Cellular and Molecular Neurobiology

, Volume 31, Issue 5, pp 701–714 | Cite as

Electrophysiological and Structural Aspects in the Frontal Cortex After the Bee (Apis mellifera) Venom Experimental Treatment

  • Adrian Florea
  • Constantin Puică
  • Mihaela Vinţan
  • Ileana Benga
  • Constantin Crăciun
Original Research


The aim of this study is to evaluate the bioelectrical and structural–functional changes in frontal cortex after the bee venom (BV) experimental treatments simulating both an acute envenomation and a subchronic BV therapy. Wistar rats were subcutaneously injected once with three different BV doses: 700 μg/kg (T1 group), 2100 μg/kg (T3 group), and 62 mg/kg (sublethal dose—in TSL group), and repeated for 30 days with the lowest dose (700 μg/kg—in TS group). BV effects were assessed by electrophysiological, histological, histochemical, and ultrastructural methods. Single BV doses produced discharges of negative and biphasic sharp waves, and epileptiform spike-wave complexes. The increasing frequency of these elements suggested a dose-dependent neuronal hyperexcitation or irritation. As compared to the lower doses, the sublethal dose was responsible for a pronounced toxic effect, confirmed by ultrastructural data in both neurons and glial cells that underwent extensive, irreversible changes, triggering the cellular death. Subchronic BV treatment in TS group resulted in a slower frequency and increased amplitude of cortical activity suggesting neuronal loss. However, neurons were still stimulated by the last BV dose. Structural–functional data showed a reduced cellular density in frontal cortex of animals in this group, while the remaining neurons displayed both specific (stimulation of neuronal activity) and unspecific modifications (moderate alterations to necrotic phenomena). Molecular mechanisms involved in BV interactions with the nervous tissue are also discussed. We consider all these data very important for clinicians who manage patients with multiple bee stings, or who intend to set an appropriate BV therapy.


Bee venom Experimental envenomation Frontal cortex Brain electrophysiology Transmission electron microscopy Cellular death 



Thanks are due to Mr. Savian Cruceru who kindly let us to collect the bee venom in his apiary. Work funded by the National University Research Council (Grant A62/2004).


  1. Azevedo-Marques MM, Cupo P, Hering SE, Costa R, Ferreira DB (2001) Clinical-laboratory and therapeutic aspects of envenomation caused by africanized bees. J Venom Anim Toxins 5:154–171Google Scholar
  2. Bacci A, Sancini G, Verderio C, Armano S, Pravettoni E, Fesce R, Franceschetti S, Matteoli M (2002) Block of glutamate-glutamine cycle between astrocytes and neurons inhibits epileptiform activity in hippocampus. J Neurophysiol 88:2302–2310PubMedCrossRefGoogle Scholar
  3. Banks BEC, Shipolini RA (1986) Chemistry and pharmacology of honey-bee venom. In: Piek T (ed) Venoms of the Hymenoptera: biochemical, pharmacological and behavioural aspects. Academic Press, Orlando, pp 329–416Google Scholar
  4. Beck BF (1935) Bee venom therapy—bee venom, its nature and its effect on arthritic and rheumatoid conditions. D. Appleton-Century Company, New YorkGoogle Scholar
  5. Berg OG, Gelb MH, Tsai MD, Jain MK (2001) Interfacial enzymology: the secreted phospholipase A2-paradigm. Chem Rev 101:2613–2653PubMedCrossRefGoogle Scholar
