Chemokines as Possible Targets in Modulation of the Secondary Damage After Acute Spinal Cord Injury: A Review

  • Peter Gál
  • Petra Kravčuková
  • Michal Mokrý
  • Darina Kluchová
Original Paper


In spite of many promising experimental studies, an effective treatment dramatically eliminating the secondary damage after spinal cord injury (SCI) is still missing. Since clinical data on the therapeutical effect after methylprednisolone treatment are not conclusive, new therapeutical modalities targeting specific components of secondary spinal cord damage needs to be developed. It is known that immune cells are recruited to injury sites by chemokines, which are small, structurally similar proteins released locally at the site of inflammation. Hence, this review was aimed to summarize possible roles of chemokines in the inflammation following SCI as well as to identify possible new therapeutical targets which can potentially be effective in ameliorating individual components of this inflammatory response. Data concerning inflammation reduction together with techniques improving axonal growth, cell replacement and remyelinization, may be crucial to move a small step forward in an attempt to make paraplegic and quadriplegic patients to walk.


Inflammation model Regeneration Chemokine receptor Chemokine ligand Antagonist 


  1. Ahn YH, Lee G, Kang SK (2006) Molecular insights of the injured lesions of rat spinal cords: inflammation, apoptosis, and cell survival. Biochem Biophys Res Commun 348:560–570. doi:10.1016/j.bbrc.2006.07.105 PubMedCrossRefGoogle Scholar
  2. Amar AP, Levy ML (1999) Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury. Neurosurgery 44:1027–1039. doi:10.1097/00006123-199905000-00052 PubMedCrossRefGoogle Scholar
  3. Arakaki R, Tamamura H, Premanathan M, Kanbara K, Ramanan S, Mochizuki K, Baba M, Fujii N, Nakashima H (1999) T134, a small-molecule CXCR4 inhibitor, has no cross-drug resistance with AMD3100, a CXCR4 antagonist with a different structure. J Virol 73:1719–1723PubMedGoogle Scholar
  4. Baba M, Nishimura O, Kanzaki N, Okamoto M, Sawada H, Iizawa Y, Shiraishi M, Aramaki Y, Okonogi K, Ogawa Y, Meguro K, Fujino M (1999) A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc Natl Acad Sci USA 96:5698–5703. doi:10.1073/pnas.96.10.5698 PubMedCrossRefGoogle Scholar
  5. Barnes PJ (2006) How corticosteroids control inflammation: Quintiles Prize Lecture 2005. Br J Pharmacol 148:245–254. doi:10.1038/sj.bjp.0706736 PubMedCrossRefGoogle Scholar
  6. Basso DM, Beattie MS, Bresnahan JC (1996) Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol 139:244–256. doi:10.1006/exnr.1996.0098 PubMedCrossRefGoogle Scholar
  7. Behrmann DL, Bresnahan JC, Beattie MS, Shah BR (1992) Spinal cord injury produced by consistent mechanical displacement of the cord in rats: behavioral and histologic analysis. J Neurotrauma 9:197–217PubMedCrossRefGoogle Scholar
  8. Benzel EC, Lancon JA, Bairnsfather S, Kesterson L (1990) Effect of dosage and timing of administration of naloxone on outcome in the rat ventral compression model of spinal cord injury. Neurosurgery 27:597–601. doi:10.1097/00006123-199010000-00016 PubMedCrossRefGoogle Scholar
  9. Blight AR, Cohen TI, Saito K, Heyes MP (1995) Quinolinic acid accumulation and functional deficits following experimental spinal cord injury. Brain 118:735–752. doi:10.1093/brain/118.3.735 PubMedCrossRefGoogle Scholar
  10. Bracken MB, Collins WF, Freeman DF, Shepard MJ, Wagner FW, Silten RM, Hellenbrand KG, Ransohoff J, Hunt WE, Perot PL Jr (1984) Efficacy of methylprednisolone in acute spinal cord injury. JAMA 251:45–52. doi:10.1001/jama.251.1.45 PubMedCrossRefGoogle Scholar
