Cellular and Molecular Neurobiology

, Volume 34, Issue 2, pp 289–296 | Cite as

DRG Axon Elongation and Growth Cone Collapse Rate Induced by Sema3A are Differently Dependent on NGF Concentration

  • Andrius Kaselis
  • Rimantas Treinys
  • Rūta Vosyliūtė
  • Saulius Šatkauskas
Original Research


Regeneration of embryonic and adult dorsal root ganglion (DRG) sensory axons is highly impeded when they encounter neuronal growth cone-collapsing factor semaphorin3A (Sema3A). On the other hand, increasing evidence shows that DRG axon’s regeneration can be stimulated by nerve growth factor (NGF). In this study, we aimed to evaluate whether increased NGF concentrations can counterweight Sema3A-induced inhibitory responses in 15-day-old mouse embryo (E15) DRG axons. The DRG explants were grown in Neurobasal-based medium with different NGF concentrations ranging from 0 to 100 ng/mL and then treated with Sema3A at constant 10 ng/mL concentration. To evaluate interplay between NGF and Sema3A number of DRG axons, axon outgrowth distance and collapse rate were measured. We found that the increased NGF concentrations abolish Sema3A-induced inhibitory effect on axon outgrowth, while they have no effect on Sema3A-induced collapse rate.


Semaphorin Sema3A DRG Axon growth NGF Growth cone collapse 


  1. Bechara A, Nawabi H, Moret F, Yaron A, Weaver E, Bozon M, Abouzid K, Guan JL, Tessier-Lavigne M, Lemmon V, Castellani V (2008) FAK-MAPK-dependent adhesion disassembly downstream of L1 contributes to semaphorin3A-induced collapse. EMBO J 27(11):1549–1562. doi:10.1038/emboj.2008.86 PubMedCrossRefGoogle Scholar
  2. Ben-Zvi A, Yagil Z, Hagalili Y, Klein H, Lerman O, Behar O (2006) Semaphorin 3A and neurotrophins: a balance between apoptosis and survival signaling in embryonic DRG neurons. J Neurochem 96(2):585–597. doi:10.1111/j.1471-4159.2005.03580.x PubMedCrossRefGoogle Scholar
  3. Ben-Zvi A, Ben-Gigi L, Yagil Z, Lerman O, Behar O (2008a) Semaphorin3A regulates axon growth independently of growth cone repulsion via modulation of TrkA signaling. Cell Signal 20(3):467–479. doi:10.1016/j.cellsig.2007.10.023 PubMedCrossRefGoogle Scholar
  4. Ben-Zvi A, Manor O, Schachner M, Yaron A, Tessier-Lavigne M, Behar O (2008b) The semaphorin receptor PlexinA3 mediates neuronal apoptosis during dorsal root ganglia development. J Neurosci 28(47):12427–12432. doi:10.1523/JNEUROSCI.3573-08.2008 PubMedCrossRefGoogle Scholar
  5. Ben-Zvi A, Sweetat S, Behar O (2013) Elimination of aberrant DRG circuitries in Sema3A mutant mice leads to extensive neuronal deficits. PLoS ONE 8(7):e70085. doi:10.1371/journal.pone.0070085 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Berger J, Hauber J, Hauber R, Geiger R, Cullen BR (1988) Secreted placental alkaline phosphatase: a powerful new quantitative indicator of gene expression in eukaryotic cells. Gene 66(1):1–10. doi:10.1016/0378-1119(88)90219-3 PubMedCrossRefGoogle Scholar
  7. Chada SR, Hollenbeck PJ (2004) Nerve growth factor signaling regulates motility and docking of axonal mitochondria. Curr Biol 14(14):1272–1276. doi:10.1016/j.cub.2004.07.027 PubMedCrossRefGoogle Scholar
