Cellular and Molecular Neurobiology

, Volume 33, Issue 2, pp 213–221

Temporal-Spatial Expressions of Spy1 in Rat Sciatic Nerve After Crush

  • Jianhua Cao
  • Jiao Yang
  • Youhua Wang
  • Jian Xu
  • Zhengming Zhou
  • Chun Cheng
  • Xiaojuan Liu
  • Xinghai Cheng
  • Long Long
  • Xingxing Gu
Original Research


As a novel cell cycle protein, Spy1 enhances cell proliferation, promotes the G1/S transition as well as inhibits apoptosis in response to UV irradiation. Spy1 levels are tightly regulated during mammary development, and overexpression of Spy1 accelerates tumorigenesis in vivo. But little is known about the role of Spy1 in the pathological process of damage and regeneration of the peripheral nervous system. Here we established a rat sciatic nerve crush (SNC) model to examine the spatiotemporal expression of Spy1. Spy1 expression was elevated gradually after sciatic nerve crush and peaked at day 3. The alteration was due to the increased expression of Spy1 in axons and Schwann cells after SNC. Spy1 expression correlated closely with Schwann cells proliferation in sciatic nerve post injury. Furthermore, Spy1 largely localized in axons in the crushed segment, but rarely co-localized with GAP43. These findings suggested that Spy1 participated in the pathological process response to sciatic nerve injury and may be associated with Schwann cells proliferation and axons regeneration.


Sciatic nerve crush Schwann cells Spy1 Axonal regeneration 



Schwann cells


Glyceraldehyde-3-phosphate dehydrogenase


Peripheral nervous system


Sciatic nerve crush


Reverse transcriptase PCR


Growth-associated protein 43


Cyclin-dependent kinases

Supplementary material

10571_2012_9887_MOESM1_ESM.tif (1.4 mb)
Supplementary material 1 (TIFF 1424 kb)
10571_2012_9887_MOESM2_ESM.tif (912 kb)
Supplementary material 2 (TIFF 912 kb)
10571_2012_9887_MOESM3_ESM.tif (857 kb)
Supplementary material 3 (TIFF 856 kb)


