Cellular and Molecular Neurobiology

, Volume 32, Issue 1, pp 17–25 | Cite as

Histamine Receptor Expression, Hippocampal Plasticity and Ammonia in Histidine Decarboxylase Knockout Mice

  • Aisa Chepkova
  • Evgenij Yanovsky
  • Regis Parmentier
  • Hiroshi Ohtsu
  • Helmut L. Haas
  • Jian-Sheng Lin
  • Olga A. Sergeeva
Original Research

Abstract

Genetic ablation of the histamine producing enzyme histidine decarboxylase (HDC) leads to alteration in exploratory behaviour and hippocampus-dependent learning. We investigated how brain histamine deficiency in HDC knockout mice (HDC KO) affects hippocampal excitability, synaptic plasticity, and the expression of histamine receptors. No significant alterations in: basal synaptic transmission, long-term potentiation (LTP) in the Schaffer collateral synapses, histamine-induced transient changes in the CA1 pyramidal cell excitability, and the expression of H1 and H2 receptor mRNAs were found in hippocampal slices from HDC KO mice. However, when compared to WT mice, HDC KO mice demonstrated: 1. a stronger enhancement of LTP by histamine, 2. a stronger impairment of LTP by ammonia, 3. no long-lasting potentiation of population spikes by histamine, 4. a decreased expression of H3 receptor mRNA, and 5. less potentiation of population spikes by H3 receptor agonism. Parallel measurements in the hypothalamic tuberomamillary nucleus, the origin of neuronal histamine, demonstrated an increased expression of H3 receptors in HDC KO mice without any changes in the spontaneous firing of “histaminergic” neurons without histamine and their responses to the H3 receptor agonist (R)-α-methylhistamine. We conclude that the absence of neuronal histamine results in subtle changes in hippocampal synaptic transmission and plasticity associated with alteration in the expression of H3 receptors.

Keywords

Long-term potentiation Afterhyperpolarisation Ammonia Tuberomamillary nucleus (R)-α-methylhistamine 

Notes

Acknowledgments

Supported by the DFG SE 1767, SFB 575/3 and 8, INSERM U628 and INSERM grant of JSL to RP.

