Cellular and Molecular Neurobiology

, Volume 32, Issue 4, pp 567–576

Mesenchymal Stromal Cells Rescue Cortical Neurons from Apoptotic Cell Death in an In Vitro Model of Cerebral Ischemia

  • Franziska Scheibe
  • Oliver Klein
  • Joachim Klose
  • Josef Priller
Original Research

Abstract

Cell therapy with mesenchymal stromal cells (MSCs) was found to protect neurons from damage after experimental stroke and is currently under investigation in clinical stroke trials. In order to elucidate the mechanisms of MSC-induced neuroprotection, we used the in vitro oxygen–glucose deprivation (OGD) model of cerebral ischemia. Co-culture of primary cortical neurons with MSCs in a transwell co-culture system for 48 h prior to OGD-reduced neuronal cell death by 30–35%. Similar protection from apoptosis was observed with MSC-conditioned media when added 48 h or 30 min prior to OGD, or even after OGD. Western blot analysis revealed increased phosphorylation of STAT3 and Akt in neuronal cultures after treatment with MSC-conditioned media. Inhibition of the PI3K/Akt pathway completely abolished the neuroprotective potential of MSC-conditioned media, suggesting that MSCs can improve neuronal survival by an Akt-dependent anti-apoptotic signaling cascade. Using mass spectrometry, we identified plasminogen activator inhibitor-1 as an active compound in MSC-conditioned media. Thus, paracrine factors secreted by MSCs protect neurons from apoptotic cell death in the OGD model of cerebral ischemia.

