Cellular and Molecular Neurobiology

, Volume 29, Issue 8, pp 1169–1180 | Cite as

Protective Effects of Resveratrol and Quercetin Against MPP+ -Induced Oxidative Stress Act by Modulating Markers of Apoptotic Death in Dopaminergic Neurons

  • Julie Bournival
  • Patrik Quessy
  • Maria-Grazia Martinoli
Original Paper

Abstract

Reactive oxygen species produced by oxidative stress may participate in the apoptotic death of dopamine neurons distinctive of Parkinson’s disease. Resveratrol, a red wine extract, and quercetin, found mainly in green tea, are two natural polyphenols, presenting antioxidant properties in a variety of cellular paradigms. The aim of this study was to evaluate the effect of resveratrol and quercetin on the apoptotic cascade induced by the administration of 1-methyl-4-phenylpyridinium ion (MPP+), a Parkinsonian toxin, provoking the selective degeneration of dopaminergic neurons. Our results show that a pre-treatment for 3 h with resveratrol or quercetin before MPP+ administration could greatly reduce apoptotic neuronal PC12 death induced by MPP+. We also demonstrated that resveratrol or quercetin modulates mRNA levels and protein expression of Bax, a pro-apoptotic gene, and Bcl-2, an anti-apoptotic gene. We then evaluated the release of cytochrome c and the nuclear translocation of the apoptosis-inducing factor (AIF). Altogether, our results indicate that resveratrol and quercetin diminish apoptotic neuronal cell death by acting on the expression of pro- and anti-apoptotic genes. These findings support the role of these natural polyphenols in preventive and/or complementary therapies for several human neurodegenerative diseases caused by oxidative stress and apoptosis.

Keywords

Apoptosis Resveratrol Quercetin Neuroprotection Oxidative stress 

Notes

Acknowledgments

This work was funded by a Natural Sciences and Engineering Research Council (Canada) grant to MGM. JB is recipient of a studentship from Fonds de Recherche en Santé du Québec. We would like to thank Mrs. Fanny Longpré and Mr. Joshua Cloutier-Beaupré for their helpful technical assistance.