References

  1. Abraham WC, Gustafsson B, Wigstrom H (1987) Long-term potentiation involves enhanced synaptic excitation relative to synaptic inhibition in guinea-pig hippocampus. J Physiol 394:367–380PubMedGoogle Scholar
  2. Adachi N (2005) Cerebral ischemia and brain histamine. Brain Res Brain Res Rev 50:275–286PubMedCrossRefGoogle Scholar
  3. Alves-Rodrigues A, Timmerman H, Willems E, Lemstra S, Zuiderveld OP, Leurs R (1998) Pharmacological characterisation of the histamine H3 receptor in the rat hippocampus. Brain Res 788:179–186PubMedCrossRefGoogle Scholar
  4. Andersson R, Lindskog M, Fisahn A (2010) Histamine H3 receptor activation decreases kainate-induced hippocampal gamma oscillations in vitro by action potential desynchronization in pyramidal neurons. J Physiol 588:1241–1249PubMedCrossRefGoogle Scholar
  5. Arrang JM, Morisset S, Gbahou F (2007) Constitutive activity of the histamine H3 receptor. Trends Pharmacol Sci 28:350–357PubMedCrossRefGoogle Scholar
  6. Atzori M, Lau D, Tansey EP, Chow A, Ozaita A, Rudy B, McBain CJ (2000) H2 histamine receptor-phosphorylation of Kv3.2 modulates interneuron fast spiking. Nat Neurosci 3:791–798PubMedCrossRefGoogle Scholar
  7. Bongers G, Bakker RA, Leurs R (2007) Molecular aspects of the histamine H3 receptor. Biochem Pharmacol 73:1195–1204PubMedCrossRefGoogle Scholar
  8. Brown RE, Fedorov NB, Haas HL, Reymann KG (1995) Histaminergic modulation of synaptic plasticity in area CA1 of rat hippocampal slices. Neuropharmacology 34:181–190PubMedCrossRefGoogle Scholar
  9. Brown RE, Stevens DR, Haas HL (2001) The physiology of brain histamine. Prog Neurobiol 63:637–672PubMedCrossRefGoogle Scholar
  10. Butterworth RF (2002) Pathophysiology of hepatic encephalopathy: a new look at ammonia. Metab Brain Dis 17:221–227PubMedCrossRefGoogle Scholar
  11. Chepkova AN, Sergeeva OA, Haas HL (2006) Taurine rescues hippocampal long-term potentiation from ammonia-induced impairment. Neurobiol Dis 23:512–521PubMedCrossRefGoogle Scholar
  12. Cohen-Matsliah SI, Brosh I, Rosenblum K, Barkai E (2007) A novel role for extracellular signal-regulated kinase in maintaining long-term memory-relevant excitability changes. J Neurosci 27:12584–12589PubMedCrossRefGoogle Scholar
  13. Dai H, Zhang Z, Zhu Y, Shen Y, Hu W, Huang Y, Luo J, Timmerman H, Leurs R, Chen Z (2006) Histamine protects against NMDA-induced necrosis in cultured cortical neurons through H receptor/cyclic AMP/protein kinase A and H receptor/GABA release pathways. J Neurochem 96:1390–1400PubMedCrossRefGoogle Scholar
  14. Dai H, Kaneko K, Kato H, Fujii S, Jing Y, Xu A, Sakurai E, Kato M, Okamura N, Kuramasu A, Yanai K (2007) Selective cognitive dysfunction in mice lacking histamine H1 and H2 receptors. Neurosci Res 57:306–313PubMedCrossRefGoogle Scholar
  15. Daoudal G, Debanne D (2003) Long-term plasticity of intrinsic excitability: learning rules and mechanisms. Learn Mem 10:456–465PubMedCrossRefGoogle Scholar
  16. Dere E, Souza-Silva MA, Topic B, Spieler RE, Haas HL, Huston JP (2003) Histidine-decarboxylase knockout mice show deficient nonreinforced episodic object memory, improved negatively reinforced water-maze performance, and increased neo- and ventro-striatal dopamine turnover. Learn. Mem. 10:510–519PubMedCrossRefGoogle Scholar
  17. Di Carlo G, Ghi P, Orsetti M (2000) Effect of R-(-)-alpha-methylhistamine and thioperamide on in vivo release of norepinephrine in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 24:275–284PubMedCrossRefGoogle Scholar
  18. Eriksson KS, Zhang S, Lin L, Lariviere RC, Julien JP, Mignot E (2008) The type III neurofilament peripherin is expressed in the tuberomammillary neurons of the mouse. BMC Neurosci 9:26PubMedCrossRefGoogle Scholar