  11. Bracken MB, Shepard MJ, Hellenbrand KG, Collins WF, Leo LS, Freeman DF, Wagner FC, Flamm ES, Eisenberg HM, Goodman JH (1985) Methylprednisolone and neurological function 1 year after spinal cord injury. Results of the National Acute Spinal Cord Injury Study. J Neurosurg 63:704–713PubMedCrossRefGoogle Scholar
  12. Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, Eisenberg HM, Flamm E, Leo-Summers L, Maroon J (1990) A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 322:1405–1411PubMedGoogle Scholar
  13. Bracken MB, Shepard MJ, Collins WF Jr, Holford TR, Baskin DS, Eisenberg HM, Flamm E, Leo-Summers L, Maroon JC, Marshall LF (1992) Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data. Results of the second National Acute Spinal Cord Injury Study. J Neurosurg 76:23–31PubMedCrossRefGoogle Scholar
  14. Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, Fehlings M, Herr DL, Hitchon PW, Marshall LF, Nockels RP, Pascale V, Perot PL Jr, Piepmeier J, Sonntag VK, Wagner F, Wilberger JE, Winn HR, Young W (1997) Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA 277:1597–1604. doi:10.1001/jama.277.20.1597 PubMedCrossRefGoogle Scholar
  15. Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, Fehlings MG, Herr DL, Hitchon PW, Marshall LF, Nockels RP, Pascale V, Perot PL Jr, Piepmeier J, Sonntag VK, Wagner F, Wilberger JE, Winn HR, Young W (1998) Methylprednisolone or tirilazad mesylate administration after acute spinal cord injury: 1-year follow up. Results of the third National Acute Spinal Cord Injury randomized controlled trial. J Neurosurg 89:699–706PubMedCrossRefGoogle Scholar
  16. Brambilla R, Bracchi-Ricard V, Hu WH, Frydel B, Bramwell A, Karmally S, Green EJ, Bethea JR (2005) Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J Exp Med 202:145–156. doi:10.1084/jem.20041918 PubMedCrossRefGoogle Scholar
  17. Brodmerkel CM, Huber R, Covington M, Diamond S, Hall L, Collins R, Leffet L, Gallagher K, Feldman P, Collier P, Stow M, Gu X, Baribaud F, Shin N, Thomas B, Burn T, Hollis G, Yeleswaram S, Solomon K, Friedman S, Wang A, Xue CB, Newton RC, Scherle P, Vaddi K (2005) Discovery and pharmacological characterization of a novel rodent-active CCR2 antagonist, INCB3344. J Immunol 175:5370–5378PubMedGoogle Scholar
  18. Byrnes KR, Waynant RW, Ilev IK, Wu X, Barna L, Smith K, Heckert R, Gerst H, Anders JJ (2005) Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med 36:171–185. doi:10.1002/lsm.20143 PubMedCrossRefGoogle Scholar
  19. Campbell SJ, Hughes PM, Iredale JP, Wilcockson DC, Waters S, Docagne F, Perry VH, Anthony DC (2003) CINC-1 is an acute-phase protein induced by focal brain injury causing leukocyte mobilization and liver injury. FASEB J 17:1168–1170PubMedGoogle Scholar
  20. Campbell SJ, Perry VH, Pitossi FJ, Butchart AG, Chertoff M, Waters S, Dempster R, Anthony DC (2005) Central nervous system injury triggers hepatic CC and CXC chemokine expression that is associated with leukocyte mobilization and recruitment to both the central nervous system and the liver. Am J Pathol 166:1487–1497PubMedGoogle Scholar
  21. Chan CC (2008) Inflammation: beneficial or detrimental after spinal cord injury? Recent Pat CNS Drug Discov 3:189–199. doi:10.2174/157488908786242434 PubMedCrossRefGoogle Scholar
  22. Čížková D, Rosocha J, Vanický I, Jergová S, Čízek M (2006) Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat. Cell Mol Neurobiol 26:1167–1180PubMedCrossRefGoogle Scholar
  23. Damon I, Murphy PM, Moss B (1998) Broad spectrum chemokine antagonistic activity of a human poxvirus chemokine homolog. Proc Natl Acad Sci USA 95:6403–6407. doi:10.1073/pnas.95.11.6403 PubMedCrossRefGoogle Scholar
  24. De Lucca GV, Kim UT, Vargo BJ, Duncia JV, Santella JB 3rd, Gardner DS, Zheng C, Liauw A, Wang Z, Emmett G, Wacker DA, Welch PK, Covington M, Stowell NC, Wadman EA, Das AM, Davies P, Yeleswaram S, Graden DM, Solomon KA, Newton RC, Trainor GL, Decicco CP, Ko SS (2005) Discovery of CC chemokine receptor-3 (CCR3) antagonists with picomolar potency. J Med Chem 48:2194–2211. doi:10.1021/jm049530m PubMedCrossRefGoogle Scholar
