Cellular and Molecular Neurobiology

, Volume 31, Issue 5, pp 737–747 | Cite as

Modeling Pathogenesis of Huntington’s Disease with Inducible Neuroprogenitor Cells

  • G. Dong
  • J. M. Ferguson
  • A. J. Duling
  • R. G. Nicholas
  • D. Zhang
  • K. Rezvani
  • S. Fang
  • M. J. Monteiro
  • S. Li
  • X-J. Li
  • H. Wang
Original Research

Abstract

Huntington’s disease (HD) is caused by an abnormal expansion of CAG trinucleotide repeats encoding polyglutamine (polyQ) in the first exon of the huntingtin (htt) gene. Despite considerable efforts, the pathogenesis of HD remains largely unclear due to a paucity of models that can reliably reproduce the pathological characteristics of HD. Here, we report a neuronal cell model of HD using the previously established tetracycline regulated rat neuroprogenitor cell line, HC2S2. Stable expression of enhanced green fluorescence protein tagged htt exon 1 (referred to as 28Q and 74Q, respectively) in the HC2S2 cells did not affect rapid neuronal differentiation. However, compared to the cells expressing wild type htt, the cell line expressing mutant htt showed an increase in time-dependent cell death and neuritic degeneration, and displayed increased vulnerability to oxidative stress. Increased protein aggregation during the process of neuronal aging or when the cells were exposed to oxidative stress reagents was detected in the cell line expressing 74Q but not in its counterpart. These results suggest that the neuroprogenitor cell lines mimic the major neuropathological characteristics of HD and may provide a useful tool for studying the neuropathogenesis of HD and for high throughput screening of therapeutic compounds.

Keywords

Huntington’s disease Pathogenesis Huntingtin Polyglutamine Neuron Neuroprogenitor 