Keywords

Mesenchymal stem cell Oxygen–glucose deprivation Neuroprotection Akt 

References

  1. Block GJ, Ohkouchi S, Fung F, Frenkel J, Gregory C, Pochampally R, Dimattia G, Sullivan DE, Prockop DJ (2009) Multipotent stromal cells (MSCs) are activated to reduce apoptosis in part by upregulation and secretion of stanniocalcin-1 (STC-1) 1. Stem Cells 27:670–681PubMedGoogle Scholar
  2. Brewer GJ (1995) Serum-free B27/neurobasal medium supports differentiated growth of neurons from the striatum, substantia nigra, septum, cerebral cortex, cerebellum, and dentate gyrus. J Neurosci Res 42:674–683PubMedCrossRefGoogle Scholar
  3. Bruer U, Weih MK, Isaev NK, Meisel A, Ruscher K, Bergk A, Trendelenburg G, Wiegand F, Victorov IV, Dirnagl U (1997) Induction of tolerance in rat cortical neurons: hypoxic preconditioning. FEBS Lett 414:117–121PubMedCrossRefGoogle Scholar
  4. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084PubMedCrossRefGoogle Scholar
  5. Chang W, Wei K, Jacobs SS, Upadhyay D, Weill D, Rosen GD (2010) SPARC suppresses apoptosis of idiopathic pulmonary fibrosis fibroblasts through constitutive activation of beta-catenin. J Biol Chem 285:8196–8206PubMedCrossRefGoogle Scholar
  6. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, Chopp M (2001) Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32:1005–1011PubMedCrossRefGoogle Scholar
  7. Chen X, Li Y, Wang L, Katakowski M, Zhang L, Chen J, Xu Y, Gautam SC, Chopp M (2002) Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology 22:275–279PubMedCrossRefGoogle Scholar
  8. Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, Lu M, Gautam SC, Chopp M (2003a) Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res 73:778–786PubMedCrossRefGoogle Scholar
  9. Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC, Lu M, Zhu Z, Chopp M (2003b) Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 92:692–699PubMedCrossRefGoogle Scholar
  10. Chiellini C, Cochet O, Negroni L, Samson M, Poggi M, Ailhaud G, Alessi MC, Dani C, Amri EZ (2008) Characterization of human mesenchymal stem cell secretome at early steps of adipocyte and osteoblast differentiation 1. BMC Mol Biol 9:26PubMedCrossRefGoogle Scholar
  11. Colter DC, Class R, DiGirolamo CM, Prockop DJ (2000) Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA 97:3213–3218PubMedCrossRefGoogle Scholar
  12. Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y, Tajima N, Yamada H, Sawada H, Ishikawa H, Mimura T, Kitada M, Suzuki Y, Ide C (2004) Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 113:1701–1710PubMedGoogle Scholar
  13. Docagne F, Nicole O, Gabriel C, Fernandez-Monreal M, Lesne S, Ali C, Plawinski L, Carmeliet P, MacKenzie ET, Buisson A, Vivien D (2002) Smad3-dependent induction of plasminogen activator inhibitor-1 in astrocytes mediates neuroprotective activity of transforming growth factor-beta 1 against NMDA-induced necrosis. Mol Cell Neurosci 21:634–644PubMedCrossRefGoogle Scholar
  14. Gabriel C, Ali C, Lesne S, Fernandez-Monreal M, Docagne F, Plawinski L, MacKenzie ET, Buisson A, Vivien D (2003) Transforming growth factor alpha-induced expression of type 1 plasminogen activator inhibitor in astrocytes rescues neurons from excitotoxicity. FASEB J 17:277–279PubMedGoogle Scholar
  15. Gao Q, Li Y, Shen L, Zhang J, Zheng X, Qu R, Liu Z, Chopp M (2008) Bone marrow stromal cells reduce ischemia-induced astrocytic activation in vitro 1. Neuroscience 152:646–655PubMedCrossRefGoogle Scholar
  16. Gerdoni E, Gallo B, Casazza S, Musio S, Bonanni I, Pedemonte E, Mantegazza R, Frassoni F, Mancardi G, Pedotti R, Uccelli A (2007) Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann Neurol 61:219–227PubMedCrossRefGoogle Scholar
  17. Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, Noiseux N, Zhang L, Pratt RE, Ingwall JS, Dzau VJ (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11:367–368PubMedCrossRefGoogle Scholar
  18. Horn AP, Frozza RL, Grudzinski PB, Gerhardt D, Hoppe JB, Bruno AN, Chagastelles P, Nardi NB, Lenz G, Salbego C (2009) Conditioned medium from mesenchymal stem cells induces cell death in organotypic cultures of rat hippocampus and aggravates lesion in a model of oxygen and glucose deprivation 1. Neurosci Res 63:35–41PubMedCrossRefGoogle Scholar
  19. Hung SC, Pochampally RR, Chen SC, Hsu SC, Prockop DJ (2007) Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3 K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis 1. Stem Cells 25:2363–2370PubMedCrossRefGoogle Scholar
  20. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563PubMedCrossRefGoogle Scholar