  25. DeVivo MJ (1997) Causes and costs of spinal cord injury in the US. Spinal Cord 35:809–813. doi:10.1038/ PubMedCrossRefGoogle Scholar
  26. Dusart I, Schwab ME (1994) Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur J NeuroSci 6:712–724. doi:10.1111/j.1460-9568.1994.tb00983.x PubMedCrossRefGoogle Scholar
  27. Dwyer MP, Yu Y, Chao J, Aki C, Chao J, Biju P, Girijavallabhan V, Rindgen D, Bond R, Mayer-Ezel R, Jakway J, Hipkin RW, Fossetta J, Gonsiorek W, Bian H, Fan X, Terminelli C, Fine J, Lundell D, Merritt JR, Rokosz LL, Kaiser B, Li G, Wang W, Stauffer T, Ozgur L, Baldwin J, Taveras AG (2006) Discovery of 2-hydroxy-N, N-dimethyl-3-{2-[[(R)-1-(5-methylfuran-2-yl)propyl]amino]-3, 4-dioxocyclobut-1-enylamino}benzamide (SCH 527123): a potent, orally bioavailable CXCR2/CXCR1 receptor antagonist. J Med Chem 49:7603–7606. doi:10.1021/jm0609622 PubMedCrossRefGoogle Scholar
  28. Egberink HF, De Clercq E, Van Vliet AL, Balzarini J, Bridger GJ, Henson G, Horzinek MC, Schols D (1999) Bicyclams, selective antagonists of the human chemokine receptor CXCR4, potently inhibit feline immunodeficiency virus replication. J Virol 73:6346–6352PubMedGoogle Scholar
  29. Eidelberg E, Staten E, Watkins CJ, Smith JS (1976) Treatment of experimental spinal cord injury in ferrets. Surg Neurol 6:243–246PubMedGoogle Scholar
  30. Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377–391. doi:10.1016/S0361-9230(99)00072-6 PubMedCrossRefGoogle Scholar
  31. Fehlings MG (2001) Editorial: Recommendations regarding the use of methylprednisolone in acute spinal cord injury: making sense out of the controversy. Spine 26(24S):S56–S57. doi:10.1097/00007632-200112151-00012 PubMedCrossRefGoogle Scholar
  32. Fouad K, Dietz V, Schwab ME (2001) Improving axonal growth and functional recovery after experimental spinal cord injury by neutralizing myelin associated inhibitors. Brain Res Brain Res Rev 36:204–212. doi:10.1016/S0165-0173(01)00096-0 PubMedCrossRefGoogle Scholar
  33. Gale K, Kerasidis H, Wrathall JR (1985) Spinal cord contusion in the rat: behavioral analysis of functional neurologic impairment. Exp Neurol 88:123–126. doi:10.1016/0014-4886(85)90118-9 PubMedCrossRefGoogle Scholar
  34. Gladue RP, Tylaska LA, Brissette WH, Lira PD, Kath JC, Poss CS, Brown MF, Paradis TJ, Conklyn MJ, Ogborne KT, McGlynn MA, Lillie BM, DiRico AP, Mairs EN, McElroy EB, Martin WH, Stock IA, Shepard RM, Showell HJ, Neote K (2003) CP-481, 715, a potent and selective CCR1 antagonist with potential therapeutic implications for inflammatory diseases. J Biol Chem 278:40473–40480. doi:10.1074/jbc.M306875200 PubMedCrossRefGoogle Scholar
  35. Glaser J, Gonzalez R, Perreau VM, Cotman CW, Keirstead HS (2004) Neutralization of the chemokine CXCL10 enhances tissue sparing and angiogenesis following spinal cord injury. J Neurosci Res 77:701–708. doi:10.1002/jnr.20204 PubMedCrossRefGoogle Scholar
  36. Glaser J, Gonzalez R, Sadr E, Keirstead HS (2006) Neutralization of the chemokine CXCL10 reduces apoptosis and increases axon sprouting after spinal cord injury. J Neurosci Res 84:724–734. doi:10.1002/jnr.20982 PubMedCrossRefGoogle Scholar
  37. Gonzalez R, Glaser J, Liu MT, Lane TE, Keirstead HS (2003) Reducing inflammation decreases secondary degeneration and functional deficit after spinal cord injury. Exp Neurol 184:456–463. doi:10.1016/S0014-4886(03)00257-7 PubMedCrossRefGoogle Scholar
  38. Gonzalez R, Hickey MJ, Espinosa JM, Nistor G, Lane TE, Keirstead HS (2007) Therapeutic neutralization of CXCL10 decreases secondary degeneration and functional deficit after spinal cord injury in mice. Regen Med 2:771–783. doi:10.2217/17460751.2.5.771 PubMedCrossRefGoogle Scholar
