Cellular and Molecular Neurobiology

, Volume 30, Issue 2, pp 317–326 | Cite as

Experimental Evidence that Phenylalanine Provokes Oxidative Stress in Hippocampus and Cerebral Cortex of Developing Rats

  • Carolina G. Fernandes
  • Guilhian Leipnitz
  • Bianca Seminotti
  • Alexandre U. Amaral
  • Ângela Zanatta
  • Carmen R. Vargas
  • Carlos S. Dutra Filho
  • Moacir WajnerEmail author
Original Research


High levels of phenylalanine (Phe) are the biochemical hallmark of phenylketonuria (PKU), a neurometabolic disorder clinically characterized by severe mental retardation and other brain abnormalities, including cortical atrophy and microcephaly. Considering that the pathomechanisms leading to brain damage and particularly the marked cognitive impairment in this disease are poorly understood, in the present study we investigated the in vitro effect of Phe, at similar concentrations as to those found in brain of PKU patients, on important parameters of oxidative stress in the hippocampus and cerebral cortex of developing rats. We found that Phe induced in vitro lipid peroxidation (increase of TBA-RS values) and protein oxidative damage (sulfhydryl oxidation) in both cerebral structures. Furthermore, these effects were probably mediated by reactive oxygen species, since the lipid oxidative damage was totally prevented by the free radical scavengers α-tocopherol and melatonin, but not by L-NAME, a potent inhibitor of nitric oxide synthase. Accordingly, Phe did not induce nitric oxide synthesis, but significantly decreased the levels of reduced glutathione (GSH), the major brain antioxidant defense, in hippocampus and cerebral cortex supernatants. Phe also reduced the thiol groups of a commercial GSH solution in a cell-free medium. We also found that the major metabolites of Phe catabolism, phenylpyruvate, phenyllactate and phenylacetate also increased TBA-RS levels in cerebral cortex, but to a lesser degree. The data indicate that Phe elicits oxidative stress in the hippocampus, a structure mainly involved with learning/memory, and also in the cerebral cortex, which is severely damaged in PKU patients. It is therefore presumed that this pathomechanism may be involved at least in part in the severe cognitive deficit and in the characteristic cortical atrophy associated with dysmyelination and leukodystrophy observed in this disorder.


Phenylalanine Phenylketonuria Oxidative stress Hippocampus Cerebral cortex 



This work was supported by grants from CNPq, PRONEX II, FAPERGS, PROPESQ/UFRGS, FINEP research grant Rede Instituto Brasileiro de Neurociência (IBN-Net) # 01.06.0842-00 and INCT-EN.


  1. Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145CrossRefPubMedGoogle Scholar
  2. Bauman ML, Kemper TL (1982) Morphologic and histoanatomic observations of the brain in untreated human phenylketonuria. Acta Neuropathol 58:55–63CrossRefPubMedGoogle Scholar
  3. Behl C, Moosmann B (2002a) Antioxidant neuroprotection in Alzheimer’s disease as preventive and therapeutic approach. Free Radic Biol Med 33:182–191CrossRefPubMedGoogle Scholar
  4. Behl C, Moosmann B (2002b) Oxidative nerve cell death in Alzheimer’s disease and stroke: antioxidants as neuroprotective compounds. Biol Chem 383:521–536CrossRefPubMedGoogle Scholar
  5. Berg D, Youdim MB (2006) Role of iron in neurodegenerative disorders. Top Magn Reson Imaging 17:5–17CrossRefPubMedGoogle Scholar
  6. Bickel H, Gerrard J, Hickmans EM (1953) Influence of phenylalanine intake on phenylketonuria. Lancet 265:812–813CrossRefPubMedGoogle Scholar