  6. Besthorn C, Zerfass R, Geiger-Kabisch C, Sattel H, Daniel S, Schreiter-Gasser U, Frstl H (1997) Discrimination of Alzheimer’s disease and normal aging by EEG data. Electroencephalogr Clin Neurophysiol 103:241–248PubMedCrossRefGoogle Scholar
  7. Blatz AC, Magleby KL (1986) Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature 323:718–720PubMedCrossRefGoogle Scholar
  8. Bousquet J, Lockey R, Malling HJ, Alvarez-Cuesta E, Canonica GW, Chapman MD, Creticos PJ, Dayer JM, Durham SR, Demoly P, Goldstein RJ, Ishikawa T, Ito K, Kraft D, Lambert PH, Løwenstein H, Mūller U, Norman PS, Reisman RE, Valenta R, Valovirta E, Yssel H (1998) Allergen immunotherapy: therapeutic vaccines for allergic diseases. Ann Allerg Asthma Immunol 81:401–405CrossRefGoogle Scholar
  9. Bresolin NL, Carvalho FLC, Goes JEC, Fernandes VR, Barotto AM (2002) Acute renal failure following massive attack by Africanized bee stings. Pediatr Nephrol 17:625–627PubMedCrossRefGoogle Scholar
  10. Broadman J (1997) Bee venom–the natural curative for arthritis and rheumatism. Health Resources Press, Silver SpringGoogle Scholar
  11. Brown DR (1999) Neurons depend on astrocytes in a coculture system for protection from glutamate toxicity. Mol Cell Neurosci 13:379–389PubMedCrossRefGoogle Scholar
  12. Calupca MA, Prior C, Merriam LA, Hendricks GM, Parsons RL (2001) Presynaptic function is altered in snake K+-depolarized motor nerve terminals containing compromised mitochondria. J Physiol 532:217–227PubMedCrossRefGoogle Scholar
  13. Cavazzuti GB, Cappella L, Nalin A (1980) Longitudinal study of epileptiform patterns in normal children EEG. Epilepsia 21:43–55PubMedCrossRefGoogle Scholar
  14. Chang BS, Lowenstein DH (2003) Mechanisms of disease: epilepsy. New Engl J Med 349:1257–1266PubMedCrossRefGoogle Scholar
  15. Chen J, Lariviere WR (2010) The nociceptive and anti-nociceptive effects of bee venom injection and therapy: a double-edged sword. Prog Neurobiol 92:151–183PubMedCrossRefGoogle Scholar
  16. Clapp LE, Klette KL, DeCoster MA, Bernton E, Petras JM, Dave JR, Laskosky MS, Smallridge RC, Tortella FC (1995) Phospholipase A2-induced neurotoxicity in vitro and in vivo in rats. Brain Res 693:101–111PubMedCrossRefGoogle Scholar
  17. Csordas A, Mazlo M, Gallyas F (2003) Recovery versus death of dark (compacted) neurons in non-impaired parenchymal environment: light and electron microscopic observations. Acta Neuropathol 106:37–49PubMedGoogle Scholar
  18. Czigler B, Csikos D, Hidasi Z, Anna Gaal Z, Csibri E, Kiss E, Salacz P, Molnar M (2008) Quantitative EEG in early Alzheimer’s disease patients—power spectrum and complexity features. Int J Psychophysiol 68:75–80PubMedCrossRefGoogle Scholar
  19. Darzynkiewicz A, Traganos F, Sharpless T, Melamed MR (1975) Thermal denaturation of DNA in situ as studied by acridine orange staining and automated cytofluorometry. Exp Cell Res 90:411–428PubMedCrossRefGoogle Scholar
  20. Dawson CR (1978) The interaction of bee melittin with lipid bilayer membranes. Biochim Biophys Acta 510:75–86PubMedCrossRefGoogle Scholar
  21. De Lima PR, Brochetto-Braga MR (2003) Hymenoptera venom review focusing on Apis mellifera. J Venom Anim Toxins Incl Trop Dis 9:149–162CrossRefGoogle Scholar
  22. Deschepper CF (1998) Peptide receptors on astrocytes. Front Neuroendocrinol 19:20–46PubMedCrossRefGoogle Scholar
  23. Deshmukh LS, Borse BT (1996) Acute renal failure following multiple stings by honeybees. Indian Pediatr 33:781–783PubMedGoogle Scholar
  24. Dux E, Joó F (1982) Effects of histamine on brain capillaries. Exp Brain Res 47:252–258PubMedCrossRefGoogle Scholar