  1. Aigner L, Arber S, Kapfhammer JP, Laux T, Schneider C, Botteri F, Brenner HR, Caroni P (1995) Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice. Cell 83(2):269–278PubMedCrossRefGoogle Scholar
  2. Barnes EA, Porter LA, Lenormand JL, Dellinger RW, Donoghue DJ (2003) Human Spy1 promotes survival of mammalian cells following DNA damage. Cancer Res 63(13):3701–3707PubMedGoogle Scholar
  3. Chang IA, Oh MJ, Kim MH, Park SK, Kim BG, Namgung U (2012) Vimentin phosphorylation by Cdc2 in Schwann cell controls axon growth via beta1-integrin activation. FASEB J 26(6):2401–2413PubMedCrossRefGoogle Scholar
  4. Chen L, Qin J, Cheng C, Niu S, Liu Y, Shi S, Liu H, Shen A (2008) Spatiotemporal expression of SSeCKS in injured rat sciatic nerve. Anat Rec (Hoboken) 291(5):527–537CrossRefGoogle Scholar
  5. Dinarina A, Perez LH, Davila A, Schwab M, Hunt T, Nebreda AR (2005) Characterization of a new family of cyclin-dependent kinase activators. Biochem J 386(Pt 2):349–355PubMedGoogle Scholar
  6. Erturk A, Hellal F, Enes J, Bradke F (2007) Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration. J Neurosci 27(34):9169–9180PubMedCrossRefGoogle Scholar
  7. Farah MH, Pan BH, Hoffman PN, Ferraris D, Tsukamoto T, Nguyen T, Wong PC, Price DL, Slusher BS, Griffin JW (2011) Reduced BACE1 activity enhances clearance of myelin debris and regeneration of axons in the injured peripheral nervous system. J Neurosci 31(15):5744–5754PubMedCrossRefGoogle Scholar
  8. Fawcett JW, Keynes RJ (1990) Peripheral nerve regeneration. Annu Rev Neurosci 13:43–60PubMedCrossRefGoogle Scholar
  9. Frey D, Laux T, Xu L, Schneider C, Caroni P (2000) Shared and unique roles of CAP23 and GAP43 in actin regulation, neurite outgrowth, and anatomical plasticity. J Cell Biol 149(7):1443–1454PubMedCrossRefGoogle Scholar
  10. Gao S, Fei M, Cheng C, Yu X, Chen M, Shi S, Qin J, Guo Z, Shen A (2008) Spatiotemporal expression of PSD-95 and nNOS after rat sciatic nerve injury. Neurochem Res 33(6):1090–1100PubMedCrossRefGoogle Scholar
  11. Geremia NM, Pettersson LM, Hasmatali JC, Hryciw T, Danielsen N, Schreyer DJ, Verge VM (2010) Endogenous BDNF regulates induction of intrinsic neuronal growth programs in injured sensory neurons. Exp Neurol 223(1):128–142PubMedCrossRefGoogle Scholar
  12. Golipour A, Myers D, Seagroves T, Murphy D, Evan GI, Donoghue DJ, Moorehead RA, Porter LA (2008) The Spy1/RINGO family represents a novel mechanism regulating mammary growth and tumorigenesis. Cancer Res 68(10):3591–3600PubMedCrossRefGoogle Scholar
  13. Goslin K, Schreyer DJ, Skene JH, Banker G (1990) Changes in the distribution of GAP-43 during the development of neuronal polarity. J Neurosci 10(2):588–602PubMedGoogle Scholar
  14. Hall S (2005) The response to injury in the peripheral nervous system. J Bone Joint Surg Br 87(10):1309–1319PubMedCrossRefGoogle Scholar
  15. Hammarlund M, Nix P, Hauth L, Jorgensen EM, Bastiani M (2009) Axon regeneration requires a conserved MAP kinase pathway. Science 323(5915):802–806PubMedCrossRefGoogle Scholar
  16. Han IS, Seo TB, Kim KH, Yoon JH, Yoon SJ, Namgung U (2007) Cdc2-mediated Schwann cell migration during peripheral nerve regeneration. J Cell Sci 120(Pt 2):246–255PubMedCrossRefGoogle Scholar
  17. Heinen A, Kremer D, Gottle P, Kruse F, Hasse B, Lehmann H, Hartung HP, Kury P (2008) The cyclin-dependent kinase inhibitor p57kip2 is a negative regulator of Schwann cell differentiation and in vitro myelination. Proc Natl Acad Sci U S A 105(25):8748–8753PubMedCrossRefGoogle Scholar
  18. Huang Y, Liu Y, Chen Y, Yu X, Yang J, Lu M, Lu Q, Ke Q, Shen A, Yan M (2009) Peripheral nerve lesion induces an up-regulation of Spy1 in rat spinal cord. Cell Mol Neurobiol 29(3):403–411PubMedCrossRefGoogle Scholar
  19. Ide C (1996) Peripheral nerve regeneration. Neurosci Res 25(2):101–121PubMedGoogle Scholar
  20. Ji Y, Tao T, Cheng C, Yang H, Wang Y, Yang J, Liu H, He X, Wang H, Shen A (2010) SSeCKS is a suppressor in Schwann cell differentiation and myelination. Neurochem Res 35(2):219–226PubMedCrossRefGoogle Scholar
  21. Karaiskou A, Perez LH, Ferby I, Ozon R, Jessus C, Nebreda AR (2001) Differential regulation of Cdc2 and Cdk2 by RINGO and cyclins. J Biol Chem 276(38):36028–36034PubMedCrossRefGoogle Scholar
  22. Ke Q, Ji J, Cheng C, Zhang Y, Lu M, Wang Y, Zhang L, Li P, Cui X, Chen L, He S, Shen A (2009) Expression and prognostic role of Spy1 as a novel cell cycle protein in hepatocellular carcinoma. Exp Mol Pathol 87(3):167–172PubMedCrossRefGoogle Scholar
  23. Lenormand JL, Dellinger RW, Knudsen KE, Subramani S, Donoghue DJ (1999) Speedy: a novel cell cycle regulator of the G2/M transition. EMBO J 18(7):1869–1877PubMedCrossRefGoogle Scholar