  7. Bird S, Miller NJ, Collins JE, Rice-Evans CA (1995) Plasma antioxidant capacity in two cases of tyrosinemia type 1: one case treated with NTBC. J Inherit Metab Dis 18:123–126CrossRefPubMedGoogle Scholar
  8. Bogdanov MB, Andreassen OA, Dedeoglu A, Ferrante RJ, Beal MF (2001) Increased oxidative damage to DNA in a transgenic mouse model of Huntington’s disease. J Neurochem 79:1246–1249CrossRefPubMedGoogle Scholar
  9. Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352PubMedGoogle Scholar
  10. Colome C, Sierra C, Vilaseca MA (2000) Congenital errors of metabolism: cause of oxidative stress? Med Clin 115:11–117Google Scholar
  11. Costabeber E, Kessler A, Dutra-Filho CS, Wyse ATS, Wajner M, Wannmacher CMD (2003) Hyperfenilalaninemia reduces creatine kinase activity in the cerebral cortex of rats. Int J Dev Neurosci 21:111–116CrossRefPubMedGoogle Scholar
  12. Darling G, Mathias P, O’Regan M, Naughten E (1992) Serum selenium levels in individuals on PKU diets. J Inherit Metab Dis 15:769–773CrossRefPubMedGoogle Scholar
  13. de Oliveira Marques F, Hagen ME, Pederzolli CD (2003) Glutaric acid induces oxidative stress in brain of young rats. Brain Res 964:153–158CrossRefPubMedGoogle Scholar
  14. Embury JE, Charron CE, Martynyuk A, Zori AG, Liu B, Ali SF, Rowland NE, Laipis PJ (2007) PKU is a reversible neurodegenerative process within the nigrostriatum that begins as early as 4 weeks of age in Path(enu2) mice. Brain Res 1127:136–150CrossRefPubMedGoogle Scholar
  15. Ercal N, Aykin-Burns N, Gurer-Orhan H, McDonald JD (2002) Oxidative stress in a phenylketonuria animal model. Free Radic Biol Med 32:906–911CrossRefPubMedGoogle Scholar
  16. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421CrossRefPubMedGoogle Scholar
  17. Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi EA (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266CrossRefPubMedGoogle Scholar
  18. Fighera MR, Bonini JS, de Oliveira TG, Frussa-Filho R, Dutra-Filho CS, Rubin MA, Mello CF (2003) GM1 ganglioside attenuates convulsions and thiobarbituric acid reactive substances production induced by the intraestriatal injection of methylmalonic acid. Int J Biochem Cell Biol 35:465–473CrossRefPubMedGoogle Scholar
  19. Følling A (1934) Über Ausscheidung von Phenylbrenztraubensäure in den Harn als Stoffwechseanomalie in Verbindung mit Imbezillität. Z Physiol Chem 227:169–176Google Scholar
  20. Fontella FU, Pulrolnik V, Gassen E, Wannmacher CMD, Klein AB, Wajner M, Dutra-Filho CS (2000) Propionic and l-methylmalonic acids induce oxidative stress in brain of young rats. Neuroreport 11:541–544CrossRefPubMedGoogle Scholar
  21. Glushakov AV, Dennis DM, Summers C, Seubert CN, Martynyuk AE (2003) l-Phenylalanine selectively depress currents at glutamatergic excitatory synapses. J Neurosci Res 72:116–124CrossRefPubMedGoogle Scholar
  22. Glushakov AV, Glushakova O, Varshney M, Bajpai LK, Summers C, Laipis PJ, Embury JE, Baker SP, Otero DH, Dennis DM, Seubert CN, Martynyuk AE (2005) Long-term changes in glutamatergic synaptic transmission in phenylketonuria. Brain 128:300–307CrossRefPubMedGoogle Scholar
  23. Hagen MEK, Pederzolli CD, Sgaravatti AM, Bridi R, Wajner M, Wannmacher CMD, Wyse ATS, Dutra-Filho CS (2002) Experimental hyperphenylalaninemia provokes oxidative stress in rat brain. Biochim Biophys Acta 1586:344–352Google Scholar
  24. Halliwell B, Gutteridge JMC (1996) Oxygen radicals and nervous system. Trends Neurosci 8:22–26CrossRefGoogle Scholar
  25. Halliwell B, Gutteridge JMC (2007) Measurement of reactive species. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine. Oxford University Press, Oxford, pp 268–340Google Scholar