References

  1. Akaneya Y, Takahashi M, Hatanaka H (1995) Involvement of free radicals in MPP+ neurotoxicity against rat dopaminergic neurons in culture. Neurosci Lett 193:53–56. doi:10.1016/0304-3940(95)11668-M CrossRefPubMedGoogle Scholar
  2. Alexaki VI, Charalampopoulos I, Kampa M, Vassalou H, Theodoropoulos P, Stathopoulos EN, Hatzoglou A, Gravanis A, Castanas E (2004) Estrogen exerts neuroprotective effects via membrane estrogen receptors and rapid Akt/NOS activation. FASEB J 18:1594–1596PubMedGoogle Scholar
  3. Alvira D, Yeste-Velasco M, Folch J, Verdaguer E, Canudas AM, Pallas M, Camins A (2007) Comparative analysis of the effects of resveratrol in two apoptotic models: inhibition of complex I and potassium deprivation in cerebellar neurons. Neuroscience 147:746–756. doi:10.1016/j.neuroscience.2007.04.029 CrossRefPubMedGoogle Scholar
  4. Ando A, Yamazaki Y, Kaneko S, Miyake M, Nambu R, Taomoto M, Unezaki S, Okuda-Ashitaka E, Okumura T, Ito S, Matsumura M (2005) Cytoprotection by nipradilol, an anti-glaucomatous agent, via down-regulation of apoptosis related gene expression and activation of NF-kappaB. Exp Eye Res 80:501–507. doi:10.1016/j.exer.2004.10.014 CrossRefPubMedGoogle Scholar
  5. Anekonda TS (2006) Resveratrol–a boon for treating Alzheimer’s disease? Brain Res Brain Res Rev 52:316–326. doi:10.1016/j.brainresrev.2006.04.004 CrossRefGoogle Scholar
  6. Ansari MA, Abdul HM, Joshi G, Opii WO, Butterfield DA (2009) Protective effect of quercetin in primary neurons against Abeta(1–42): relevance to Alzheimer’s disease. J Nutr Biochem 20:269–275. doi:10.1016/j.jnutbio.2008.03.002 CrossRefPubMedGoogle Scholar
  7. Baluchnejadmojarad T, Roghani M, Nadoushan MR, Bagheri M (2009) Neuroprotective effect of genistein in 6-hydroxydopamine Hemi-parkinsonian rat model. Phytother Res 23:132–135. doi:10.1002/ptr.2564 CrossRefPubMedGoogle Scholar
  8. Baur JA et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342. doi:10.1038/nature05354 CrossRefPubMedGoogle Scholar
  9. Behl C (2002) Oestrogen as a neuroprotective hormone. Nature reviews 3:433–442PubMedGoogle Scholar
  10. Behl C, Manthey D (2000) Neuroprotective activities of estrogen: an update. J Neurocytol 29:351–358. doi:10.1023/A:1007109222673 CrossRefPubMedGoogle Scholar
  11. Behl C, Skutella T, Lezoualc’h F, Post A, Widmann M, Newton CJ, Holsboer F (1997) Neuroprotection against oxidative stress by estrogens: structure-activity relationship. Mol Pharmacol 51:535–541PubMedGoogle Scholar
  12. Bieger J, Cermak R, Blank R, de Boer VC, Hollman PC, Kamphues J, Wolffram S (2008) Tissue distribution of quercetin in pigs after long-term dietary supplementation. J Nutr 138:1417–1420PubMedGoogle Scholar
  13. Blanchet J, Longpre F, Bureau G, Morissette M, Dipaolo T, Bronchti G, Martinoli MG (2008) Resveratrol, a red wine polyphenol, protects dopaminergic neurons in MPTP-treated mice. Prog Neuropsychopharmacol Biol Psychiatry 32:1243–1250. doi:10.1016/j.pnpbp.2008.03.024 CrossRefPubMedGoogle Scholar
  14. Bowers JL, Tyulmenkov VV, Jernigan SC, Klinge CM (2000) Resveratrol acts as a mixed agonist/antagonist for estrogen receptors alpha and beta. Endocrinology 141:3657–3667. doi:10.1210/en.141.10.3657 CrossRefPubMedGoogle Scholar
  15. Brookes PS, Digerness SB, Parks DA, Darley-Usmar V (2002) Mitochondrial function in response to cardiac ischemia-reperfusion after oral treatment with quercetin. Free Radic Biol Med 32:1220–1228. doi:10.1016/S0891-5849(02)00839-0 CrossRefPubMedGoogle Scholar
  16. Bureau G, Longpre F, Martinoli MG (2008) Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. J Neurosci Res 86:403–410. doi:10.1002/jnr.21503 CrossRefPubMedGoogle Scholar
