Cellular and Molecular Neurobiology

, Volume 34, Issue 2, pp 227–234

Protective Effect of Paeoniflorin on Aβ25–35-Induced SH-SY5Y Cell Injury by Preventing Mitochondrial Dysfunction

  • Ke Wang
  • Ling Zhu
  • Xue Zhu
  • Kai Zhang
  • Biao Huang
  • Jue Zhang
  • Yi Zhang
  • Lan Zhu
  • Bin Zhou
  • Fanfan Zhou
Original Research

Abstract

Alzheimer’s disease (AD) is a major neurodegenerative brain disorder affecting about 14 million people worldwide. Aβ-induced cell injury is a crucial cause of neuronal loss in AD, thus the suppression of which might be useful for the treatment of this disease. In this study, we aimed to evaluate the effect of paeoniflorin (PF), a monoterpene glycoside isolated from aqueous extract of Radix Paeoniae Alba, on Aβ25–35-induced cytotoxicity in SH-SY5Y cells. The results showed PF could attenuate or restore the viability loss, apoptotic increase, and ROS production induced by Aβ25–35 in SH-SY5Y cells. In addition, PF strikingly inhibited Aβ25–35-induced mitochondrial dysfunction, which includes decreased mitochondrial membrane potential, increased Bax/Bcl-2 ratio, cytochrome c release and activity of caspase-3 and caspase-9. Therefore, our study provided the first experimental evidence that PF could modulate ROS production and apoptotic mitochondrial pathway in model of neuron injury in vitro and which might provide new insights into its application toward Alzheimer’s disease therapy.