  26. Hasselbalch S, Knudsen GM, Toft PB, Høgh P, Tedeschi E, Holm S, Videbaek C, Henriksen O, Lou HC, Paulson OB (1996) Cerebral glucose metabolism is decreased in white matter changes in patients with phenylketonuria. Pediatr Res 40:21–24CrossRefPubMedGoogle Scholar
  27. Hörster F, Schwab MA, Sauer SW, Pietz J, Hoffmann GF, Okun JG, Kölker S, Kins S (2006) Phenylalanine reduces synaptic density in mixed cortical cultures from mice. Pediatr Res 59:544–548CrossRefPubMedGoogle Scholar
  28. Huttenlocher PR (2000) The neuropathology of phenylketonuria: human and animal studies. Eur J Pediatr 159:S102–S106CrossRefPubMedGoogle Scholar
  29. Joseph B, Dyer CA (2003) Relationship between myelin production and dopamine synthesis in the PKU mouse brain. J Neurochem 86:615–626CrossRefPubMedGoogle Scholar
  30. Karelson E, Bogdanovic N, Garlind A, Winblad B, Zilmer K, Kullisaar T, Vihalemm T, Kairane C, Zilmer M (2001) The cerebrocortical areas in normal brain aging and Alzheimer’s disease: noticeable differences in the lipid peroxidation level and in antioxidant defense. Neurochem Res 26:353–361CrossRefPubMedGoogle Scholar
  31. Kölker S, Ahlemeyer B, Huhne R, Mayatepek E, Krieglstein J, Hoffmann GF (2001a) Potentiation of 3-hydroxyglutarate neurotoxicity following induction of astrocytic iNOS in neonatal rat hippocampal cultures. Eur J Neurosci 13:2115–2122CrossRefPubMedGoogle Scholar
  32. Kölker S, Ahlemeyer B, Krieglstein J, Hoffmann GF (2001b) Contribution of reactive oxygen species to 3-hydroxyglutarate neurotoxicity in primary neuronal cultures from chick embryo telencephalons. Pediatr Res 50:76–82CrossRefPubMedGoogle Scholar
  33. Kuhn DM, Aretha CW, Geddes TJ (1999) Peroxynitrite inactivation of tyrosine hydroxylase: mediation by sulfhydryl oxidation, not tyrosine nitration. J Neurosci 19:10289–10294PubMedGoogle Scholar
  34. Latini A, Scussiato K, Rosa RB, Leipnitz G, Llesuy S, Belló-Klein A, Dutra-Filho CS, Wajner M (2003a) Induction of oxidative stress by l-2-hydroxyglutaric acid in rat brain. J Neurosci Res 74:103–110CrossRefPubMedGoogle Scholar
  35. Latini A, Scussiato K, Rosa RB, Llesuy S, Belló-Klein A, Dutra-Filho CS, Wajner M (2003b) d-2-Hydroxyglutaric acid induces oxidative stress in cerebral córtex of young rats. Eur J Neurosci 17:2017–2022CrossRefPubMedGoogle Scholar
  36. Lowry OH, Rosebrough NJ, Lewis-Farr A, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  37. Mancuso C, Scapagini G, Currò D, Giuffrida Stella AM, De Marco C, Butterfield DA, Calabrese V (2007) Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front Biosci 12:1107–1123CrossRefPubMedGoogle Scholar
  38. Martinez-Cruz F, Pozo D, Osuna C, Espinar A, Marchante C, Guerrero JM (2002) Oxidative stress induced by phenylketonuria in the rat: prevention by melatonin, vitamin E and vitamin C. J Neurosci Res 69:550–558CrossRefPubMedGoogle Scholar
  39. Matalon R, Michals-Matalon K, Bhatia G, Burlina AB, Burlina AP, Braga C, Fiori L, Giovannini M, Grechanina E, Novikov P, Grady J, Tyring SK, Guttler F (2007) Double blind placebo control trial of large neutral amino acids in treatment of PKU: effect on blood phenylalanine. J Inherit Metab Dis 30:153–158CrossRefPubMedGoogle Scholar
  40. Méndez-Alvarez E, Soto-Otero R, Herminda-Ameijeiras A, López-Martín ME, Labandeira-García JL (2001) Effect of iron and manganese on hydroxyl radical production by 6-hydroxydopamine: mediation of antioxidants. Free Radic Biol Med 31:986–998CrossRefPubMedGoogle Scholar