  17. Calon F, Lavertu N, Lemieux AM, Morissette M, Goulet M, Grondin R, Blanchet PJ, Bedard PJ, Di Paolo T (2001) Effect of MPTP-induced denervation on basal ganglia GABA(B) receptors: correlation with dopamine concentrations and dopamine transporter. Synapse 40:225–234. doi:10.1002/syn.1045 CrossRefPubMedGoogle Scholar
  18. Casagrande F, Darbon JM (2001) Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: regulation of cyclin-dependent kinases CDK2 and CDK1. Biochem Pharmacol 61:1205–1215. doi:10.1016/S0006-2952(01)00583-4 CrossRefPubMedGoogle Scholar
  19. Chalimoniuk M, Snoek GT, Adamczyk A, Malecki A, Strosznajder JB (2006) Phosphatidylinositol transfer protein expression altered by aging and Parkinson disease. Cell Mol Neurobiol 26:1153–1166. doi:10.1007/s10571-006-9078-0 CrossRefPubMedGoogle Scholar
  20. Charalampopoulos I, Tsatsanis C, Dermitzaki E, Alexaki VI, Castanas E, Margioris AN, Gravanis A (2004) Dehydroepiandrosterone and allopregnanolone protect sympathoadrenal medulla cells against apoptosis via antiapoptotic Bcl-2 proteins. Proc Natl Acad Sci USA 101:8209–8214. doi:10.1073/pnas.0306631101 CrossRefPubMedGoogle Scholar
  21. Chiasson K, Lahaie-Collins V, Bournival J, Delapierre B, Gelinas S, Martinoli MG (2006) Oxidative stress and 17-alpha- and 17-beta-estradiol modulate neurofilaments differently. J Mol Neurosci 30:297–310. doi:10.1385/JMN:30:3:297 CrossRefPubMedGoogle Scholar
  22. Chiba K, Trevor A, Castagnoli N Jr (1984) Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun 120:574–578. doi:10.1016/0006-291X(84)91293-2 CrossRefPubMedGoogle Scholar
  23. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nature reviews 2:647–656CrossRefPubMedGoogle Scholar
  24. Currie LJ, Harrison MB, Trugman JM, Bennett JP, Wooten GF (2004) Postmenopausal estrogen use affects risk for Parkinson disease. Arch Neurol 61:886–888. doi:10.1001/archneur.61.6.886 CrossRefPubMedGoogle Scholar
  25. Cushnie TP, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356. doi:10.1016/j.ijantimicag.2005.09.002 CrossRefPubMedGoogle Scholar
  26. Dalia A, Neff NH, Hadjiconstantinou M (1996) Tyrosine hydroxylase and aromatic L-amino acid decarboxylase in mesencephalic cultures after MPP + : the consequences of treatment with GM1 ganglioside. Brain Res 742:260–264. doi:10.1016/S0006-8993(96)01010-4 CrossRefPubMedGoogle Scholar
  27. Danielson SR, Andersen JK (2008) Oxidative and nitrative protein modifications in Parkinson’s disease. Free Radic Biol Med 44:1787–1794. doi:10.1016/j.freeradbiomed.2008.03.005 CrossRefPubMedGoogle Scholar
  28. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909. doi:10.1016/S0896-6273(03)00568-3 CrossRefPubMedGoogle Scholar
  29. Decker T, Lohmann-Matthes ML (1988) A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 115:61–69. doi:10.1016/0022-1759(88)90310-9 CrossRefPubMedGoogle Scholar
  30. Dore S (2005) Unique properties of polyphenol stilbenes in the brain: more than direct antioxidant actions; gene/protein regulatory activity. Neurosignals 14:61–70. doi:10.1159/000085386 CrossRefPubMedGoogle Scholar
  31. Du Y, Dodel RC, Bales KR, Jemmerson R, Hamilton-Byrd E, Paul SM (1997) Involvement of a caspase-3-like cysteine protease in 1-methyl-4-phenylpyridinium-mediated apoptosis of cultured cerebellar granule neurons. J Neurochem 69:1382–1388PubMedGoogle Scholar
  32. Esposito E, Rotilio D, Di Matteo V, Di Giulio C, Cacchio M, Algeri S (2002) A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiol Aging 23:719–735. doi:10.1016/S0197-4580(02)00078-7 CrossRefPubMedGoogle Scholar
  33. Fiorani M, Accorsi A, Cantoni O (2003) Human red blood cells as a natural flavonoid reservoir. Free Radic Res 37:1331–1338. doi:10.1080/10715760310001615998 CrossRefPubMedGoogle Scholar