  8. Chang GG, Shiao SL (1994) Possible kinetic mechanism of human placental alkaline phosphatase in vivo as implemented in reverse micelles. Eur J Biochem/FEBS 220(3):861–870. doi:10.1111/j.1432-1033.1994.tb18689.x CrossRefGoogle Scholar
  9. Chew DJ, Fawcett JW, Andrews MR (2012) The challenges of long-distance axon regeneration in the injured CNS. Prog Brain Res 201:253–294. doi:10.1016/B978-0-444-59544-7.00013-5 PubMedCrossRefGoogle Scholar
  10. Crowley C, Spencer SD, Nishimura MC, Chen KS, Pitts-Meek S, Armanini MP, Ling LH, McMahon SB, Shelton DL, Levinson AD et al (1994) Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76(6):1001–1011. doi:10.1016/0092-8674(94)90378-6 PubMedCrossRefGoogle Scholar
  11. Cui B, Wu C, Chen L, Ramirez A, Bearer EL, Li WP, Mobley WC, Chu S (2007) One at a time, live tracking of NGF axonal transport using quantum dots. Proc Natl Acad Sci U S A 104(34):13666–13671. doi:10.1073/pnas.0706192104 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Da Silva JS, Hasegawa T, Miyagi T, Dotti CG, Abad-Rodriguez J (2005) Asymmetric membrane ganglioside sialidase activity specifies axonal fate. Nat Neurosci 8(5):606–615. doi:10.1038/nn1442 PubMedCrossRefGoogle Scholar
  13. Dontchev VD, Letourneau PC (2002) Nerve growth factor and semaphorin 3A signaling pathways interact in regulating sensory neuronal growth cone motility. J Neurosci 22(15):6659–6669. doi:20026638 PubMedGoogle Scholar
  14. Dontchev VD, Letourneau PC (2003) Growth cones integrate signaling from multiple guidance cues. J Histochem Cytochem 51(4):435–444. doi:10.1177/002215540305100405 PubMedCrossRefGoogle Scholar
  15. Ehlers MD, Kaplan DR, Price DL, Koliatsos VE (1995) NGF-stimulated retrograde transport of trkA in the mammalian nervous system. J Cell Biol 130(1):149–156. doi:10.1083/jcb.130.1.149 PubMedCrossRefGoogle Scholar
  16. Eickholt BJ, Walsh FS, Doherty P (2002) An inactive pool of GSK-3 at the leading edge of growth cones is implicated in Semaphorin 3A signaling. J Cell Biol 157(2):211–217. doi:10.1083/jcb.200201098 PubMedCrossRefGoogle Scholar
  17. Fan J, Mansfield SG, Redmond T, Gordon-Weeks PR, Raper JA (1993) The organization of F-actin and microtubules in growth cones exposed to a brain-derived collapsing factor. J Cell Biol 121(4):867–878. doi:10.1083/jcb.121.4.867 PubMedCrossRefGoogle Scholar
  18. Fournier AE, Nakamura F, Kawamoto S, Goshima Y, Kalb RG, Strittmatter SM (2000) Semaphorin3A enhances endocytosis at sites of receptor-F-actin colocalization during growth cone collapse. J Cell Biol 149(2):411–422. doi:10.1083/jcb.149.2.411 PubMedCrossRefGoogle Scholar
  19. Frostick SP, Yin Q, Kemp GJ (1998) Schwann cells, neurotrophic factors, and peripheral nerve regeneration. J Microsurg 18(7):397–405. doi:10.1002/(SICI)1098-2752 CrossRefGoogle Scholar
  20. Fukata Y, Itoh TJ, Kimura T, Menager C, Nishimura T, Shiromizu T, Watanabe H, Inagaki N, Iwamatsu A, Hotani H, Kaibuchi K (2002) CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat Cell Biol 4(8):583–591. doi:10.1038/ncb825 PubMedGoogle Scholar
  21. Giger RJ, Wolfer DP, De Wit GM, Verhaagen J (1996) Anatomy of rat semaphorin III/collapsin-1 mRNA expression and relationship to developing nerve tracts during neuroembryogenesis. J Comp Neurol 375(3):378–392. doi:10.1002/(SICI)1096-9861 Google Scholar