  39. Gruner JA (1992) A monitored contusion model of spinal cord injury in the rat. J Neurotrauma 9:123–128PubMedCrossRefGoogle Scholar
  40. Hausmann ON (2003) Post-traumatic inflammation following spinal cord injury. Spinal Cord 41:369–378. doi:10.1038/ PubMedCrossRefGoogle Scholar
  41. Hedlund E, Hefferan MP, Marsala M, Isacson O (2007) Cell therapy and stem cells in animal models of motor neuron disorders. Eur J NeuroSci 26:1721–1737. doi:10.1111/j.1460-9568.2007.05780.x PubMedCrossRefGoogle Scholar
  42. Hefferan MP, Fuchigami T, Marsala M (2006) Development of baclofen tolerance in a rat model of chronic spasticity and rigidity. Neurosci Lett 403:195–200. doi:10.1016/j.neulet.2006.04.048 PubMedCrossRefGoogle Scholar
  43. Heise CE, Pahuja A, Hudson SC, Mistry MS, Putnam AL, Gross MM, Gottlieb PA, Wade WS, Kiankarimi M, Schwarz D, Crowe P, Zlotnik A, Alleva DG (2005) Pharmacological characterization of CXC chemokine receptor 3 ligands and a small molecule antagonist. J Pharmacol Exp Ther 313:1263–1271. doi:10.1124/jpet.105.083683 PubMedCrossRefGoogle Scholar
  44. Hiruma S, Otsuka K, Satou T, Hashimoto S (1999) Simple and reproducible model of rat spinal cord injury induced by a controlled cortical impact device. Neurol Res 21:313–323PubMedGoogle Scholar
  45. Holtz A, Nystrom B, Gerdin B (1990) Relation between spinal cord blood flow and functional recovery after blocking weight-induced spinal cord injury in rats. Neurosurgery 26:952–957. doi:10.1097/00006123-199006000-00005 PubMedCrossRefGoogle Scholar
  46. Horuk R, Clayberger C, Krensky AM, Wang Z, Grone HJ, Weber C, Weber KS, Nelson PJ, May K, Rosser M, Dunning L, Liang M, Buckman B, Ghannam A, Ng HP, Islam I, Bauman JG, Wei GP, Monahan S, Xu W, Snider RM, Morrissey MM, Hesselgesser J, Perez HD (2001) A non-peptide functional antagonist of the CCR1 chemokine receptor is effective in rat heart transplant rejection. J Biol Chem 276:4199–4204. doi:10.1074/jbc.M007457200 PubMedCrossRefGoogle Scholar
  47. Hugenholtz H (2003) Methylprednisolone for acute spinal cord injury: not a standard of care. CMAJ 168:1145–1146PubMedGoogle Scholar
  48. Hurlbert RJ (2000) Methylprednisolone for acute spinal cord injury: an inappropriate standard of care. J Neurosurg 93:1–7PubMedCrossRefGoogle Scholar
  49. Imai M, Watanabe M, Suyama K, Osada T, Sakai D, Kawada H, Matsumae M, Mochida J (2008) Delayed accumulation of activated macrophages and inhibition of remyelination after spinal cord injury in an adult rodent model. J Neurosurg Spine 8:58–66. doi:10.3171/SPI-08/01/058 PubMedCrossRefGoogle Scholar
  50. Jayasuriya H, Herath KB, Ondeyka JG, Polishook JD, Bills GF, Dombrowski AW, Springer MS, Siciliano S, Malkowitz L, Sanchez M, Guan Z, Tiwari S, Stevenson DW, Borris RP, Singh SB (2004) Isolation and structure of antagonists of chemokine receptor (CCR5). J Nat Prod 67:1036–1038. doi:10.1021/np049974l PubMedCrossRefGoogle Scholar
  51. Ji C, Zhang J, Dioszegi M, Chiu S, Rao E, Derosier A, Cammack N, Brandt M, Sankuratri S (2007) CCR5 small-molecule antagonists and monoclonal antibodies exert potent synergistic antiviral effects by cobinding to the receptor. Mol Pharmacol 72:18–28. doi:10.1124/mol.107.035055 PubMedCrossRefGoogle Scholar
  52. Jones TB, Hart RP, Popovich PG (2005) Molecular control of physiological and pathological T-cell recruitment after mouse spinal cord injury. J Neurosci 25:6576–6583. doi:10.1523/JNEUROSCI.0305-05.2005 PubMedCrossRefGoogle Scholar
  53. Kakulas BA (1987) The clinical neuropathology of spinal cord injury: a guide to the future. Paraplegia 25:212–216PubMedGoogle Scholar