  19. Esbenshade TA, Browman KE, Bitner RS, Strakhova M, Cowart MD, Brioni JD (2008) The histamine H3 receptor: an attractive target for the treatment of cognitive disorders. Br J Pharmacol 154:1166–1181PubMedCrossRefGoogle Scholar
  20. Haas HL, Konnerth A (1983) Histamine and noradrenaline decrease calcium-activated potassium conductance in hippocampal pyramidal cells. Nature 302:432–434PubMedCrossRefGoogle Scholar
  21. Haas HL, Wolf P, Palacios JM, Garbarg M, Barbin G, Schwartz JC (1978) Hypersensitivity to histamine in the guinea-pig brain: microiontophoretic and biochemical studies. Brain Res 156:275–291PubMedCrossRefGoogle Scholar
  22. Haas HL, Sergeeva OA, Selbach O (2008) Histamine in the nervous system. Physiol Rev 88:1183–1241PubMedCrossRefGoogle Scholar
  23. Hajos M, Siok CJ, Hoffmann WE, Li S, Kocsis B (2008) Modulation of hippocampal theta oscillation by histamine H3 receptors. J Pharmacol Exp Ther 324:391–398PubMedCrossRefGoogle Scholar
  24. Haussinger D, Schliess F, Kircheis G (2002) Pathogenesis of hepatic encephalopathy. J Gastroenterol Hepatol 17(Suppl 3):S256–S259PubMedCrossRefGoogle Scholar
  25. Kenakin T (2007) Functional selectivity through protean and biased agonism: who steers the ship? Mol Pharmacol 72:1393–1401PubMedCrossRefGoogle Scholar
  26. Knoche A, Yokoyama H, Ponomarenko A, Frisch C, Huston J, Haas HL (2003) High-frequency oscillation in the hippocampus of the behaving rat and its modulation by the histaminergic system. Hippocampus 13:273–280PubMedCrossRefGoogle Scholar
  27. Kostopoulos G, Psarropoulou C, Haas HL (1988) Membrane properties, response to amines and to tetanic stimulation of hippocampal neurons in the genetically epileptic mutant mouse tottering. Exp Brain Res 72:45–50PubMedCrossRefGoogle Scholar
  28. Kukko-Lukjanov TK, Soini S, Taira T, Michelsen KA, Panula P, Holopainen IE (2006) Histaminergic neurons protect the developing hippocampus from kainic acid-induced neuronal damage in an organotypic coculture system. J Neurosci 26:1088–1097PubMedCrossRefGoogle Scholar
  29. Lin JS, Anaclet C, Sergeeva OA, Haas HL (2011) The waking brain: an update. Cell Mol Life Sci. doi:10.1007/s00018-011-0631-8
  30. Liu L, Zhang S, Zhu Y, Fu Q, Zhu Y, Gong Y, Ohtsu H, Luo J, Wei E, Chen Z (2007) Improved learning and memory of contextual fear conditioning and hippocampal CA1 long-term potentiation in histidine decarboxylase knock-out mice. Hippocampus 17:634–641PubMedCrossRefGoogle Scholar
  31. Lozeva V, Tuomisto L, Tarhanen J, Butterworth RF (2003) Increased concentrations of histamine and its metabolite, tele-methylhistamine and down-regulation of histamine H3 receptor sites in autopsied brain tissue from cirrhotic patients who died in hepatic coma. J Hepatol 39:522–527PubMedCrossRefGoogle Scholar
  32. Luo T, Leung LS (2010) Endogenous histamine facilitates long-term potentiation in the hippocampus during walking. J Neurosci 30:7845–7852PubMedCrossRefGoogle Scholar
  33. Ohtsu H, Tanaka S, Terui T, Hori Y, Makabe-Kobayashi Y, Pejler G, Tchougounova E, Hellman L, Gertsenstein M, Hirasawa N, Sakurai E, Buzas E, Kovacs P, Csaba G, Kittel A, Okada M, Hara M, Mar L, Numayama-Tsuruta K, Ishigaki-Suzuki S, Ohuchi K, Ichikawa A, Falus A, Watanabe T, Nagy A (2001) Mice lacking histidine decarboxylase exhibit abnormal mast cells. FEBS Lett 502:53–56PubMedCrossRefGoogle Scholar
  34. Panula P, Pirvola U, Auvinen S, Airaksinen MS (1989) Histamine-immunoreactive nerve fibers in the rat brain. Neuroscience 28:585–610PubMedCrossRefGoogle Scholar
  35. Parmentier R, Ohtsu H, Djebbara-Hannas Z, Valatx JL, Watanabe T, Lin JS (2002) Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control. J Neurosci 22:7695–7711PubMedGoogle Scholar