  41. Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71CrossRefPubMedGoogle Scholar
  42. Möller HE, Ullrich K, Weglage J (2000) In vivo proton magnetic resonance spectroscopy in phenylketonuria. Eur J Pediatr 159:S121–S125CrossRefPubMedGoogle Scholar
  43. Möller HE, Weglage J, Bick U, Wiedermann D, Feldmann R, Ullrich K (2003) Brain imaging and proton magnetic resonance spectroscopy in patients with phenylketonuria. Pediatrics 112:1580–1583PubMedGoogle Scholar
  44. Moyano D, Vilaseca MA, Pineda M, Campistol J, Vernet A, Póo P, Artuch R, Sierra C (1997) Tocopherol in inborn errors of intermediary metabolism. Clin Chim Acta 263:147–155CrossRefPubMedGoogle Scholar
  45. Pardridge WM (1998) Blood–brain barrier carrier-mediated transport and brain metabolism of amino acids. Neurochem Res 23:635–644CrossRefPubMedGoogle Scholar
  46. Pérez-Severiano F, Rios C, Segovia J (2000) Striatal oxidative damage parallels the expression of a neurological phenotype in mice transgenic for the mutation of Huntington’s disease. Brain Res 862:234–237CrossRefPubMedGoogle Scholar
  47. Pietz J, Rupp A, Ebinger F, Rating D, Mayatepek E, Boesch C, Kreis R (2003) Cerebral energy metabolism in phenylketonuria: findings by quantitative in vivo 31P MR spectroscopy. Pediatr Res 53:654–662CrossRefPubMedGoogle Scholar
  48. Pratt OEA (1980) New approach to the treatment of phenylketonuria. J Ment Defic Res 24:203–217PubMedGoogle Scholar
  49. Rech VC, Feksa LR, Dutra-Filho CS, Wyse ATS, Wajner M, Wannmacher CM (2002) Inhibition of the mitochondrial respiratory chain by phenylalanine in rat cerebral cortex. Neurochem Res 27:353–357CrossRefPubMedGoogle Scholar
  50. Sarkissian CN, Scriver CR, Mamer OA (2000) Measurement of phenyllactate, phenylacetate, and phenylpyruvate by negative ion chemical ionization-gas chromatography/mass spectrometry in brain of mouse genetic models of phenylketonuria and non-phenylketonuria hyperphenylalaninemia. Anal Biochem 280:242–249CrossRefPubMedGoogle Scholar
  51. Schumacher U, Lukacs Z, Kaltschmidt C, Freudlsperger C, Schulz D, Kompisch K, Müller R, Rudolph T, Santer R, Lorke DE, Ullrich K (2008) High concentrations of phenylalanine stimulate peroxisome proliferator-activated receptor gamma: implications for the pathophysiology of phenylketonuria. Neurobiol Dis 32:385–390CrossRefPubMedGoogle Scholar
  52. Scriver CR (2001) Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 1667–1724Google Scholar
  53. Shefer S, Tint GS, Jean-Guillaume D, Daikhin E, Kendler A, Nguyen LB, Yudkoff M, Dyer CA (2000) Is there a relationship between 3-hydroxy-3-methylglutaryl coenzyme a reductase activity and forebrain pathology in PKU mouse? J Neurosci Res 61:549–563CrossRefPubMedGoogle Scholar
  54. Sierra C, Vilaseca MA, Moyano D, Brandi N, Campistol J, Lambruschini N, Cambra FJ, Deulofeu R, Mira A (1998) Antioxidant status in hyperphenylalaninemia. Clin Chim Acta 276:1–9CrossRefPubMedGoogle Scholar
  55. Sierra C, Vilaseca MA, Brandi N, Artuch R, Mira A, Nieto M, Pineda M (2001) Oxidative stress in Rett syndrome. Brain Dev 23:S236–S239CrossRefPubMedGoogle Scholar
  56. Sirtori LR, Dutra-Filho CS, Fitarelli D, Sitta A, Haeser A, Barschak AG, Wajner M, Coelho DM, Llesuy S, Belló-Klein A, Giugliani R, Deon M, Vargas CR (2005) Oxidative stress in patients with phenylketonuria. Biochim Biophys Acta 1740:68–73PubMedGoogle Scholar
  57. Sitta A, Barschak AG, Deon M, Terroso T, Pires R, Giugliani R, Dutra-Filho CS, Wajner M, Vargas CR (2006) Investigation of oxidative stress parameters in treated phenylketonuric patients. Metab Brain Dis 21:287–296CrossRefPubMedGoogle Scholar