  54. Kauffman GS, Watson PS, Nugent WA (2006) Strategy for the enantioselective synthesis of trans-2, 4-disubstituted piperidines: application to the CCR3 antagonist IS811. J Org Chem 71:8975–8977. doi:10.1021/jo0616963 PubMedCrossRefGoogle Scholar
  55. Kavanagh RJ, Kam PC (2001) Lazaroids: efficacy and mechanism of action of the 21-aminosteroids in neuroprotection. Br J Anaesth 86:110–119. doi:10.1093/bja/86.1.110 PubMedCrossRefGoogle Scholar
  56. Kawa S, Kimura S, Hakomori S, Igarashi Y (1997) Inhibition of chemotactic motility and trans-endothelial migration of human neutrophils by sphingosine 1-phosphate. FEBS Lett 420:196–200. doi:10.1016/S0014-5793(97)01516-0 PubMedCrossRefGoogle Scholar
  57. Keilhoff G, Stang F, Goihl A, Wolf G, Fansa H (2006) Transdifferentiated mesenchymal stem cells as alternative therapy in supporting nerve regeneration and myelination. Cell Mol Neurobiol 26:1235–1252. doi:10.1007/s10571-006-9029-9 PubMedCrossRefGoogle Scholar
  58. Khan M, Griebel R (1983) Acute spinal cord injury in the rat: comparison of three experimental techniques. Can J Neurol Sci 10:161–165PubMedGoogle Scholar
  59. Kledal TN, Rosenkilde MM, Coulin F, Simmons G, Johnsen AH, Alouani S, Power CA, Luttichau HR, Gerstoft J, Clapham PR, Clark-Lewis I, Wells TN, Schwartz TW (1997) A broad-spectrum chemokine antagonist encoded by Kaposi’s sarcoma-associated herpesvirus. Science 277:1656–1659. doi:10.1126/science.277.5332.1656 PubMedCrossRefGoogle Scholar
  60. Kunihara T, Sasaki S, Shiiya N, Ishikura H, Kawarada Y, Matsukawa A, Yasuda K (2000) Lazaroid reduces production of IL-8 and IL-1receptor antagonist in ischemic spinal cord injury. Ann Thorac Surg 69:792–798. doi:10.1016/S0003-4975(99)01413-7 PubMedCrossRefGoogle Scholar
  61. Kuppens T, Herrebout W, Van Der Veken B, Corens D, De Groot A, Doyon J, Van Lommen G, Bultinck P (2006) Elucidation of the absolute configuration of JNJ-27553292, a CCR2 receptor antagonist, by vibrational circular dichroism analysis of two precursors. Chirality 18:609–620. doi:10.1002/chir.20297 PubMedCrossRefGoogle Scholar
  62. Lee YL, Shih K, Bao P, Ghirnikar RS, Eng LF (2000) Cytokine chemokine expression in contused rat spinal cord. Neurochem Int 36:417–425. doi:10.1016/S0197-0186(99)00133-3 PubMedCrossRefGoogle Scholar
  63. Li F, Zhang X, Gordon JR (2002) CXCL8((3–73))K11R/G31P antagonizes ligand binding to the neutrophil CXCR1 and CXCR2 receptors and cellular responses to CXCL8/IL-8. Biochem Biophys Res Commun 293:939–944. doi:10.1016/S0006-291X(02)00318-2 PubMedCrossRefGoogle Scholar
  64. Ma M, Wei T, Boring L, Charo IF, Ransohoff RM, Jakeman LB (2002) Monocyte recruitment and myelin removal are delayed following spinal cord injury in mice with CCR2 chemokine receptor deletion. J Neurosci Res 68:691–702. doi:10.1002/jnr.10269 PubMedCrossRefGoogle Scholar
  65. Marks K, Gulick RM (2004) New antiretroviral agents for the treatment of HIV infection. Curr HIV/AIDS Rep 1:82–88. doi:10.1007/s11904-004-0012-0 PubMedCrossRefGoogle Scholar
  66. Martin SH, Bloedel JR (1973) Evaluation of experimental spinal cord injury using cortical evoked potentials. J Neurosurg 39:75–81PubMedCrossRefGoogle Scholar
  67. Miyazaki H, Patel V, Wang H, Edmunds RK, Gutkind JS, Yeudall WA (2006) Down-regulation of CXCL5 inhibits squamous carcinogenesis. Cancer Res 66:4279–4284. doi:10.1158/0008-5472.CAN-05-4398 PubMedCrossRefGoogle Scholar
  68. Morokata T, Suzuki K, Masunaga Y, Taguchi K, Morihira K, Sato I, Fujii M, Takizawa S, Torii Y, Yamamoto N, Kaneko M, Yamada T, Takahashi K, Shimizu Y (2006) A novel, selective, and orally available antagonist for CC chemokine receptor 3. J Pharmacol Exp Ther 317:244–250. doi:10.1124/jpet.105.097048 PubMedCrossRefGoogle Scholar