  21. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M, Hirai S, Uchida H, Sasaki K, Ito Y, Kato K, Honmou O, Houkin K, Date I, Hamada H (2005) Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther 11:96–104PubMedCrossRefGoogle Scholar
  22. Lautenschlager M, Onufriev MV, Gulyaeva NV, Harms C, Freyer D, Sehmsdorf U, Ruscher K, Moiseeva YV, Arnswald A, Victorov I, Dirnagl U, Weber JR, Hortnagl H (2000) Role of nitric oxide in the ethylcholine aziridinium model of delayed apoptotic neurodegeneration in vivo and in vitro. Neuroscience 97:383–393PubMedCrossRefGoogle Scholar
  23. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P, Prockop DJ (2009) Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6 1. Cell Stem Cell 5:54–63PubMedCrossRefGoogle Scholar
  24. Liu Z, Qiu YH, Li B, Ma SH, Peng YP (2011) Neuroprotection of interleukin-6 against NMDA-induced apoptosis and its signal-transduction mechanisms. Neurotoxic Res 19:484–495CrossRefGoogle Scholar
  25. Maitra B, Szekely E, Gjini K, Laughlin MJ, Dennis J, Haynesworth SE, Koc ON (2004) Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplant 33:597–604PubMedCrossRefGoogle Scholar
  26. Munoz JR, Stoutenger BR, Robinson AP, Spees JL, Prockop DJ (2005) Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci USA 102:18171–18176PubMedCrossRefGoogle Scholar
  27. Nomura T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD (2005) I.V. infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Neuroscience 136:161–169PubMedCrossRefGoogle Scholar
  28. Parekkadan B, van Poll D, Suganuma K, Carter EA, Berthiaume F, Tilles AW, Yarmush ML (2007) Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS ONE 2:e941PubMedCrossRefGoogle Scholar
  29. Scheibe F, Gladow N, Mergenthaler P, Tucker AH, Meisel A, Prockop DJ, Priller J (2011) Nonviral gene delivery of erythropoietin by mesenchymal stromal cells. Gene Ther. doi:10.1038/gt.2011.139 PubMedGoogle Scholar
  30. Sekiya I, Larson BL, Smith JR, Pochampally R, Cui JG, Prockop DJ (2002) Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 20:530–541PubMedCrossRefGoogle Scholar
  31. Sharma S, Yang B, Xi X, Grotta JC, Aronowski J, Savitz SI (2011) IL-10 directly protects cortical neurons by activating PI-3 kinase and STAT-3 pathways. Brain Res 1373:189–194PubMedCrossRefGoogle Scholar
  32. Shi Q, Bao S, Maxwell JA, Reese ED, Friedman HS, Bigner DD, Wang XF, Rich JN (2004) Secreted protein acidic, rich in cysteine (SPARC), mediates cellular survival of gliomas through AKT activation. J Biol Chem 279:52200–52209PubMedCrossRefGoogle Scholar
  33. Wagner W, Roderburg C, Wein F, Diehlmann A, Frankhauser M, Schubert R, Eckstein V, Ho AD (2007) Molecular and secretory profiles of human mesenchymal stromal cells and their abilities to maintain primitive hematopoietic progenitors. Stem Cells 25:2638–2647PubMedCrossRefGoogle Scholar
  34. Xin H, Li Y, Shen LH, Liu X , Wang X, Zhang J, Pourabdollah-Nejad DS, Zhang C, Zhang L, Jiang H, Zhang ZG, Chopp M (2010) Increasing tPA activity in astrocytes induced by multipotent mesenchymal stromal cells facilitate neurite outgrowth after stroke in the mouse. PLoS One 5(2):e9027PubMedCrossRefGoogle Scholar
  35. Zabel C, Klose J (2009) High-resolution large-gel 2DE. Methods Mol Biol 519:311–338 PubMedCrossRefGoogle Scholar
  36. Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E, Giunti D, Ceravolo A, Cazzanti F, Frassoni F, Mancardi G, Uccelli A (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106:1755–1761PubMedCrossRefGoogle Scholar
  37. Zhang J, Li Y, Zheng X, Gao Q, Liu Z, Qu R, Borneman J, Elias SB, Chopp M (2008) Bone marrow stromal cells protect oligodendrocytes from oxygen-glucose deprivation injury 3. J Neurosci Res 86:1501–1510PubMedCrossRefGoogle Scholar
  38. Zhao MZ, Nonoguchi N, Ikeda N, Watanabe T, Furutama D, Miyazawa D, Funakoshi H, Kajimoto Y, Nakamura T, Dezawa M, Shibata MA, Otsuki Y, Coffin RS, Liu WD, Kuroiwa T, Miyatake S (2006) Novel therapeutic strategy for stroke in rats by bone marrow stromal cells and ex vivo HGF gene transfer with HSV-1 vector. J Cereb Blood Flow Metab 26:1176–1188PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Franziska Scheibe
    • 1
    • 2
  • Oliver Klein
    • 2
    • 3
  • Joachim Klose
    • 2
    • 3
  • Josef Priller
    • 1
    • 2
  1. 1.Department of Neuropsychiatry and Laboratory of Molecular PsychiatryCharité—Universitätsmedizin BerlinBerlinGermany
  2. 2.Berlin-Brandenburg Center for Regenerative TherapiesBerlinGermany
  3. 3.Institute for Human GeneticsCharité—Universitätsmedizin BerlinBerlinGermany

Personalised recommendations