  25. Empson RM, Jefferys JGR (2001) Ca2+ entry through L-type Ca2+ channels helps terminate epileptiform activity by activation of a Ca2+ dependent afterhyperpolarisation in hippocampal CA3. Neuroscience 102:297–306PubMedCrossRefGoogle Scholar
  26. Evenson D, Darzynkiewicz Z (1990) Acridine orange-induced precipitation of mouse testicular sperm cell DNA reveals new patterns of chromatin structure. Exp Cell Res 187:328–334PubMedCrossRefGoogle Scholar
  27. Farooqui AA (2009) Janus face of phospholipase A2: role of phospholipase A2 in neural cell survival and death. In: Hot topics in neural membrane lipidology. Springer, New York, pp 1–40. doi: 10.1007/978-0-387-09693-3
  28. Florea A (2004) Veninul de albine—compus complex cu multiple efecte. Apimondia, BucureştiGoogle Scholar
  29. Florea A, Crăciun C (2004) Neuromodulatori din veninul de albine. Farmacia 52:23–34Google Scholar
  30. Florea A, Puică C, Gherghel P, Oprea MC, Crăciun C (2003) Efecte morfo-fiziologice produse la nivelul timusului prin administrarea subcronică a veninului de albine. Ann Soc Nat Biol Cell 8:169–178Google Scholar
  31. Florea A, Puică C, Crăciun C (2009) Reactions of rat hypothalamus to very high doses of bee venom, an histologic and ultrastructural study. Ann Rom Soc Cell Biol 14:109–117Google Scholar
  32. Fonseca LC, Tedrus GM, Letro GH, Bossoni AS (2009) Dementia, mild cognitive impairment and quantitative EEG in patients with Parkinson’s disease. Clin EEG Neurosci 40:168–172PubMedGoogle Scholar
  33. Forestier F, Palmer M (1984) Bee venom in rheumatology—an experiment performed with 1, 600 cases. Apiacta 19:19–22Google Scholar
  34. Forster J, Urbanek R (1979) Enzyme-linked immunosorbent assay of allergen-specific IgG antibodies in bee sting allergic patients hyposensitized with pure bee venom. Klin Wochenschr 57:421–422PubMedCrossRefGoogle Scholar
  35. França FOS, Benvenuti LA, Fan HW, Dos Santos DR, Hain SH, Picchi-Martins FR, Cardoso JLC, Kamiguti AS, Theakston RDG, Warrell DA (1994) Severe and fatal mass attacks by “killer” bees (Africanized honey bees—Apis mellifera scutellata) in Brazil: clinicopathological studies with measurement of serum venom concentration. Q J Med 87:269–282PubMedGoogle Scholar
  36. Gallyas F, Gűldner FH, Zoltay G, Wolff JR (1990) Golgi-like demonstration of “dark” neurons with an argyrophil III method for experimental neuropathology. Acta Neuropathol 79:620–628PubMedCrossRefGoogle Scholar
  37. Gandolfo G, Lambeau G, Lazdunski M, Gottesmann C (1996) Effects on behaviour and EEG of single chain phospholipases A2 from snake and bee venoms injected into rat brain: search for a functional antagonism. Pharmacol Toxicol 78:341–347PubMedCrossRefGoogle Scholar
  38. Graft DF (1996) Stinging insect hypersensitivity in children. Curr Opin Pediatr 8:597–600PubMedCrossRefGoogle Scholar
  39. Gresser O, Hein A, Riese S, Régnier-Vigouroux A (2000) Tumor necrosis factor alpha and interleukin-1 alpha inhibit through different pathways interferon-gamma-induced antigen presentation, processing and MHC class II surface expression on astrocytes, but not on microglia. Cell Tissue Res 300:373–382PubMedCrossRefGoogle Scholar
  40. Guerrini R, Dravet C, Genton P, Bureau M, Bonanni P, Ferrari AR, Roger J (1995) Idiopathic photosensitive occipital lobe epilepsy. Epilepsia 36:883–891PubMedCrossRefGoogle Scholar
  41. Guettiter C, Ziol M (1998) L’apoptose dans le foie normal et pathologique. Gastroen Clin Biol 22:381–393Google Scholar