  34. Formica JV, Regelson W (1995) Review of the biology of Quercetin and related bioflavonoids. Food Chem Toxicol 33:1061–1080. doi:10.1016/0278-6915(95)00077-1 CrossRefPubMedGoogle Scholar
  35. Gagne B, Gelinas S, Bureau G, Lagace B, Ramassamy C, Chiasson K, Valastro B, Martinoli MG (2003) Effects of estradiol, phytoestrogens, and Ginkgo biloba extracts against 1-methyl-4-phenyl-pyridine-induced oxidative stress. Endocrine 21:89–95. doi:10.1385/ENDO:21:1:89 CrossRefPubMedGoogle Scholar
  36. Gelinas S, Martinoli MG (2002) Neuroprotective effect of estradiol and phytoestrogens on MPP + -induced cytotoxicity in neuronal PC12 cells. J Neurosci Res 70:90–96. doi:10.1002/jnr.10315 CrossRefPubMedGoogle Scholar
  37. Gelinas S, Bureau G, Valastro B, Massicotte G, Cicchetti F, Chiasson K, Gagne B, Blanchet J, Martinoli MG (2004) Alpha and beta estradiol protect neuronal but not native PC12 cells from paraquat-induced oxidative stress. Neurotox Res 6:141–148CrossRefPubMedGoogle Scholar
  38. Goldberg DM, Yan J, Soleas GJ (2003) Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clin Biochem 36:79–87. doi:10.1016/S0009-9120(02)00397-1 CrossRefPubMedGoogle Scholar
  39. Gollapudi S, McCormick MJ, Gupta S (2003) Changes in mitochondrial membrane potential and mitochondrial mass occur independent of the activation of caspase-8 and caspase-3 during CD95-mediated apoptosis in peripheral blood T cells. Int J Oncol 22:597–600PubMedGoogle Scholar
  40. Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73:2424–2428. doi:10.1073/pnas.73.7.2424 CrossRefPubMedGoogle Scholar
  41. Haan C, Behrmann I (2007) A cost effective non-commercial ECL-solution for Western blot detections yielding strong signals and low background. J Immunol Methods 318:11–19. doi:10.1016/j.jim.2006.07.027 CrossRefPubMedGoogle Scholar
  42. Hanasaki Y, Ogawa S, Fukui S (1994) The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radic Biol Med 16:845–850. doi:10.1016/0891-5849(94)90202-X CrossRefPubMedGoogle Scholar
  43. Hartley A, Stone JM, Heron C, Cooper JM, Schapira AH (1994) Complex I inhibitors induce dose-dependent apoptosis in PC12 cells: relevance to Parkinson’s disease. J Neurochem 63:1987–1990PubMedGoogle Scholar
  44. Heikkila RE, Sieber BA, Manzino L, Sonsalla PK (1989) Some features of the nigrostriatal dopaminergic neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) in the mouse. Mol Chem Neuropathol 10:171–183CrossRefPubMedGoogle Scholar
  45. Heo HJ, Lee CY (2004) Protective effects of quercetin and vitamin C against oxidative stress-induced neurodegeneration. J Agric Food Chem 52:7514–7517. doi:10.1021/jf049243r CrossRefPubMedGoogle Scholar
  46. Hirsch EC, Hunot S, Faucheux B, Agid Y, Mizuno Y, Mochizuki H, Tatton WG, Tatton N, Olanow WC (1999) Dopaminergic neurons degenerate by apoptosis in Parkinson’s disease. Mov Disord 14:383–385. doi:10.1002/1531-8257(199903)14:2<383::AID-MDS1037>3.0.CO;2-F CrossRefPubMedGoogle Scholar
  47. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196. doi:10.1038/nature01960 CrossRefPubMedGoogle Scholar
  48. Itano Y, Nomura Y (1995) 1-methyl-4-phenyl-pyridinium ion (MPP +) causes DNA fragmentation and increases the Bcl-2 expression in human neuroblastoma, SH-SY5Y cells, through different mechanisms. Brain Res 704:240–245. doi:10.1016/0006-8993(95)01120-X CrossRefPubMedGoogle Scholar
  49. Jakowec MW, Nixon K, Hogg E, McNeill T, Petzinger GM (2004) Tyrosine hydroxylase and dopamine transporter expression following 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced neurodegeneration of the mouse nigrostriatal pathway. J Neurosci Res 76:539–550. doi:10.1002/jnr.20114 CrossRefPubMedGoogle Scholar