References

  1. Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431:805–810PubMedCrossRefGoogle Scholar
  2. Asahi M, Hoshimaru M, Hojo M, Matsuura N, Kikuchi H, Hashimoto N (1998) Induction of the N-methyl-d-aspartate receptor subunit 1 in the immortalized neuronal progenitor cell line HC2S2 during differentiation into neurons. J Neurosci Res 52:699–708PubMedCrossRefGoogle Scholar
  3. Bates G (2003) Huntingtin aggregation and toxicity in Huntington’s disease. Lancet 361:1642–1644PubMedCrossRefGoogle Scholar
  4. Bates G, Harper P, Jones L (2002) Huntington’s disease, 3rd edn. Oxford University Press, OxfordGoogle Scholar
  5. Beal MF (2000) Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci 23:298–304PubMedCrossRefGoogle Scholar
  6. Benn CL, Sun T, Sadri-Vakili G, McFarland KN, DiRocco DP, Yohrling GJ, Clark TW, Bouzou B, Cha JH (2008) Huntingtin modulates transcription, occupies gene promoters in vivo, and binds directly to DNA in a polyglutamine-dependent manner. J Neurosci 28:10720–10733PubMedCrossRefGoogle Scholar
  7. Browne SE, Beal MF (2004) The energetics of Huntington’s disease. Neurochem Res 29:531–546PubMedCrossRefGoogle Scholar
  8. Browne SE, Ferrante RJ, Beal MF (1999) Oxidative stress in Huntington’s disease. Brain Pathol 9:147–163PubMedCrossRefGoogle Scholar
  9. Dai Y, Dudek NL, Li Q, Fowler SC, Muma NA (2009) Striatal expression of a calmodulin fragment improved motor function, weight loss, and neuropathology in the R6/2 mouse model of Huntington’s disease. J Neurosci 29:11550–11559PubMedCrossRefGoogle Scholar
  10. Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90:537–548PubMedCrossRefGoogle Scholar
  11. Gloeckner CJ, Boldt K, Schumacher A, Ueffing M (2009) Tandem affinity purification of protein complexes from mammalian cells by the Strep/FLAG (SF)-TAP tag. Methods Mol Biol 564:359–372PubMedCrossRefGoogle Scholar
  12. Goswami A, Dikshit P, Mishra A, Mulherkar S, Nukina N, Jana NR (2006) Oxidative stress promotes mutant huntingtin aggregation and mutant huntingtin-dependent cell death by mimicking proteasomal malfunction. Biochem Biophys Res Commun 342:184–190PubMedCrossRefGoogle Scholar
  13. Graham RK, Pouladi MA, Joshi P, Lu G, Deng Y, Wu NP, Figueroa BE, Metzler M, Andre VM, Slow EJ et al (2009) Differential susceptibility to excitotoxic stress in YAC128 mouse models of Huntington disease between initiation and progression of disease. J Neurosci 29:2193–2204PubMedCrossRefGoogle Scholar
  14. Hoshimaru M, Ray J, Sah DW, Gage FH (1996) Differentiation of the immortalized adult neuronal progenitor cell line HC2S2 into neurons by regulatable suppression of the v-myc oncogene. Proc Natl Acad Sci USA 93:1518–1523PubMedCrossRefGoogle Scholar
  15. Jeitner TM, Pinto JT, Krasnikov BF, Horswill M, Cooper AJ (2009) Transglutaminases and neurodegeneration. J Neurochem 109(Suppl 1):160–166PubMedCrossRefGoogle Scholar
  16. Li H, Li SH, Johnston H, Shelbourne PF, Li XJ (2000) Amino-terminal fragments of mutant huntingtin show selective accumulation in striatal neurons and synaptic toxicity. Nat Genet 25:385–389PubMedCrossRefGoogle Scholar
  17. Li H, Li SH, Yu ZX, Shelbourne P, Li XJ (2001) Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington’s disease mice. J Neurosci 21:8473–8481PubMedGoogle Scholar
  18. Li XJ, Friedman M, Li S (2007) Interacting proteins as genetic modifiers of Huntington disease. Trends Genet 23:531–533PubMedCrossRefGoogle Scholar
  19. Lombardi MS, Jaspers L, Spronkmans C, Gellera C, Taroni F, Di Maria E, Donato SD, Kaemmerer WF (2009) A majority of Huntington’s disease patients may be treatable by individualized allele-specific RNA interference. Exp Neurol 217:312–319PubMedCrossRefGoogle Scholar
  20. McGuire JR, Rong J, Li SH, Li XJ (2006) Interaction of Huntingtin-associated protein-1 with kinesin light chain: implications in intracellular trafficking in neurons. J Biol Chem 281:3552–3559PubMedCrossRefGoogle Scholar
  21. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60PubMedCrossRefGoogle Scholar
  22. Narain Y, Wyttenbach A, Rankin J, Furlong RA, Rubinsztein DC (1999) A molecular investigation of true dominance in Huntington’s disease. J Med Genet 36:739–746PubMedGoogle Scholar
  23. Ouimet CC, Miller PE, Hemmings HC Jr, Walaas SI, Greengard P (1984) DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions III. Immunocytochemical localization. J Neurosci 4:111–124PubMedGoogle Scholar