  36. Parmentier R, Anaclet C, Guhennec C, Brousseau E, Bricout D, Giboulot T, Bozyczko-Coyne D, Spiegel K, Ohtsu H, Williams M, Lin JS (2007) The brain H3-receptor as a novel therapeutic target for vigilance and sleep-wake disorders. Biochem Pharmacol 73:1157–1171PubMedCrossRefGoogle Scholar
  37. Passani MB, Lin JS, Hancock A, Crochet S, Blandina P (2004) The histamine H3 receptor as a novel therapeutic target for cognitive and sleep disorders. Trends Pharmacol Sci 25:618–625PubMedCrossRefGoogle Scholar
  38. Ponomarenko AA, Knoche A, Korotkova TM, Haas HL (2003) Aminergic control of high-frequency (approximately 200 Hz) network oscillations in the hippocampus of the behaving rat. Neurosci Lett 348:101–104PubMedCrossRefGoogle Scholar
  39. Sakai K, Takahashi K, Anaclet C, Lin JS (2010) Sleep-waking discharge of ventral tuberomammillary neurons in wild-type and histidine decarboxylase knock-out mice. Front Behav Neurosci 4:53PubMedCrossRefGoogle Scholar
  40. Saras A, Gisselmann G, Vogt-Eisele AK, Erlkamp KS, Kletke O, Pusch H, Hatt H (2008) Histamine action on vertebrate GABAA receptors: direct channel gating and potentiation of GABA responses. J Biol Chem 283:10470–10475PubMedCrossRefGoogle Scholar
  41. Schwartz JC, Arrang JM, Garbarg M, Gulat-Marnay C, Pollard H (1990) Modulation of histamine synthesis and release in brain via presynaptic autoreceptors and heteroreceptors. Ann N Y Acad Sci 604:40–54PubMedCrossRefGoogle Scholar
  42. Schwartz JC, Morisset S, Rouleau A, Ligneau X, Gbahou F, Tardivel-Lacombe J, Stark H, Schunack W, Ganellin CR, Arrang JM (2003) Therapeutic implications of constitutive activity of receptors: the example of the histamine H3 receptor. J Neural Transm Suppl 64:1–16PubMedGoogle Scholar
  43. Sergeeva OA, Chepkova AN, Doreulee N, Eriksson KS, Poelchen W, Mönnighoff I, Heller-Stilb B, Warskulat U, Häussinger D, Haas HL (2003) Taurine-induced long-lasting enhancement of synaptic transmission: role of transporters. J Physio 550:911–919Google Scholar
  44. Selbach O, Brown RE, Haas HL (1997) Long-term increase of hippocampal excitability by histamine and cyclic AMP. Neuropharmacology 36:1539–1548PubMedCrossRefGoogle Scholar
  45. Takahashi K, Lin JS, Sakai K (2006) Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J Neurosci 26:10292–10298PubMedCrossRefGoogle Scholar
  46. Vorobjev VS, Sharonova IN, Walsh IB, Haas HL (1993) Histamine potentiates N-methyl-d-aspartate responses in acutely isolated hippocampal neurons. Neuron 11:837–844PubMedCrossRefGoogle Scholar
  47. Williams K (1994) Subunit-specific potentiation of recombinant N-methyl-d-aspartate receptors by histamine. Mol Pharmacol 46:531–541PubMedGoogle Scholar
  48. Xu J, Kang N, Jiang L, Nedergaard M, Kang J (2005) Activity-dependent long-term potentiation of intrinsic excitability in hippocampal CA1 pyramidal neurons. J Neurosci 25:1750–1760PubMedCrossRefGoogle Scholar
  49. Yanovsky Y, Haas HL (1998) Histamine increases the bursting activity of pyramidal cells in the CA3 region of mouse hippocampus. Neurosci Lett 240:110–112PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Aisa Chepkova
    • 1
  • Evgenij Yanovsky
    • 1
  • Regis Parmentier
    • 2
  • Hiroshi Ohtsu
    • 3
  • Helmut L. Haas
    • 1
  • Jian-Sheng Lin
    • 2
  • Olga A. Sergeeva
    • 1
  1. 1.Department of NeurophysiologyHeinrich-Heine-UniversitätDüsseldorfGermany
  2. 2.Integrative Physiology of Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM-U1028/CNRS-UMR5292, Claude Bernard UniversityLyon Cedex 08France
  3. 3.Department of Cellular PharmacologyTohoku University, School of MedicineSendaiJapan

Personalised recommendations