  22. Goshima Y, Kawakami T, Hori H, Sugiyama Y, Takasawa S, Hashimoto Y, Kagoshima-Maezono M, Takenaka T, Misu Y, Strittmatter SM (1997) A novel action of collapsin: collapsin-1 increases antero- and retrograde axoplasmic transport independently of growth cone collapse. J Neurobiol 33(3):316–328. doi:10.1002/(SICI)1097-4695 Google Scholar
  23. Guo T, Mandai K, Condie BG, Wickramasinghe SR, Capecchi MR, Ginty DD (2011) An evolving NGF-Hoxd1 signaling pathway mediates development of divergent neural circuits in vertebrates. Nat Neurosci 14(1):31–36. doi:10.1038/nn.2710 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Harkness DR (1968) Studies on human placental alkaline phosphatase. II. Kinetic properties and studies on the apoenzyme. Arch Biochem Biophys 126(2):513–523. doi:10.1016/0003-9861(68)90436-0 PubMedCrossRefGoogle Scholar
  25. Hernandez-Montiel HL, Tamariz E, Sandoval-Minero MT, Varela-Echavarria A (2008) Semaphorins 3A, 3C, and 3F in mesencephalic dopaminergic axon pathfinding. J Comp Neurol 506(3):387–397. doi:10.1002/cne.21503 PubMedCrossRefGoogle Scholar
  26. Hu J, Zhou J, Li X, Wang F, Lu H (2011) Schwann cells promote neurite outgrowth of dorsal root ganglion neurons through secretion of nerve growth factor. Indian J Exp Biol 49(3):177–182PubMedGoogle Scholar
  27. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736. doi:10.1146/annurev.neuro.24.1.677 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Jayakumar C, Ranganathan P, Devarajan P, Krawczeski CD, Looney S, Ramesh G (2013) Semaphorin 3A is a new early diagnostic biomarker of experimental and pediatric acute kidney injury. PLoS One 8(3):e58446. doi:10.1371/journal.pone.0058446 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Joddar B, Guy AT, Kamiguchi H, Ito Y (2013) Spatial gradients of chemotropic factors from immobilized patterns to guide axonal growth and regeneration. Biomaterials 34(37):9593–9601. doi:10.1016/j.biomaterials.2013.08.019 PubMedCrossRefGoogle Scholar
  30. Johnson MJ, Bunge RP, Wood PM (2001) Primary cell cultures for the study of myelination. In: Fedoroff S, Richardson A (eds) Protocols for neural cell culture, 3rd edn. Humana Press, New Jersey, pp 95–116CrossRefGoogle Scholar
  31. Kaneko S, Iwanami A, Nakamura M, Kishino A, Kikuchi K, Shibata S, Okano HJ, Ikegami T, Moriya A, Konishi O, Nakayama C, Kumagai K, Kimura T, Sato Y, Goshima Y, Taniguchi M, Ito M, He Z, Toyama Y, Okano H (2006) A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord. Nat Med 12(12):1380–1389. doi:10.1038/nm1505 PubMedCrossRefGoogle Scholar
  32. Kapfhammer JP, Raper JA (1987) Interactions between growth cones and neurites growing from different neural tissues in culture. J Neurosci 7(5):1595–1600PubMedGoogle Scholar
  33. King A, Southam K, Dittmann J, Vickers J (2013) Excitotoxin-induced caspase-3 activation and microtubule disintegration in axons is inhibited by taxol. Acta Neuropathol Commun 1(1):59. doi:10.1186/2051-5960-1-59 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Kuklinski S, Vladimirova V, Waha A, Kamata H, Pesheva P, Probstmeier R (2003) Expression of galectin-3 in neuronally differentiating PC12 cells is regulated both via Ras/MAPK-dependent and -independent signalling pathways. J Neurochem 87(5):1112–1124. doi:10.1046/j.1471-4159.2003.02060.x PubMedCrossRefGoogle Scholar