  50. Jakubowicz-Gil J, Rzeski W, Zdzisinska B, Dobrowolski P, Gawron A (2008a) Cell death and neuronal arborization upon quercetin treatment in rat neurons. Acta Neurobiol Exp (Warsz) 68:139–146Google Scholar
  51. Jakubowicz-Gil J, Rzeski W, Zdzisinska B, Piersiak T, Weiksza K, Glowniak K, Gawron A (2008b) Different sensitivity of neurons and neuroblastoma cells to quercetin treatment. Acta Neurobiol Exp (Warsz) 68:463–476Google Scholar
  52. Jang MH, Piao XL, Kim HY, Cho EJ, Baek SH, Kwon SW, Park JH (2007) Resveratrol oligomers from Vitis amurensis attenuate beta-amyloid-induced oxidative stress in PC12 cells. Biol Pharm Bull 30:1130–1134. doi:10.1248/bpb.30.1130 CrossRefPubMedGoogle Scholar
  53. Javitch JA, D’Amato RJ, Strittmatter SM, Snyder SH (1985) Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1, 2, 3, 6 -tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci USA 82:2173–2177. doi:10.1073/pnas.82.7.2173 CrossRefPubMedGoogle Scholar
  54. Jenner P (1998) Oxidative mechanisms in nigral cell death in Parkinson’s disease. Mov Disord 13(Suppl 1):24–34PubMedGoogle Scholar
  55. Jung JY, Roh KH, Jeong YJ, Kim SH, Lee EJ, Kim MS, Oh WM, Oh HK, Kim WJ (2008) Estradiol protects PC12 cells against CoCl2-induced apoptosis. Brain Res Bull 76:579–585. doi:10.1016/j.brainresbull.2008.04.006 CrossRefPubMedGoogle Scholar
  56. Kadota T, Yamaai T, Saito Y, Akita Y, Kawashima S, Moroi K, Inagaki N, Kadota K (1996) Expression of dopamine transporter at the tips of growing neurites of PC12 cells. J Histochem Cytochem 44:989–996PubMedGoogle Scholar
  57. Kopin IJ, Markey SP (1988) MPTP toxicity: implications for research in Parkinson’s disease. Annu Rev Neurosci 11:81–96. doi:10.1146/annurev.ne.11.030188.000501 CrossRefPubMedGoogle Scholar
  58. Korsmeyer SJ, Shutter JR, Veis DJ, Merry DE, Oltvai ZN (1993) Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Semin Cancer Biol 4:327–332PubMedGoogle Scholar
  59. Krantic S, Mechawar N, Reix S, Quirion R (2007) Apoptosis-inducing factor: a matter of neuron life and death. Prog Neurobiol 81:179–196. doi:10.1016/j.pneurobio.2006.12.002 CrossRefPubMedGoogle Scholar
  60. Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139:4252–4263. doi:10.1210/en.139.10.4252 CrossRefPubMedGoogle Scholar
  61. Langston JW, Irwin I (1986) MPTP: current concepts and controversies. Clin Neuropharmacol 9:485–507. doi:10.1097/00002826-198612000-00001 CrossRefPubMedGoogle Scholar
  62. Lee V, Trojanowski JQ, Schlaepfer WW (1982) Induction of neurofilament triplet proteins in PC12 cells by nerve growth factor. Brain Res 238:169–180. doi:10.1016/0006-8993(82)90779-X CrossRefPubMedGoogle Scholar
  63. Lee MK, Kang SJ, Poncz M, Song KJ, Park KS (2007) Resveratrol protects SH-SY5Y neuroblastoma cells from apoptosis induced by dopamine. Exp Mol Med 39:376–384PubMedGoogle Scholar
  64. Lee KW, Kang NJ, Heo YS, Rogozin EA, Pugliese A, Hwang MK, Bowden GT, Bode AM, Lee HJ, Dong Z (2008) Raf and MEK protein kinases are direct molecular targets for the chemopreventive effect of quercetin, a major flavonol in red wine. Cancer Res 68:946–955. doi:10.1158/0008-5472.CAN-07-3140 CrossRefPubMedGoogle Scholar
  65. Linford NJ, Dorsa DM (2002) 17beta-Estradiol and the phytoestrogen genistein attenuate neuronal apoptosis induced by the endoplasmic reticulum calcium-ATPase inhibitor thapsigargin. Steroids 67:1029–1040. doi:10.1016/S0039-128X(02)00062-4 CrossRefPubMedGoogle Scholar
  66. Liou AK, Zhou Z, Pei W, Lim TM, Yin XM, Chen J (2005) BimEL up-regulation potentiates AIF translocation and cell death in response to MPTP. FASEB J 19:1350–1352PubMedGoogle Scholar
