Cellular and Molecular Neurobiology

, Volume 34, Issue 3, pp 315–322 | Cite as

The Proteasome Function Reporter GFPu Accumulates in Young Brains of the APPswe/PS1dE9 Alzheimer’s Disease Mouse Model

  • Yanying Liu
  • Casey L. Hettinger
  • Dong Zhang
  • Khosrow Rezvani
  • Xuejun Wang
  • Hongmin Wang
Short Communication


Alzheimer’s disease (AD), the most common cause of dementia, is neuropathologically characterized by accumulation of insoluble fibrous inclusions in the brain in the form of intracellular neurofibrillary tangles and extracellular senile plaques. Perturbation of the ubiquitin-proteasome system (UPS) has long been considered an attractive hypothesis to explain the pathogenesis of AD. However, studies on UPS functionality with various methods and AD models have achieved non-conclusive results. To get further insight into UPS functionality in AD, we have crossed a well-documented APPswe/PS1dE9 AD mouse model with a UPS functionality reporter, GFPu, mouse expressing green fluorescence protein (GFP) fused to a constitutive degradation signal (CL-1) that facilitates its rapid turnover in conditions of a normal UPS. Our western blot results indicate that GFPu reporter protein was accumulated in the cortex and hippocampus, but not striatum in the APPswe/PS1dE9 AD mouse model at 4 weeks of age, which is confirmed by fluorescence microscopy and elevated levels of p53, an endogenous UPS substrate. In accordance with this, the levels of ubiquitinated proteins were elevated in the AD mouse model. These results suggest that UPS is either impaired or functionally insufficient in specific brain regions in the APPswe/PS1dE9 AD mouse model at a very young age, long before senile plaque formation and the onset of memory loss. These observations may shed new light on the pathogenesis of AD.


Alzheimer disease Ubiquitin-proteasome system Proteasome function reporter GFPu Protein degradation Ubiquitinated proteins 



Alzheimer’s disease


Ubiquitin-proteasome system


Green fluorescence reporter for UPS functionality


Amyloid precursor protein




Neurofibrillary tangle







We would like to thank Dr. Robin Miskimins for critical reading of the manuscript, Dr. Fran Day at the Imaging Core of the University of South Dakota for help in fluorescence microscopy, and Mr. Suleman said at the histopathology core for assistance in preparation of brain sections. This work was supported by Start-up Funds from the University of South Dakota (HW).

Conflict of interest

The authors have declared no conflicts of interest.