Keywords

Paeoniflorin Alzheimer’s disease 25–35 Mitochondrial dysfunction 

References

  1. Bertram L, Tanzi RE (2005) The genetic epidemiology of neurodegenerative disease. J Clin Invest 115(6):1449–1457PubMedCentralPubMedCrossRefGoogle Scholar
  2. Butterfield DA, Reed T, Newman SF, Sultana R (2007) Roles of amyloid β-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radical Biol Med 43(5):658–677CrossRefGoogle Scholar
  3. Cao BY, Yang YP, Luo WF, Mao CJ, Han R, Sun X, Cheng J, Liu CF (2010) Paeoniflorin, a potent natural compound, protects PC12 cells from MPP+ and acidic damage via autophagic pathway. J Ethnopharmacol 131(1):122–129PubMedCrossRefGoogle Scholar
  4. Caroppi P, Sinibaldi F, Fiorucci L, Santucci R (2009) Apoptosis and human diseases: mitochondrion damage and lethal role of released cytochrome C as proapoptotic protein. Curr Med Chem 16(31):4058–4065PubMedCrossRefGoogle Scholar
  5. Chakravarthy B, Gaudet C, Ménard M, Atkinson T, LaFerla FM, Armato U, Whitfield J (2010) Amyloid-β peptides stimulate the expression of the p75^{NTR} neurotrophin receptor in shsy5y human neuroblastoma cells and ad transgenic mice. J Alzheimers Dis 19(3):915–925PubMedGoogle Scholar
  6. Citron M (2010) Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discovery 9(5):387–398CrossRefGoogle Scholar
  7. Emaus RK, Grunwald R, Lemasters JJ (1986) Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta 850(3):436–448PubMedCrossRefGoogle Scholar
  8. Estaquier J, Vallette F, Vayssiere JL, Mignotte B (2012) The mitochondrial pathways of apoptosis. In: Scatena R (ed) Advances in mitochondrial medicine. Springer, New York, pp 157–183CrossRefGoogle Scholar
  9. Fido RJ, Tatham AS, Shewry PR (1996) Western blotting analysis. In: jones H (ed) Plant gene transfer and expression protocols. Springer, New York, pp 423–437Google Scholar
  10. Gu XM, Huang HC, Jiang ZF (2012) Mitochondrial dysfunction and cellular metabolic deficiency in Alzheimer’s disease. Neurosci Bull 28(5):631–640PubMedCrossRefGoogle Scholar
  11. Gurtu V, Kain SR, Zhang G (1997) Fluorometric and colorimetric detection of caspase activity associated with apoptosis. Anal Biochem 251(1):98–102PubMedCrossRefGoogle Scholar
  12. Holtzman DM, John CM, Goate A (2011) Alzheimer’s disease: the challenge of the second century. Sci Transl Med. doi:10.1126/scitranslmed.3002369 Google Scholar
  13. Honjo K, Black SE, Verhoeff NP (2012) Alzheimer’s disease, cerebrovascular disease, and the β-amyloid cascade. Can J Neurol Sci 39(6):712–728PubMedGoogle Scholar
  14. Huang KS, Lin JG, Lee HC, Tsai FJ, Bau DT, Huang CY, Yao CH, Chen YS (2011) Paeoniae alba radix promotes peripheral nerve regeneration. Evid Based Complement Alternat Med 2011:109809PubMedCentralPubMedGoogle Scholar
  15. Ittner LM, Götz J (2010) Amyloid-β and tau—a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12(2):67–72Google Scholar
  16. Kruger NJ (1994) The bradford method for protein quantitation. In: Walker JM (ed) Basic protein and peptide protocols. Springer, New York, pp 9–15CrossRefGoogle Scholar
  17. Kubli DA, Gustafsson ÅB (2012) Mitochondria and mitophagy the yin and yang of cell death control. Circ Res 111(9):1208–1221PubMedCentralPubMedCrossRefGoogle Scholar
  18. Lu H, Shi JX, Zhang DM, Shen J, Lin YX, Hang CH, Yin HX (2009) Hemolysate-induced expression of intercellular adhesion molecule-1 and monocyte chemoattractant protein-1 expression in cultured brain microvascular endothelial cells via through ros-dependent nf-κb pathways. Cell Mol Neurobiol 29(1):87–95PubMedCrossRefGoogle Scholar
  19. Mao QQ, Zhong XM, Feng CR, Pan AJ, Li ZY, Huang Z (2010) Protective effects of paeoniflorin against glutamate-induced neurotoxicity in PC12 cells via antioxidant mechanisms and Ca2+ antagonism. Cell Mol Neurobiol 30(7):1059–1066PubMedCrossRefGoogle Scholar
  20. Mao QQ, Xian YF, Ip SP, Tsai SH, Che CT (2011a) Protective effects of peony glycosides against corticosterone-induced cell death in PC12 cells through antioxidant action. J Ethnopharmacol 133(3):1121–1125PubMedCrossRefGoogle Scholar
  21. Mao QQ, Zhong XM, Li ZY, Huang Z (2011b) Paeoniflorin protects against NMDA-induced neurotoxicity in PC12 cells via Ca2+ antagonism. Phytother Res 25(5):681–685PubMedGoogle Scholar
  22. Mao QQ, Zhong XM, Qiu FM, Li ZY, Huang Z (2012) Protective effects of paeoniflorin against corticosterone-induced neurotoxicity in pc12 cells. Phytother Res 26(7):969–973PubMedCrossRefGoogle Scholar
  23. Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radical Biol Med 23(1):134–147CrossRefGoogle Scholar
  24. Mazumder S, Plesca D, Almasan A (2008) Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. In: apoptosis and cancer. Springer, New York, pp 13–21Google Scholar
  25. Miranda S, Opazo C, Larrondo LF, Muñoz FJ, Ruiz F, Leighton F, Inestrosa NC (2000) The role of oxidative stress in the toxicity induced by amyloid β-peptide in Alzheimer’s disease. Prog Neurobiol 62(6):633–648PubMedCrossRefGoogle Scholar
  26. Pagani L, Eckert A (2011) Amyloid-Beta interaction with mitochondria. Int J Alzheimer’s Disease 2011:925050Google Scholar
  27. Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP (2013) The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement 9(1):63–75PubMedCrossRefGoogle Scholar
  28. Reddy PH (2009) Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer’s disease. Exp Neurol 218(2):286–292PubMedCentralPubMedCrossRefGoogle Scholar
  29. Smith RA, Hartley RC, Cochemé HM, Murphy MP (2012) Mitochondrial pharmacology. Trends Pharmacol Sci 33(6):341–352PubMedCrossRefGoogle Scholar
  30. Spuch C, Ortolano S, Navarro C (2012) New insights in the amyloid-beta interaction with mitochondria. J Aging Res 2012:324968PubMedCentralPubMedCrossRefGoogle Scholar
  31. Sun R, Wang K, Wu D, Li X, Ou Y (2012) Protective effect of paeoniflorin against glutamate-induced neurotoxicity in PC12 cells via Bcl-2/Bax signal pathway. Folia Neuropathol 50(3):270–276PubMedCrossRefGoogle Scholar
  32. Tam JH, Pasternak SH (2012) Amyloid and Alzheimer’s disease: inside and out. Can J Neurol Sci 39(3):286–298PubMedGoogle Scholar
  33. Tomek M, Akiyama T, Dass CR (2012) Role of Bcl-2 in tumour cell survival and implications for pharmacotherapy. J Pharm Pharmacol 64(12):1695–1702PubMedCrossRefGoogle Scholar
  34. van Meerloo J, Kaspers GJ, Cloos J (2011) Cell sensitivity assays: the MTT assay. In: Cree IA (ed) Cancer cell culture. Springer, New York, pp 237–245CrossRefGoogle Scholar
  35. Wang H, Xu Y, Yan J, Zhao X, Sun X, Zhang Y, Guo J, Zhu C (2009) Acteoside protects human neuroblastoma SH-SY5Y cells against β-amyloid-induced cell injury. Brain Res 1283:139–147PubMedCrossRefGoogle Scholar
  36. Youmans KL, Tai LM, Nwabuisi-Heath E, Jungbauer L, Kanekiyo T, Gan M, Kim J, Eimer WA, Estus S, Rebeck GW (2012) APOE4-specific changes in Aβ accumulation in a new transgenic mouse model of Alzheimer disease. J Biol Chem 287(50):41774–41786PubMedCrossRefGoogle Scholar
  37. Zheng GQ (2009) Therapeutic history of Parkinson’s disease in Chinese medical treatises. J Altern Complement Med 15(11):1223–1230PubMedCrossRefGoogle Scholar
  38. Zhong SZ, Ge QH, Li Q, Qu R, Ma SP (2009) Peoniflorin attentuates Aβ(1-42)-mediated neurotoxicity by regulating calcium homeostasis and ameliorating oxidative stress in hippocampus of rats. J Neurol Sci 280(1):71–78PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ke Wang
    • 1
  • Ling Zhu
    • 2
  • Xue Zhu
    • 1
  • Kai Zhang
    • 1
  • Biao Huang
    • 1
  • Jue Zhang
    • 1
  • Yi Zhang
    • 1
  • Lan Zhu
    • 1
  • Bin Zhou
    • 1
  • Fanfan Zhou
    • 3
  1. 1.Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
  2. 2.Save Sight InstituteUniversity of SydneySydneyAustralia
  3. 3.Faculty of PharmacyUniversity of SydneySydneyAustralia

Personalised recommendations