  42. Habermann E (1968) Chimie, pharmacologie et toxicologie du venin. In: Chauvin R (ed) Traité de biologie de l’abeille. Masson, Paris, pp 363–387Google Scholar
  43. Habermann E (1972) Bee and wasp venoms. The biochemistry and pharmacology of their peptides and enzymes are reviewed. Science 177:314–322PubMedCrossRefGoogle Scholar
  44. Habermann E (1984) Apamin. Pharmacol Ther 25:255–270PubMedCrossRefGoogle Scholar
  45. Hagler HK (2007) Ultramicrotomy for biological electron microscopy. In: Kuo J (ed) Electron microscopy: methods and protocols, 2nd edn. Humana Press, Totowa, pp 67–96Google Scholar
  46. Hayat MA (2000) Principles and techniques of electron microscopy—biological applications, 4th edn. Cambridge University Press, CambridgeGoogle Scholar
  47. Huh JE, Baek YH, Lee MH, Choi DY, Park DS, Lee JD (2010) Bee venom inhibits tumor angiogenesis and metastasis by inhibiting tyrosine phosphorylation of VEGFR-2 in LLC-tumor-bearing mice. Cancer Lett 292:98–110PubMedCrossRefGoogle Scholar
  48. Hwa GGC, Avoli M (1991) Cesium potentiates epileptiform activities induced by bicuculline methiodide in rat neocortex maintained in vitro. Epilepsia 32:747–754PubMedCrossRefGoogle Scholar
  49. Ip SW, Liao SS, Lin SY, Lin JP, Yang JS, Lin ML, Chen GW, Lu HF, Lin MW, Han SM, Chung JG (2008a) The role of mitochondria in bee venom-induced apoptosis in human breast cancer MCF7 cells. In Vivo 22:237–245PubMedGoogle Scholar
  50. Ip SW, Lin JP, Kuo HM, Liu KC, Hsu SC, Yang JS, Dueyang M, Chiu TH, Han SM, Chung JG (2008b) Bee venom induced cell cycle arrest and apoptosis in human cervical epidermoid carcinoma Ca Ski cells. Anticancer Res 28:833–842PubMedGoogle Scholar
  51. Jones RG, Corteling RL, To HP, Bhogal G, Landon J (1999) A Novel Fab-based antivenom for the treatment of mass bee attacks. Am J Trop Med Hyg 61:361–366PubMedGoogle Scholar
  52. Jortner BS (2006) The return of the dark neuron. A histological artifact complicating contemporary neurotoxicologic evaluation. Neurotoxicology 27:628–634PubMedCrossRefGoogle Scholar
  53. Kang SS, Pak SC, Choi SH (2002) The effect of whole bee venom on arthritis. Am J Chin Med 30:73–81PubMedCrossRefGoogle Scholar
  54. Kherani ZS, Auer RN (2008) Pharmacologic analysis of the mechanism of dark neuron production in cerebral cortex. Acta Neuropathol 116:447–452PubMedCrossRefGoogle Scholar
  55. Klinghardt DK (1990) Bee venom therapy for chronic pain. J Neurol Orth Med S 11:195–197Google Scholar
  56. Köhler M, Hirschberg B, Bond CT, Kinzie JM, Marrion NV, Maylie J, Adelman JP (1996) Small-conductance, calcium-activated potassium channels from mammalian brain. Science. 273:1709–1714PubMedCrossRefGoogle Scholar
  57. Kwon YB, Lee HJ, Han HJ, Mar WC, Kang SK, Yoon OB, Beitz AJ, Lee JH (2002) The water-soluble fraction of bee venom produces antinociceptive and anti-inflammatory effects on rheumatoid arthritis in rats. Life Sci 71:191–204PubMedCrossRefGoogle Scholar
  58. Lee JD, Kim SY, Kim TW, Lee SH, Yang HI, Lee DI, Lee IH (2004) Anti-inflammatory effect of bee venom on type II collagen-induced arthritis. Am J Chin Med 32:361–367PubMedCrossRefGoogle Scholar
  59. Lee MS, Pittler MH, Shin BC, Kong JC, Ernst E (2008) Bee venom acupuncture for musculoskeletal pain: a review. J Pain 9:289–297PubMedCrossRefGoogle Scholar
  60. Lois C, Alvarez-Buylla A (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci USA 90:2074–2077PubMedCrossRefGoogle Scholar