  69. Mueller CA, Schluesener HJ, Conrad S, Pietsch T, Schwab JM (2006) Spinal cord injury-induced expression of the immune-regulatory chemokine interleukin-16 caused by activated microglia/macrophages and CD8 + cells. J Neurosurg Spine 4:233–240. doi:10.3171/spi.2006.4.3.233 PubMedCrossRefGoogle Scholar
  70. Nibbs RJ, Salcedo TW, Campbell JD, Yao XT, Li Y, Nardelli B, Olsen HS, Morris TS, Proudfoot AE, Patel VP, Graham GJ (2000) C-C chemokine receptor 3 antagonism by the beta-chemokine macrophage inflammatory protein 4, a property strongly enhanced by an amino-terminal alanine–methionine swap. J Immunol 164:1488–1497PubMedGoogle Scholar
  71. Nicholson GC, Tennant RC, Carpenter DC, Sarau HM, Kon OM, Barnes PJ, Salmon M, Vessey RS, Tal-Singer R, Hansel TT (2007) A novel flow cytometric assay of human whole blood neutrophil and monocyte CD11b levels: upregulation by chemokines is related to receptor expression, comparison with neutrophil shape change, and effects of a chemokine receptor (CXCR2) antagonist. Pulm Pharmacol Ther 20:52–59. doi:10.1016/j.pupt.2005.11.009 PubMedCrossRefGoogle Scholar
  72. Nystrom B, Berglind JE (1988) Spinal cord restitution following compression injuries in rats. Acta Neurol Scand 78:467–472. doi:10.1111/j.1600-0404.1988.tb03689.x PubMedCrossRefGoogle Scholar
  73. Palani A, Shapiro S, Clader JW, Greenlee WJ, Cox K, Strizki J, Endres M, Baroudy BM (2001) Discovery of 4-[(Z)-(4-bromophenyl)-(ethoxyimino)methyl]-1’-[(2,4-dimethyl-3-pyridinyl)carbonyl]-4’-methyl-1, 4’-bipiperidine N-oxide (SCH 351125): an orally bioavailable human CCR5 antagonist for the treatment of HIV infection. J Med Chem 44:3339–3342. doi:10.1021/jm015526o PubMedCrossRefGoogle Scholar
  74. Petkovic V, Moghini C, Paoletti S, Uguccioni M, Gerber B (2004) Eotaxin-3/CCL26 is a natural antagonist for CC chemokine receptors 1 and 5. A human chemokine with a regulatory role. J Biol Chem 279:23357–23363. doi:10.1074/jbc.M309283200 PubMedCrossRefGoogle Scholar
  75. Popovich PG, Wei P, Stokes BT (1997) Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. J Comp Neurol 377:443–464. doi:10.1002/(SICI)1096-9861(19970120)377:3<443::AID-CNE10>;3.0.CO;2-S PubMedCrossRefGoogle Scholar
  76. Princen K, Hatse S, Vermeire K, Aquaro S, De Clercq E, Gerlach LO, Rosenkilde M, Schwartz TW, Skerlj R, Bridger G, Schols D (2004) Inhibition of human immunodeficiency virus replication by a dual CCR5/CXCR4 antagonist. J Virol 78:12996–13006. doi:10.1128/JVI.78.23.12996-13006.2004 PubMedCrossRefGoogle Scholar
  77. Proudfoot AE, Power CA, Hoogewerf AJ, Montjovent MO, Borlat F, Offord RE, Wells TN (1996) Extension of recombinant human RANTES by the retention of the initiating methionine produces a potent antagonist. J Biol Chem 271:2599–2603. doi:10.1074/jbc.271.5.2599 PubMedCrossRefGoogle Scholar
  78. Pruitt JR, Batt DG, Wacker DA, Bostrom LL, Booker SK, McLaughlin E, Houghton GC, Varnes JG, Christ DD, Covington M, Das AM, Davies P, Graden D, Kariv I, Orlovsky Y, Stowell NC, Vaddi KG, Wadman EA, Welch PK, Yeleswaram S, Solomon KA, Newton RC, Decicco CP, Carter PH, Ko SS (2007) CC chemokine receptor-3 (CCR3) antagonists: improving the selectivity of DPC168 by reducing central ring lipophilicity. Bioorg Med Chem Lett 17:2992–2997. doi:10.1016/j.bmcl.2007.03.065 PubMedCrossRefGoogle Scholar
  79. Rappert A, Bechmann I, Pivneva T, Mahlo J, Biber K, Nolte C, Kovac AD, Gerard C, Boddeke HW, Nitsch R, Kettenmann H (2004) CXCR3-dependent microglial recruitment is essential for dendrite loss after brain lesion. J Neurosci 24:8500–8509. doi:10.1523/JNEUROSCI.2451-04.2004 PubMedCrossRefGoogle Scholar
  80. Ravikumar R, Flora G, Geddes JW, Hennig B, Toborek M (2004) Nicotine attenuates oxidative stress, activation of redox-regulated transcription factors and induction of proinflammatory genes in compressive spinal cord trauma. Brain Res Mol Brain Res 124:188–198. doi:10.1016/j.molbrainres.2004.02.018 PubMedCrossRefGoogle Scholar