  35. Lang UE, Gallinat J, Danker-Hopfe H, Bajbouj M, Hellweg R (2003) Nerve growth factor serum concentrations in healthy human volunteers: physiological variance and stability. Neurosci Lett 344(1):13–16. doi:10.1016/S0304-3940(03)00403-8 PubMedCrossRefGoogle Scholar
  36. Liu RY, Schmid RS, Snider WD, Maness PF (2002) NGF enhances sensory axon growth induced by laminin but not by the L1 cell adhesion molecule. Mol Cell Neurosci 20(1):2–12. doi:10.1006/mcne 2002.1107PubMedCrossRefGoogle Scholar
  37. Madduri S, Papaloizos M, Gander B (2009) Synergistic effect of GDNF and NGF on axonal branching and elongation in vitro. J Neurosci Res 65(1):88–97. doi:10.1016/j.neures.2009.06.003 CrossRefGoogle Scholar
  38. Mark MD, Lohrum M, Puschel AW (1997) Patterning neuronal connections by chemorepulsion: the semaphorins. Cell Tissue Res 290(2):299–306. doi:10.1007/s004410050934 PubMedCrossRefGoogle Scholar
  39. Murphy RA, Saide JD, Blanchard MH, Young M (1977) Nerve growth factor in mouse serum and saliva: role of the submandibular gland. Proc Natl Acad Sci USA 74(6):2330–2333. doi:10.1073/pnas.74.6.2330 PubMedCrossRefGoogle Scholar
  40. Neufeld G, Kessler O (2008) The semaphorins: versatile regulators of tumour progression and tumour angiogenesis. Nat Rev Cancer 8(8):632–645. doi:10.1038/nrc2404 PubMedCrossRefGoogle Scholar
  41. Pasterkamp G (2007) Semaphorins: receptor and intracellular signaling mechanisms. Springer, New YorkCrossRefGoogle Scholar
  42. Pasterkamp RJ, Giger RJ, Ruitenberg MJ, Holtmaat AJ, De Wit J, De Winter F, Verhaagen J (1999) Expression of the gene encoding the chemorepellent semaphorin III is induced in the fibroblast component of neural scar tissue formed following injuries of adult but not neonatal CNS. Mol Cell Neurosci 13(2):143–166. doi:10.1006/mcne.1999.0738 PubMedCrossRefGoogle Scholar
  43. Pasterkamp RJ, Anderson PN, Verhaagen J (2001) Peripheral nerve injury fails to induce growth of lesioned ascending dorsal column axons into spinal cord scar tissue expressing the axon repellent Semaphorin3A. Eur J Neurosci 13(3):457–471. doi:10.1046/j.0953-816X.2000.01398.x PubMedCrossRefGoogle Scholar
  44. Pesheva P, Kuklinski S, Schmitz B, Probstmeier R (1998) Galectin-3 promotes neural cell adhesion and neurite growth. J Neurosci Res 54(5):639–654. doi:10.1002/(SICI)1097-4547 Google Scholar
  45. Pesheva P, Kuklinski S, Biersack HJ, Probstmeier R (2000) Nerve growth factor-mediated expression of galectin-3 in mouse dorsal root ganglion neurons. Neurosci Lett 293(1):37–40. doi:10.1016/S0304-3940(00)01499-3 PubMedCrossRefGoogle Scholar
  46. Piper M, Salih S, Weinl C, Holt CE, Harris WA (2005) Endocytosis-dependent desensitization and protein synthesis-dependent resensitization in retinal growth cone adaptation. Nat Neurosci 8(2):179–186. doi:10.1038/nn1380 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Puschel AW, Adams RH, Betz H (1996) The sensory innervation of the mouse spinal cord may be patterned by differential expression of and differential responsiveness to semaphorins. Mol Cell Neurosci 7(5):419–431. doi:10.1006/mcne.1996.0030 PubMedCrossRefGoogle Scholar