  58. Sitta A, Barschak AG, Deon M, Barden AT, Biancini GB, Vargas PR, de Souza CF, Netto C, Wajner M, Vargas CR (2009a) Effect of short- and long-term exposition to high phenylalanine blood levels on oxidative damage in phenylketonuric patients. Int J Dev Neurosci 27:243–247CrossRefPubMedGoogle Scholar
  59. Sitta A, Barschak AG, Deon M, de Mari JF, Barden AT, Vanzin CS, Biancini GB, Schwartz IV, Wajner M, Vargas CR (2009b) l-Carnitine blood levels and oxidative stress in treated phenylketonuric patients. Cell Mol Neurobiol 29:211–218CrossRefPubMedGoogle Scholar
  60. Smith QR, Momma S, Aoyagi M, Rapoport SI (1987) Kinetics of neutral amino acid transport across the blood–brain barrier. J Neurochem 49:1651–1658CrossRefPubMedGoogle Scholar
  61. Stoy N, Mackay GM, Forrest CM, Christofides J, Egerton M, Stone TW, Darlington LG (2005) Tryptophan metabolism and oxidative stress in patients with Huntington’s disease. J Neurochem 93:611–623CrossRefPubMedGoogle Scholar
  62. Streck EL, Zugno AI, Tagliari B, Franzon R, Wannmacher CM, Wajner M, Wyse ATS (2001) Inhibition of rat brain Na+, K+-ATPase activity induced by homocysteine is probably mediated by oxidative stress. Neurochem Res 26:1195–1200CrossRefPubMedGoogle Scholar
  63. Streck EL, Vieira PS, Wannmacher CMD, Dutra-Filho CS, Wajner M, Wyse ATS (2003) In vitro effect of homocysteine on some parameters of oxidative stress in rat hippocampus. Metab Brain Dis 18:147–154CrossRefPubMedGoogle Scholar
  64. Surtees R, Blau N (2000) The neurochemistry of phenylketonuria. Eur J Pediatr 159:S109–S113CrossRefPubMedGoogle Scholar
  65. van Spronsen FJ, van Rijn M, Bekhof J, Koch R, Smit PG (2001) Phenylketonuria: tyrosine supplementation in phenylalanine-restricted diets. Am J Clin Nutr 73:153–157PubMedGoogle Scholar
  66. van Spronsen FJ, Hoeksma M, Reijngoud DJ (2009) Brain dysfunction in phenylketonuria: is phenylalanine toxicity the only possible case? J Inherit Metab Dis 32:46–51CrossRefPubMedGoogle Scholar
  67. Vargas CR, Wajner M, Sirtori LR, Goulart L, Chiochetta M, Coelho D, Latini A, Llesuy S, Belló-Klein A, Giugliani R, Deon M, Mello CF (2004) Evidence that oxidative stress is increased in patients with X-linked adrenoleukodystrophy. Biochim Biophys Acta 1688:26–32PubMedGoogle Scholar
  68. Wajner M, Latini A, Wyse ATS, Dutra-Filho CS (2004) The role of oxidative damage in the neuropathology of organic acidurias: insights from animal studies. J Inherit Metab Dis 27:427–448CrossRefPubMedGoogle Scholar
  69. Wilke BC, Vidailhet M, Favier A, Guillemin C, Ducros V, Arnaud J, Richard MJ (1992) Selenium, glutathione peroxidase (GSH-Px) and lipid peroxidation products before an after selenium supplementation. Clin Chim Acta 207:137–142CrossRefPubMedGoogle Scholar
  70. Wood B (1976) Neurological disturbance in a phenylketonuric child after discontinuation of dietary treatment. Dev Med Child Neurol 18:657–665PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Carolina G. Fernandes
    • 1
  • Guilhian Leipnitz
    • 1
  • Bianca Seminotti
    • 1
  • Alexandre U. Amaral
    • 1
  • Ângela Zanatta
    • 1
  • Carmen R. Vargas
    • 2
    • 3
  • Carlos S. Dutra Filho
    • 1
  • Moacir Wajner
    • 1
    • 2
    Email author
  1. 1.Departamento de Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal de Rio Grande do SulPorto AlegreBrazil
  2. 2.Serviço de Genética MédicaHospital de Clínicas de Porto AlegrePorto AlegreBrazil
  3. 3.Departamento de Análises, Faculdade de FarmáciaUniversidade Federal do Rio Grande do SulRio Grande do SulBrazil

Personalised recommendations