  61. Lovejoy LP, Shepard PD, Canavier CC (2001) Apamin-induced irregular firing in vitro and irregular single-spike firing observed in vivo in dopamine neurons is chaotic. Neuroscience 104:829–840PubMedCrossRefGoogle Scholar
  62. Maher S, McClean S (2008) Melittin exhibits necrotic cytotoxicity in gastrointestinal cells which is attenuated by cholesterol. Biochem Pharmacol 75:1104–1114PubMedCrossRefGoogle Scholar
  63. Mitchell A (2006) Killer bees, a case study. Crit Care Nurse 26:23–31PubMedGoogle Scholar
  64. Mourre C, Nehlig A, Lazdunski M (1988) Cerebral glucose utilization after administration of apamin, a toxin active on Ca2+-dependent K+ channels. Brain Res 451:274–284PubMedCrossRefGoogle Scholar
  65. Müller U (1979) Immunotherapy in bee sting hypersensivity. Bee venom versus whole body extract. Allergy 34:369–378PubMedCrossRefGoogle Scholar
  66. Mureşan E, Gaboreanu M, Bogdan AT, Baba AI (1974) Tehnici de histologie normală şi patologică. Ed. Ceres, BucureştiGoogle Scholar
  67. Nicolas JP, Lin Y, Lambeau G, Ghomashchi F, Lazdunski F, Gelb MH (1997) Localization of structural elements of bee venom phospholipase A2 involved in N-type receptor binding and neurotoxicity. J Biol Chem 272:7173–7181PubMedCrossRefGoogle Scholar
  68. Oh MM, Power JM, Thompson LT, Disterhoft JF (2000) Apamin increases excitability of CA1 hippocampal pyramidal neurons. Neurosci Res Commun 27:135–141CrossRefGoogle Scholar
  69. Ohki S (1994) Interaction of melittin with lipid membranes. Biochim Biophys Acta 1194:223–232PubMedCrossRefGoogle Scholar
  70. Pan H, Myerson JW, Ivashyna O, Soman NR, Marsh JN, Hood JL, Lanza GM, Schlesinger PH, Wickline SA (2010) Lipid membrane editing with peptide cargo linkers in cells and synthetic nanostructures. FASEB J 24:2928–2937PubMedCrossRefGoogle Scholar
  71. Park HJ, Lee SH, Son DJ, Oh KW, Kim KH, Song HS, Kim GJ, Oh GT, Yoon DY, Hong JT (2004) Antiarthritic effect of bee venom—inhibition of inflammation mediator generation by suppression of NF-kappa B through interaction with the p50 subunit. Arthritis Rheum 50:3504–3515PubMedCrossRefGoogle Scholar
  72. Phillis JW, O’Regan MH (2004) A potentially critical role of phospholipases in central nervous system ischemic, traumatic, and neurodegenerative disorders. Brain Res Rev 44:13–47PubMedCrossRefGoogle Scholar
  73. Quesney LF, Gloor P (1978) Generalized penicillin epilepsy in the cat: correlation between electrophysiological data and distribution of 14C-penicillin in the brain. Epilepsia 19:35–45PubMedCrossRefGoogle Scholar
  74. Robertson ML (1998) Multiple bee stings. Emerg Med 10:151–155Google Scholar
  75. Sarker MH, Easton AS, Fraser PA (1998) Regulation of cerebral microvascular permeability by histamine in the anaesthetized rat. J Physiol 507:909–918PubMedCrossRefGoogle Scholar
  76. Schmidt JO (1986) Allergy to hymenoptera venoms. In: Piek T (ed) Venoms of the hymenoptera. Biochemical pharmacological and behavioural aspects. Academic Press, Orlando, pp 509–546Google Scholar
  77. Schmidt JO (1995) Toxinology of venoms from the honeybee genus Apis. Toxicon 33:917–927PubMedCrossRefGoogle Scholar
  78. Schmidt JO (1996) Bee products: chemical composition and application. In: Mizrahi A, Lensky Y (eds) Bee products. Plenum Press, New York, pp 15–26Google Scholar
  79. Schumacher MJ, Egen NB, Turner D (1996) Neutralization of bee venom lethality by immune serum antibodies. Am J Trop Med Hyg 55:197–201PubMedGoogle Scholar