  81. Renault-Mihara F, Okada S, Shibata S, Nakamura M, Toyama Y, Okano H (2008) Spinal cord injury: emerging beneficial role of reactive astrocytes’ migration. Int J Biochem Cell Biol 40:1649–1653. doi:10.1016/j.biocel.2008.03.009 PubMedCrossRefGoogle Scholar
  82. Rice T, Larsen J, Rivest S, Yong VW (2007) Characterization of the early neuroinflammation after spinal cord injury in mice. J Neuropathol Exp Neurol 66:184–195. doi:10.1097/01.jnen.0000248552.07338.7f PubMedCrossRefGoogle Scholar
  83. Sabroe I, Peck MJ, Van Keulen BJ, Jorritsma A, Simmons G, Clapham PR, Williams TJ, Pease JE (2000) A small molecule antagonist of chemokine receptors CCR1 and CCR3. Potent inhibition of eosinophil function and CCR3-mediated HIV-1 entry. J Biol Chem 275:25985–25992. doi:10.1074/jbc.M908864199 PubMedCrossRefGoogle Scholar
  84. Schnell L, Fearn S, Klassen H, Schwab ME, Perry VH (1999) Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord. Eur J NeuroSci 11:3648–3658. doi:10.1046/j.1460-9568.1999.00792.x PubMedCrossRefGoogle Scholar
  85. Schwab JM, Brechtel K, Mueller CA, Failli V, Kaps HP, Tuli SK, Schluesener HJ (2006) Experimental strategies to promote spinal cord regeneration—an integrative perspective. Prog Neurobiol 78:91–116. doi:10.1016/j.pneurobio.2005.12.004 PubMedCrossRefGoogle Scholar
  86. Simmons G, Clapham PR, Picard L, Offord RE, Rosenkilde MM, Schwartz TW, Buser R, Wells TN, Proudfoot AE (1997) Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science 276:276–279. doi:10.1126/science.276.5310.276 PubMedCrossRefGoogle Scholar
  87. Steinberger P, Andris-Widhopf J, Buhler B, Torbett BE, Barbas CF 3rd (2000a) Functional deletion of the CCR5 receptor by intracellular immunization produces cells that are refractory to CCR5-dependent HIV-1 infection and cell fusion. Proc Natl Acad Sci USA 97:805–810. doi:10.1073/pnas.97.2.805 PubMedCrossRefGoogle Scholar
  88. Steinberger P, Sutton JK, Rader C, Elia M, Barbas CF 3rd (2000b) Generation and characterization of a recombinant human CCR5-specific antibody. A phage display approach for rabbit antibody humanization. J Biol Chem 275:36073–36078. doi:10.1074/jbc.M002765200 PubMedCrossRefGoogle Scholar
  89. Stichel CC, Muller HW (1998) The CNS lesion scar: new vistas on an old regeneration barrier. Cell Tissue Res 294:1–9. doi:10.1007/s004410051151 PubMedCrossRefGoogle Scholar
  90. Stokes BT, Noyes DH, Behrmann DL (1992) An electromechanical spinal injury technique with dynamic sensitivity. J Neurotrauma 9:187–195PubMedCrossRefGoogle Scholar
  91. Takenaga M, Ohta Y, Tokura Y, Hamaguchi A, Nakamura M, Okano H, Igarashi R (2006) Lecithinized superoxide dismutase (PC-SOD) improved spinal cord injury-induced motor dysfunction through suppression of oxidative stress and enhancement of neurotrophic factor production. J Control Release 110:283–289. doi:10.1016/j.jconrel.2005.10.022 PubMedCrossRefGoogle Scholar
  92. Tamamura H, Imai M, Ishihara T, Masuda M, Funakoshi H, Oyake H, Murakami T, Arakaki R, Nakashima H, Otaka A, Ibuka T, Waki M, Matsumoto A, Yamamoto N, Fujii N (1998) Pharmacophore identification of a chemokine receptor (CXCR4) antagonist, T22 ([Tyr(5, 12), Lys7]-polyphemusin II), which specifically blocks T cell-line-tropic HIV-1 infection. Bioorg Med Chem 6:1033–1041. doi:10.1016/S0968-0896(98)00061-3 PubMedCrossRefGoogle Scholar
  93. Tang BL, Low CB (2007) Genetic manipulation of neural stem cells for transplantation into the injured spinal cord. Cell Mol Neurobiol 27:75–85. doi:10.1007/s10571-006-9119-8 PubMedCrossRefGoogle Scholar
  94. Tarlov IM, Klinger H, Vitale S (1953) Spinal cord compression studies. I. Experimental techniques to produce acute and gradual compression. AMA Arch Neurol Psychiatry 70:813–819PubMedGoogle Scholar