  1. Baek BS, Kwon HJ, Lee KH, Yoo MA, Kim KW, Ikeno Y, Yu BP, Chung HY (1999) Regional difference of ROS generation, lipid peroxidation, and antioxidant enzyme activity in rat brain and their dietary modulation. Arch Pharmacal Res 22(4):361–366CrossRefGoogle Scholar
  2. Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292(5521):1552–1555. doi: 10.1126/science.292 5521.1552PubMedCrossRefGoogle Scholar
  3. Bence NF, Bennett EJ, Kopito RR (2005) Application and analysis of the GFPu family of ubiquitin-proteasome system reporters. Methods Enzymol 399:481–490. doi: 10.1016/S0076-6879(05)99033-2 PubMedCrossRefGoogle Scholar
  4. Bennett EJ, Bence NF, Jayakumar R, Kopito RR (2005) Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol Cell 17(3):351–365. doi: 10.1016/j.molcel.2004.12.021 PubMedCrossRefGoogle Scholar
  5. Bett JS, Cook C, Petrucelli L, Bates GP (2009) The ubiquitin-proteasome reporter GFPu does not accumulate in neurons of the R6/2 transgenic mouse model of Huntington’s disease. PLoS ONE 4(4):e5128. doi: 10.1371/journal.pone.0005128 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bird TD (2008) Genetic aspects of Alzheimer disease. Genet Med 10(4):231–239. doi: 10.1097/GIM.0b013e31816b64dc PubMedCentralPubMedCrossRefGoogle Scholar
  7. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259PubMedCrossRefGoogle Scholar
  8. Chen Y, Neve RL, Liu H (2012) Neddylation dysfunction in Alzheimer’s disease. J Cell Mol Med 16(11):2583–2591. doi: 10.1111/j.1582-4934.2012.01604.x PubMedCentralPubMedCrossRefGoogle Scholar
  9. Crivello NA, Rosenberg IH, Shukitt-Hale B, Bielinski D, Dallal GE, Joseph JA (2007) Aging modifies brain region-specific vulnerability to experimental oxidative stress induced by low dose hydrogen peroxide. Age Dordr 29(4):191–203. doi: 10.1007/s11357-007-9039-7 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Dong G, Callegari EA, Gloeckner CJ, Ueffing M, Wang H (2012) Prothymosin-alpha interacts with mutant huntingtin and suppresses its cytotoxicity in cell culture. J Biol Chem 287(2):1279–1289. doi: 10.1074/jbc.M111.294280 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Garcia-Alloza M, Robbins EM, Zhang-Nunes SX, Purcell SM, Betensky RA, Raju S, Prada C, Greenberg SM, Bacskai BJ, Frosch MP (2006) Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiol Dis 24(3):516–524. doi: 10.1016/j.nbd.2006.08.017 PubMedCrossRefGoogle Scholar
  12. Hensley K, Hall N, Subramaniam R, Cole P, Harris M, Aksenov M, Aksenova M, Gabbita SP, Wu JF, Carney JM et al (1995) Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem 65(5):2146–2156PubMedCrossRefGoogle Scholar
  13. Ihara Y, Morishima-Kawashima M, Nixon R (2012) The ubiquitin-proteasome system and the autophagic-lysosomal system in Alzheimer disease. Cold Spring Harb Perspect Med 2(8):1741–1751. doi: 10.1101/cshperspect.a006361 CrossRefGoogle Scholar
  14. Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, Copeland NG, Lee MK, Younkin LH, Wagner SL, Younkin SG, Borchelt DR (2004) Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet 13(2):159–170. doi: 10.1093/hmg/ddh019 PubMedCrossRefGoogle Scholar
  15. Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143(7):1883–1898PubMedCentralPubMedCrossRefGoogle Scholar
  16. Keller JN, Hanni KB, Markesbery WR (2000) Impaired proteasome function in Alzheimer’s disease. J Neurochem 75(1):436–439PubMedCrossRefGoogle Scholar
  17. Khan LA, Bauer PO, Miyazaki H, Lindenberg KS, Landwehrmeyer BG, Nukina N (2006) Expanded polyglutamines impair synaptic transmission and ubiquitin-proteasome system in Caenorhabditis elegans. J Neurochem 98(2):576–587. doi: 10.1111/j.1471-4159.2006.03895.x PubMedCrossRefGoogle Scholar
  18. Kumarapeli AR, Horak KM, Glasford JW, Li J, Chen Q, Liu J, Zheng H, Wang X (2005) A novel transgenic mouse model reveals deregulation of the ubiquitin-proteasome system in the heart by doxorubicin. FASEB J 19(14):2051–2053PubMedGoogle Scholar
  19. Layfield R, Lowe J, Bedford L (2005) The ubiquitin-proteasome system and neurodegenerative disorders. Essays Biochem 41:157–171. doi: 10.1042/EB0410157 PubMedCrossRefGoogle Scholar
  20. Lu L, Wang H (2012) Transient focal cerebral ischemia upregulates immunoproteasomal subunits. Cell Mol Neurobiol 32(6):965–970. doi: 10.1007/s10571-012-9854-y PubMedCrossRefGoogle Scholar
  21. Marone M, Mozzetti S, De Ritis D, Pierelli L, Scambia G (2001) Semiquantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample. Biol Proced Online 3:19–25. doi: 10.1251/bpo20 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Mori H, Kondo J, Ihara Y (1987) Ubiquitin is a component of paired helical filaments in Alzheimer’s disease. Science 235(4796):1641–1644PubMedCrossRefGoogle Scholar
  23. Orre M, Kamphuis W, Dooves S, Kooijman L, Chan ET, Kirk CJ, Dimayuga Smith V, Koot S, Mamber C, Jansen AH, Ovaa H, Hol EM (2013) Reactive glia show increased immunoproteasome activity in Alzheimer’s disease. Brain 136(Pt 5):1415–1431. doi: 10.1093/brain/awt083 PubMedCrossRefGoogle Scholar
  24. Perry G, Rizzuto N, Autilio-Gambetti L, Gambetti P (1985) Paired helical filaments from Alzheimer disease patients contain cytoskeletal components. Proc Natl Acad Sci USA 82(11):3916–3920PubMedCentralPubMedCrossRefGoogle Scholar
  25. Schubert D, Soucek T, Blouw B (2009) The induction of HIF-1 reduces astrocyte activation by amyloid beta peptide. Eur J Neurosc 29(7):1323–1334. doi: 10.1111/j.1460-9568.2009.06712.x CrossRefGoogle Scholar
  26. Su H, Li J, Menon S, Liu J, Kumarapeli AR, Wei N, Wang X (2011) Perturbation of cullin deneddylation via conditional Csn8 ablation impairs the ubiquitin-proteasome system and causes cardiomyocyte necrosis and dilated cardiomyopathy in mice. Cir Res 108(1):40–50. doi: 10.1161/CIRCRESAHA.110.230607 CrossRefGoogle Scholar
  27. Upadhya SC, Hegde AN (2007) Role of the ubiquitin proteasome system in Alzheimer’s disease. BMC Biochem 8(1):12. doi: 10.1186/1471-2091-8-S1-S12 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yanying Liu
    • 1
  • Casey L. Hettinger
    • 1
  • Dong Zhang
    • 1
  • Khosrow Rezvani
    • 1
  • Xuejun Wang
    • 1
  • Hongmin Wang
    • 1
  1. 1.Division of Basic Biomedical Sciences, Sanford School of MedicineUniversity of South DakotaVermillionUSA

Personalised recommendations