  67. Lo FH, Mak NK, Leung KN (2007) Studies on the anti-tumor activities of the soy isoflavone daidzein on murine neuroblastoma cells. Biomed Pharmacother 61:591–595. doi:10.1016/j.biopha.2007.08.021 CrossRefPubMedGoogle Scholar
  68. Martin A, Clynes M (1991) Acid phosphatase: endpoint for in vitro toxicity tests. In Vitro Cell Dev Biol 27A:183–184. doi:10.1007/BF02630912 CrossRefPubMedGoogle Scholar
  69. Mercer LD, Kelly BL, Horne MK, Beart PM (2005) Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures. Biochem Pharmacol 69:339–345. doi:10.1016/j.bcp.2004.09.018 CrossRefPubMedGoogle Scholar
  70. Michels G, Watjen W, Weber N, Niering P, Chovolou Y, Kampkotter A, Proksch P, Kahl R (2006) Resveratrol induces apoptotic cell death in rat H4IIE hepatoma cells but necrosis in C6 glioma cells. Toxicology 225:173–182. doi:10.1016/j.tox.2006.05.014 CrossRefPubMedGoogle Scholar
  71. Mochizuki H, Goto K, Mori H, Mizuno Y (1996) Histochemical detection of apoptosis in Parkinson’s disease. J Neurol Sci 137:120–123. doi:10.1016/0022-510X(95)00336-Z CrossRefPubMedGoogle Scholar
  72. Moosmann B, Behl C (1999) The antioxidant neuroprotective effects of estrogens and phenolic compounds are independent from their estrogenic properties. Proc Natl Acad Sci USA 96:8867–8872. doi:10.1073/pnas.96.16.8867 CrossRefPubMedGoogle Scholar
  73. Morale MC, Serra PA, L’Episcopo F, Tirolo C, Caniglia S, Testa N, Gennuso F, Giaquinta G, Rocchitta G, Desole MS, Miele E, Marchetti B (2006) Estrogen, neuroinflammation and neuroprotection in Parkinson’s disease: glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience 138:869–878. doi:10.1016/j.neuroscience.2005.07.060 CrossRefPubMedGoogle Scholar
  74. Mytilineou C (2001) Mechanism of MPTP neurotoxicity. In: Segura-Aguilar J (ed) Mechanism of degeneration and protection of the dopaminergic system. FP Graham Publishing Inc, Johnson City, TN, pp 131–148Google Scholar
  75. Nilsen J, Mor G, Naftolin F (1998) Raloxifene induces neurite outgrowth in estrogen receptor positive PC12 cells. Menopause 5:211–216CrossRefPubMedGoogle Scholar
  76. Okawara M, Katsuki H, Kurimoto E, Shibata H, Kume T, Akaike A (2007) Resveratrol protects dopaminergic neurons in midbrain slice culture from multiple insults. Biochem Pharmacol 73:550–560. doi:10.1016/j.bcp.2006.11.003 CrossRefPubMedGoogle Scholar
  77. Perkins CL, Fang G, Kim CN, Bhalla KN (2000) The role of Apaf-1, caspase-9, and bid proteins in etoposide- or paclitaxel-induced mitochondrial events during apoptosis. Cancer Res 60:1645–1653PubMedGoogle Scholar
  78. Piga R, Saito Y, Yoshida Y, Niki E (2007) Cytotoxic effects of various stressors on PC12 cells: involvement of oxidative stress and effect of antioxidants. Neurotoxicology 28:67–75. doi:10.1016/j.neuro.2006.07.006 CrossRefPubMedGoogle Scholar
  79. Przedborski S, Vila M (2003) The 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model: a tool to explore the pathogenesis of Parkinson’s disease. Ann N Y Acad Sci 991:189–198PubMedCrossRefGoogle Scholar
  80. Przedborski S, Jackson-Lewis V, Djaldetti R, Liberatore G, Vila M, Vukosavic S, Almer G (2000) The parkinsonian toxin MPTP: action and mechanism. Restor Neurol Neurosci 16:135–142PubMedGoogle Scholar
  81. Purdie DW (2000) Consequences of long-term hormone replacement therapy. Br Med Bull 56:809–823. doi:10.1258/0007142001903382 CrossRefPubMedGoogle Scholar
  82. Rachon D, Teede H (2008) Postmenopausal hormone therapy and the risk of venous thromboembolism. Climacteric 11:273–279. doi:10.1080/13697130802227724 CrossRefPubMedGoogle Scholar
  83. Robb EL, Page MM, Wiens BE, Stuart JA (2008) Molecular mechanisms of oxidative stress resistance induced by resveratrol: Specific and progressive induction of MnSOD. Biochem Biophys Res Commun 367:406–412. doi:10.1016/j.bbrc.2007.12.138 CrossRefPubMedGoogle Scholar