  80. Seagar MJ, Deprez P, Martin-Moutot N, Couraud F (1987) Detection and photoaffinity labeling of the Ca2+-activated K+ channel-associated apamin receptor in cultured astrocytes from rat brain. Brain Res 411:226–230PubMedCrossRefGoogle Scholar
  81. Sicherer SH, Leung DYM (2009) Advances in allergic skin disease, anaphylaxis, and hypersensitivity reactions to foods, drugs, and insects in 2008. J Allergy Clin Immunol 123:319–327PubMedCrossRefGoogle Scholar
  82. Soikkeli R, Partanen R, Soininen H, Pääkkönen A, Riekkinen P Sr (1991) Slowing of EEG in Parkinson’s disease. Electroenceph Clin Neurophysiol 79:159–165PubMedCrossRefGoogle Scholar
  83. Soman NR, Baldwin SL, Hu G, Marsh JN, Lanza GM, Heuser JE, Arbeit JM, Wickline SA, Schlesinger PH (2009) Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. J Clin Invest 119:2830–2842PubMedCrossRefGoogle Scholar
  84. Son DJ, Lee JW, Lee YH, Song HS, Lee CK, Hong JT (2007) Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol Ther 115:246–270PubMedCrossRefGoogle Scholar
  85. Stach R, Kacz D (1977) Effect of combined dopaminergic and GABA-ergic stimulation on ouabain-induced epileptiform activity. Epilepsia 18:417–423PubMedCrossRefGoogle Scholar
  86. Steketee JD, Kalivas PWT (1990) Effect of microinjections of apamin into the A10 dopamine region of rats: a behavioral and neurochemical analysis. J Pharmacol Exp Ther 254:711–719PubMedGoogle Scholar
  87. Steriade M, Nunez A, Amzica F (1993) A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13:3252–3265PubMedGoogle Scholar
  88. Tu WC, Wu CC, Hsieh HL, Chen CY, Hsu SL (2008) Honeybee venom induces calcium-dependent but caspase-independent apoptotic cell death in human melanoma A2058 cells. Toxicon 52(2):318–329PubMedCrossRefGoogle Scholar
  89. Vetter RS, Visscher PK (1998) Bites and stings of medically important venomous arthropods. Int J Dermatol 37:481–496PubMedCrossRefGoogle Scholar
  90. Vetter RS, Visscher PK, Camazine S (1999) Mass envenomations by honey bees and wasps. West J Med 170:223–227PubMedGoogle Scholar
  91. Watt IM (2003) The principles and practice of electron microscopy, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  92. Yagami T, Ueda K, Asakura K, Hata S, Kuroda T, Sakaeda T, Takasu N, Tanaka K, Gemba T, Hori Y (2002) Human group IIA secretory phospholipase A2 induces neuronal cell death via apoptosis. Mol Pharmacol 61:114–126PubMedCrossRefGoogle Scholar
  93. Yamazaki D, Aoyama M, Ohya S, Muraki K, Asai K, Imaizumi Y (2006) Novel functions of small conductance Ca2+-activated K+ channel in enhanced cell proliferation by ATP in brain endothelial cells. J Biol Chem 281:38430–38439PubMedCrossRefGoogle Scholar
  94. Yan LH, Hou JF, Liu MG, Li MM, Cui XY, Lu ZM, Zhang FK, An YY, Shi L, Chen J (2009) Imbalance between excitatory and inhibitory amino acids at spinal level is associated with maintenance of persistent pain-related behaviors. Pharmacol Res 59:290–299PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Adrian Florea
    • 1
  • Constantin Puică
    • 2
  • Mihaela Vinţan
    • 3
  • Ileana Benga
    • 3
  • Constantin Crăciun
    • 4
  1. 1.Department of Cell and Molecular Biology“Iuliu Haţieganu” University of Medicine and PharmacyCluj-NapocaRomania
  2. 2.Institute of Biological ResearchCluj-NapocaRomania
  3. 3.Department of Paediatric Neurology“Iuliu Haţieganu” University of Medicine and PharmacyCluj-NapocaRomania
  4. 4.Electron Microscopy Center“Babeş-Bolyai” UniversityCluj-NapocaRomania

Personalised recommendations