  24. Rosenstock TR, Bertoncini CR, Teles AV, Hirata H, Fernandes MJ, Smaili SS (2010) Glutamate-induced alterations in Ca2+ signaling are modulated by mitochondrial Ca2+ handling capacity in brain slices of R6/1 transgenic mice. Eur J Neurosci 32:60–70PubMedCrossRefGoogle Scholar
  25. Rubinsztein DC, Wyttenbach A, Rankin J (1999) Intracellular inclusions, pathological markers in diseases caused by expanded polyglutamine tracts? J Med Genet 36:265–270PubMedGoogle Scholar
  26. Seo H, Sonntag KC, Isacson O (2004) Generalized brain and skin proteasome inhibition in Huntington’s disease. Ann Neurol 56:319–328PubMedCrossRefGoogle Scholar
  27. Stack EC, Matson WR, Ferrante RJ (2008) Evidence of oxidant damage in Huntington’s disease: translational strategies using antioxidants. Ann N Y Acad Sci 1147:79–92PubMedCrossRefGoogle Scholar
  28. Trettel F, Rigamonti D, Hilditch-Maguire P, Wheeler VC, Sharp AH, Persichetti F, Cattaneo E, MacDonald ME (2000) Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cells. Hum Mol Genet 9:2799–2809PubMedCrossRefGoogle Scholar
  29. van Roon-Mom WM, Pepers BA, t Hoen PA, Verwijmeren CA, den Dunnen JT, Dorsman JC, van Ommen GB (2008) Mutant huntingtin activates Nrf2-responsive genes and impairs dopamine synthesis in a PC12 model of Huntington’s disease. BMC Mol Biol 9:84PubMedCrossRefGoogle Scholar
  30. Vonsattel JP, DiFiglia M (1998) Huntington disease. J Neuropathol Exp Neurol 57:369–384PubMedCrossRefGoogle Scholar
  31. Walker FO (2007) Huntington’s disease. Semin Neurol 27:143–150PubMedCrossRefGoogle Scholar
  32. Wang H, Monteiro MJ (2007) Ubiquilin interacts and enhances the degradation of expanded-polyglutamine proteins. Biochem Biophys Res Commun 360:423–427PubMedCrossRefGoogle Scholar
  33. Wang H, Yu SW, Koh DW, Lew J, Coombs C, Bowers W, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2004a) Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death. J Neurosci 24:10963–10973PubMedCrossRefGoogle Scholar
  34. Wang WW, Cao R, Rao ZR, Chen LW (2004b) Differential expression of NMDA and AMPA receptor subunits in DARPP-32-containing neurons of the cerebral cortex, hippocampus and neostriatum of rats. Brain Res 998:174–183PubMedCrossRefGoogle Scholar
  35. Wang H, Lim PJ, Yin C, Rieckher M, Vogel BE, Monteiro MJ (2006) Suppression of polyglutamine-induced toxicity in cell and animal models of Huntington’s disease by ubiquilin. Hum Mol Genet 15:1025–1041PubMedCrossRefGoogle Scholar
  36. Wang J, Wang CE, Orr A, Tydlacka S, Li SH, Li XJ (2008) Impaired ubiquitin-proteasome system activity in the synapses of Huntington’s disease mice. J Cell Biol 180:1177–1189PubMedCrossRefGoogle Scholar
  37. Wang H, Lim PJ, Karbowski M, Monteiro MJ (2009) Effects of overexpression of huntingtin proteins on mitochondrial integrity. Hum Mol Genet 18:737–752PubMedCrossRefGoogle Scholar
  38. Wernig M, Tucker KL, Gornik V, Schneiders A, Buschwald R, Wiestler OD, Barde YA, Brustle O (2002) Tau EGFP embryonic stem cells: an efficient tool for neuronal lineage selection and transplantation. J Neurosci Res 69:918–924PubMedCrossRefGoogle Scholar
  39. Wyttenbach A, Sauvageot O, Carmichael J, Diaz-Latoud C, Arrigo AP, Rubinsztein DC (2002) Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum Mol Genet 11:1137–1151PubMedCrossRefGoogle Scholar
  40. Young AB (2003) Huntingtin in health and disease. J Clin Invest 111:299–302PubMedGoogle Scholar
  41. Zhou H, Cao F, Wang Z, Yu ZX, Nguyen HP, Evans J, Li SH, Li XJ (2003) Huntingtin forms toxic NH2-terminal fragment complexes that are promoted by the age-dependent decrease in proteasome activity. J Cell Biol 163:109–118PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • G. Dong
    • 1
  • J. M. Ferguson
    • 1
  • A. J. Duling
    • 2
  • R. G. Nicholas
    • 2
  • D. Zhang
    • 1
  • K. Rezvani
    • 1
  • S. Fang
    • 3
  • M. J. Monteiro
    • 3
  • S. Li
    • 4
  • X-J. Li
    • 4
  • H. Wang
    • 1
  1. 1.Division of Basic Biomedical Sciences, Sanford School of MedicineUniversity of South DakotaVermillionUSA
  2. 2.Department of BiologyUniversity of South DakotaVermillionUSA
  3. 3.Center for Biomedical Engineering and TechnologyUniversity of MarylandBaltimoreUSA
  4. 4.Department of Human GeneticsEmory University School of MedicineAtlantaUSA

Personalised recommendations