  24. Li H, Yang H, Liu Y, Huan W, Zhang S, Wu G, Lu Q, Wang Q, Wang Y (2011) The cyclin-dependent kinase inhibitor p27(Kip1) is a positive regulator of Schwann cell differentiation in vitro. J Mol Neurosci 45(2):277–283PubMedCrossRefGoogle Scholar
  25. Li H, Deng J, Chen H, Chen T, Cao X, Hou H, Huan W, Zhang G, Yu B, Wang Y (2012) Dynamic changes of PIRH2 and p27kip1 expression in injured rat sciatic nerve. Neurol Sci 33(4):749–757PubMedCrossRefGoogle Scholar
  26. Makwana M, Raivich G (2005) Molecular mechanisms in successful peripheral regeneration. FEBS J 272(11):2628–2638PubMedCrossRefGoogle Scholar
  27. McAndrew CW, Gastwirt RF, Meyer AN, Porter LA, Donoghue DJ (2007) Spy1 enhances phosphorylation and degradation of the cell cycle inhibitor p27. Cell Cycle 6(15):1937–1945PubMedCrossRefGoogle Scholar
  28. McAndrew CW, Gastwirt RF, Donoghue DJ (2009) The atypical CDK activator Spy1 regulates the intrinsic DNA damage response and is dependent upon p53 to inhibit apoptosis. Cell Cycle 8(1):66–75PubMedCrossRefGoogle Scholar
  29. Morris GF, Mathews MB (1989) Regulation of proliferating cell nuclear antigen during the cell cycle. J Biol Chem 264(23):13856–13864PubMedGoogle Scholar
  30. Muller HW (1996) Gene expression in nerve regeneration. Diabet Med 13(7):682PubMedCrossRefGoogle Scholar
  31. Porter LA, Dellinger RW, Tynan JA, Barnes EA, Kong M, Lenormand JL, Donoghue DJ (2002) Human Speedy: a novel cell cycle regulator that enhances proliferation through activation of Cdk2. J Cell Biol 157(3):357–366PubMedCrossRefGoogle Scholar
  32. Porter LA, Kong-Beltran M, Donoghue DJ (2003) Spy1 interacts with p27Kip1 to allow G1/S progression. Mol Biol Cell 14(9):3664–3674PubMedCrossRefGoogle Scholar
  33. Ribeiro-Resende VT, Koenig B, Nichterwitz S, Oberhoffner S, Schlosshauer B (2009) Strategies for inducing the formation of bands of Bungner in peripheral nerve regeneration. Biomaterials 30(29):5251–5259PubMedCrossRefGoogle Scholar
  34. Tikoo R, Zanazzi G, Shiffman D, Salzer J, Chao MV (2000) Cell cycle control of Schwann cell proliferation: role of cyclin-dependent kinase-2. J Neurosci 20(12):4627–4634PubMedGoogle Scholar
  35. Van der Zee CE, Nielander HB, Vos JP, Lopes da Silva S, Verhaagen J, Oestreicher AB, Schrama LH, Schotman P, Gispen WH (1989) Expression of growth-associated protein B-50 (GAP43) in dorsal root ganglia and sciatic nerve during regenerative sprouting. J Neurosci 9(10):3505–3512PubMedGoogle Scholar
  36. Vargas ME, Watanabe J, Singh SJ, Robinson WH, Barres BA (2010) Endogenous antibodies promote rapid myelin clearance and effective axon regeneration after nerve injury. Proc Natl Acad Sci U S A 107(26):11993–11998PubMedCrossRefGoogle Scholar
  37. Verhaagen J, Oestreicher AB, Gispen WH, Margolis FL (1989) The expression of the growth associated protein B50/GAP43 in the olfactory system of neonatal and adult rats. J Neurosci 9(2):683–691PubMedGoogle Scholar
  38. Yankner BA, Benowitz LI, Villa-Komaroff L, Neve RL (1990) Transfection of PC12 cells with the human GAP-43 gene: effects on neurite outgrowth and regeneration. Brain Res Mol Brain Res 7(1):39–44PubMedCrossRefGoogle Scholar
  39. Yoo S, van Niekerk EA, Merianda TT, Twiss JL (2010) Dynamics of axonal mRNA transport and implications for peripheral nerve regeneration. Exp Neurol 223(1):19–27PubMedCrossRefGoogle Scholar
  40. Zhang L, Shen A, Ke Q, Zhao W, Yan M, Cheng C (2012) Spy1 is frequently overexpressed in malignant gliomas and critically regulates the proliferation of glioma cells. J Mol Neurosci 47(3):485–494PubMedCrossRefGoogle Scholar
  41. Zhu L, Yan Y, Ke K, Wu X, Gao Y, Shen A, Li J, Kang L, Zhang G, Wu Q, Yang H (2012) Dynamic change of numbl expression after sciatic nerve crush and its role in Schwann cell differentiation. J Neurosci Res 90(8):1557–1565PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Jianhua Cao
    • 1
  • Jiao Yang
    • 3
  • Youhua Wang
    • 4
  • Jian Xu
    • 1
  • Zhengming Zhou
    • 3
  • Chun Cheng
    • 3
  • Xiaojuan Liu
    • 5
  • Xinghai Cheng
    • 4
  • Long Long
    • 4
  • Xingxing Gu
    • 2
  1. 1.Department of OrthopaedicsAffiliated Mental Health Center of Nantong UniversityNantongPeople’s Republic of China
  2. 2.The Jiangsu Province Key Laboratory of NeuroregenerationNantong UniversityNantongPeople’s Republic of China
  3. 3.Department of ImmunologyMedical College, Nantong UniversityNantongPeople’s Republic of China
  4. 4.Department of OrthopaedicsAffiliated Hospital of Nantong UniversityNantongPeople’s Republic of China
  5. 5.Department of PathogenbiologyMedical College, Nantong UniversityNantongPeople’s Republic of China

Personalised recommendations