  48. Quach TT, Duchemin AM, Rogemond V, Aguera M, Honnorat J, Belin MF, Kolattukudy PE (2004) Involvement of collapsin response mediator proteins in the neurite extension induced by neurotrophins in dorsal root ganglion neurons. Mol Cell Neurosci 25(3):433–443. doi:10.1016/j.mcn.2003.11.006 PubMedCrossRefGoogle Scholar
  49. Ravula SK, Wang MS, McClain MA, Asress SA, Frazier B, Glass JD (2007) Spatiotemporal localization of injury potentials in DRG neurons during vincristine-induced axonal degeneration. Neurosci Lett 415(1):34–39. doi:10.1016/j.neulet.2007.01.009 PubMedCentralPubMedCrossRefGoogle Scholar
  50. Roth L, Koncina E, Satkauskas S, Cremel G, Aunis D, Bagnard D (2009) The many faces of semaphorins: from development to pathology. Cell Mol Life Sci 66(4):649–666. doi:10.1007/s00018-008-8518-z PubMedCrossRefGoogle Scholar
  51. Sofroniew MV, Howe CL, Mobley WC (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 24:1217–1281. doi:10.1146/annurev.neuro.24.1.1217 PubMedCrossRefGoogle Scholar
  52. Taniguchi M, Yuasa S, Fujisawa H, Naruse I, Saga S, Mishina M, Yagi T (1997) Disruption of semaphorin III/D gene causes severe abnormality in peripheral nerve projection. Neuron 19(3):519–530. doi:10.1016/S0896-6273(00)80368-2 PubMedCrossRefGoogle Scholar
  53. Torre ER, Gutekunst CA, Gross RE (2010) Expression by midbrain dopamine neurons of Sema3A and 3F receptors is associated with chemorepulsion in vitro but a mild in vivo phenotype. Mol Cell Neurosci 44(2):135–153. doi:10.1016/j.mcn.2010.03.003 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Tuszynski MH (2000) Intraparenchymal NGF infusions rescue degenerating cholinergic neurons. Cell Transplant 9(5):629–636PubMedGoogle Scholar
  55. Verge VM, Gratto KA, Karchewski LA, Richardson PM (1996) Neurotrophins and nerve injury in the adult. Philos Trans R Soc London, B, Biological sciences 351(1338):423–430. doi:10.1098/rstb.1996.0038 CrossRefGoogle Scholar
  56. Villoslada P, Genain CP (2004) Role of nerve growth factor and other trophic factors in brain inflammation. Prog Brain Res 146:403–414. doi:10.1016/S0079-6123(03)46025-1 PubMedCrossRefGoogle Scholar
  57. Yamane M, Yamashita N, Yamamoto H, Iizuka A, Shouji M, Usui H, Goshima Y (2012) Semaphorin3A facilitates axonal transport through a local calcium signaling and tetrodotoxin-sensitive voltage-gated sodium channels. Biochem Biophys Res Commun 422(2):333–338. doi:10.1016/j.bbrc.2012.05.003 PubMedCrossRefGoogle Scholar
  58. Zhou FQ, Zhou J, Dedhar S, Wu YH, Snider WD (2004) NGF-induced axon growth is mediated by localized inactivation of GSK-3beta and functions of the microtubule plus end binding protein APC. Neuron 42(6):897–912. doi:10.1016/j.neuron.2004.05.011 PubMedCrossRefGoogle Scholar
  59. Zhou Y, Gunput RA, Pasterkamp RJ (2008) Semaphorin signaling: progress made and promises ahead. Trends Biochem Sci 33(4):161–170. doi:10.1016/j.tibs.2008.01.006 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Andrius Kaselis
    • 1
  • Rimantas Treinys
    • 1
    • 2
  • Rūta Vosyliūtė
    • 1
  • Saulius Šatkauskas
    • 1
  1. 1.Biophysical Research Group, Biology DepartmentVytautas Magnus UniversityKaunasLithuania
  2. 2.Institute of CardiologyLithuanian University of Health SciencesKaunasLithuania

Personalised recommendations