • Izumi Nagata
    • 1
  • Masami Niwa
    • 2
    • 3
  1. 1.Department of NeurosurgeryNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
  2. 2.Department of PharmacologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
  3. 3.BBB Laboratory, PharmaCo-Cell Company Ltd.NagasakiJapan

Personalised recommendations