  84. Ross JA, Kasum CM (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr 22:19–34. doi:10.1146/annurev.nutr.22.111401.144957 CrossRefPubMedGoogle Scholar
  85. Rousseau J, Cossette L, Grenier S, Martinoli MG (2002) Modulation of prolactin expression by xenoestrogens. Gen Comp Endocrinol 126:175–182. doi:10.1006/gcen.2002.7789 CrossRefPubMedGoogle Scholar
  86. Ryu EJ, Angelastro JM, Greene LA (2005) Analysis of gene expression changes in a cellular model of Parkinson disease. Neurobiol Dis 18:54–74. doi:10.1016/j.nbd.2004.08.016 CrossRefPubMedGoogle Scholar
  87. Sasaki M, Nakamura H, Tsuchiya S, Horie S, Kashiwayanagi M, Saito T, Murayama T (2007) Quercetin-induced PC12 cell death accompanied by caspase-mediated DNA fragmentation. Biol Pharm Bull 30:682–686. doi:10.1248/bpb.30.682 CrossRefPubMedGoogle Scholar
  88. Sawada H, Ibi M, Kihara T, Urushitani M, Honda K, Nakanishi M, Akaike A, Shimohama S (2000) Mechanisms of antiapoptotic effects of estrogens in nigral dopaminergic neurons. FASEB J 14:1202–1214PubMedGoogle Scholar
  89. Schmittgen TD, Zakrajsek BA (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods 46:69–81. doi:10.1016/S0165-022X(00)00129-9 CrossRefPubMedGoogle Scholar
  90. Segura Aguilar J, Kostrzewa RM (2004) Neurotoxins and neurotoxic species implicated in neurodegeneration. Neurotox Res 6:615–630CrossRefPubMedGoogle Scholar
  91. Smith DJ, Ng H, Kluck RM, Nagley P (2008) The mitochondrial gateway to cell death. IUBMB Life 60:383–389. doi:10.1002/iub.44 CrossRefPubMedGoogle Scholar
  92. Soleas GJ, Yan J, Goldberg DM (2001) Ultrasensitive assay for three polyphenols (catechin, quercetin and resveratrol) and their conjugates in biological fluids utilizing gas chromatography with mass selective detection. J Chromatogr B Biomed Sci Appl 757:161–172. doi:10.1016/S0378-4347(01)00142-6 CrossRefPubMedGoogle Scholar
  93. Tsujimoto Y, Shimizu S (2000) VDAC regulation by the Bcl-2 family of proteins. Cell Death Differ 7:1174–1181. doi:10.1038/sj.cdd.4400780 CrossRefPubMedGoogle Scholar
  94. Vegeto E, Benedusi V, Maggi A (2008) Estrogen anti-inflammatory activity in brain: A therapeutic opportunity for menopause and neurodegenerative diseases. Front Neuroendocrinol 29:507–519CrossRefPubMedGoogle Scholar
  95. Walle T, Hsieh F, DeLegge MH, Oatis JE Jr, Walle UK (2004) High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos 32:1377–1382. doi:10.1124/dmd.104.000885 CrossRefPubMedGoogle Scholar
  96. Wang X, Dykens JA, Perez E, Liu R, Yang S, Covey DF, Simpkins JW (2006) Neuroprotective effects of 17beta-estradiol and nonfeminizing estrogens against H2O2 toxicity in human neuroblastoma SK-N-SH cells. Mol Pharmacol 70:395–404. doi:10.1124/mol.106.023986 CrossRefPubMedGoogle Scholar
  97. Wu Y, Shang Y, Sun S, Liang H, Liu R (2007a) Erythropoietin prevents PC12 cells from 1-methyl-4-phenylpyridinium ion-induced apoptosis via the Akt/GSK-3beta/caspase-3 mediated signaling pathway. Apoptosis 12:1365–1375. doi:10.1007/s10495-007-0065-9 CrossRefPubMedGoogle Scholar
  98. Wu Y, Shang Y, Sun SG, Liu RG, Yang WQ (2007b) Protective effect of erythropoietin against 1-methyl-4-phenylpyridinium-induced neurodegeneration in PC12 cells. Neurosci Bull 23:156–164. doi:10.1007/s12264-007-0023-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Julie Bournival
    • 1
  • Patrik Quessy
    • 1
  • Maria-Grazia Martinoli
    • 1
    • 2
  1. 1.Department of Biochemistry and Neuroscience Research GroupUniversité du Québec à Trois-RivièresTrois-RivièresCanada
  2. 2.Neuroscience Research CenterCentre de recherche de l’Université LavalSte-FoyCanada

Personalised recommendations