  95. Tator CH (1998) Biology of neurological recovery and functional restoration after spinal cord injury. Neurosurgery 42:696–707. doi:10.1097/00006123-199804000-00007 PubMedCrossRefGoogle Scholar
  96. Tator CH, Deecke L (1973) Studies of the treatment and pathophysiology of acute spinal cord injury in primates. Paraplegia 10:344–345PubMedGoogle Scholar
  97. Tonai T, Shiba K, Taketani Y, Ohmoto Y, Murata K, Muraguchi M, Ohsaki H, Takeda E, Nishisho T (2001) A neutrophil elastase inhibitor (ONO-5046) reduces neurologic damage after spinal cord injury in rats. J Neurochem 78:1064–1072. doi:10.1046/j.1471-4159.2001.00488.x PubMedCrossRefGoogle Scholar
  98. Tremblay CL, Giguel F, Chou TC, Dong H, Takashima K, Hirsch MS (2005a) TAK-652, a novel CCR5 inhibitor, has favourable drug interactions with other antiretrovirals in vitro. Antivir Ther 10:967–968PubMedGoogle Scholar
  99. Tremblay CL, Giguel F, Guan Y, Chou TC, Takashima K, Hirsch MS (2005b) TAK-220, a novel small-molecule CCR5 antagonist, has favorable anti-human immunodeficiency virus interactions with other antiretrovirals in vitro. Antimicrob Agents Chemother 49:3483–3485. doi:10.1128/AAC.49.8.3483-3485.2005 PubMedCrossRefGoogle Scholar
  100. Ubogu EE, Cossoy MB, Ransohoff RM (2006) The expression and function of chemokines involved in CNS inflammation. Trends Pharmacol Sci 27:48–55. doi:10.1016/ PubMedCrossRefGoogle Scholar
  101. Vanicky I, Urdzikova L, Saganova K, Cizkova D, Galik J (2001) A simple and reproducible model of spinal cord injury induced by epidural balloon inflation in the rat. J Neurotrauma 18:1399–1407. doi:10.1089/08977150152725687 PubMedCrossRefGoogle Scholar
  102. Walser TC, Rifat S, Ma X, Kundu N, Ward C, Goloubeva O, Johnson MG, Medina JC, Collins TL, Fulton AM (2006) Antagonism of CXCR3 inhibits lung metastasis in a murine model of metastatic breast cancer. Cancer Res 66:7701–7707. doi:10.1158/0008-5472.CAN-06-0709 PubMedCrossRefGoogle Scholar
  103. Watson C, Jenkinson S, Kazmierski W, Kenakin T (2005) The CCR5 receptor-based mechanism of action of 873140, a potent allosteric noncompetitive HIV entry inhibitor. Mol Pharmacol 67:1268–1282. doi:10.1124/mol.104.008565 PubMedCrossRefGoogle Scholar
  104. White JR, Lee JM, Young PR, Hertzberg RP, Jurewicz AJ, Chaikin MA, Widdowson K, Foley JJ, Martin LD, Griswold DE, Sarau HM (1998) Identification of a potent, selective non-peptide CXCR2 antagonist that inhibits interleukin-8-induced neutrophil migration. J Biol Chem 273:10095–10098. doi:10.1074/jbc.273.17.10095 PubMedCrossRefGoogle Scholar
  105. White JR, Lee JM, Dede K, Imburgia CS, Jurewicz AJ, Chan G, Fornwald JA, Dhanak D, Christmann LT, Darcy MG, Widdowson KL, Foley JJ, Schmidt DB, Sarau HM (2000) Identification of potent, selective non-peptide CC chemokine receptor-3 antagonist that inhibits eotaxin-, eotaxin-2-, and monocyte chemotactic protein-4-induced eosinophil migration. J Biol Chem 275:36626–36631. doi:10.1074/jbc.M006613200 PubMedCrossRefGoogle Scholar
  106. Wu X, Fan J, Wang X, Zhou J, Qiu S, Yu Y, Liu Y, Tang Z (2007) Downregulation of CCR1 inhibits human hepatocellular carcinoma cell invasion. Biochem Biophys Res Commun 355:866–871. doi:10.1016/j.bbrc.2007.01.199 PubMedCrossRefGoogle Scholar
  107. Yang L, Butora G, Jiao RX, Pasternak A, Zhou C, Parsons WH, Mills SG, Vicario PP, Ayala JM, Cascieri MA, MacCoss M (2007) Discovery of 3-piperidinyl-1-cyclopentanecarboxamide as a novel scaffold for highly potent CC chemokine receptor 2 antagonists. J Med Chem 50:2609–2611. doi:10.1021/jm070166b PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Peter Gál
    • 1
    • 3
  • Petra Kravčuková
    • 2
  • Michal Mokrý
    • 3
    • 5
  • Darina Kluchová
    • 4
  1. 1.Institute of Biology and EcologyPavol Jozef Šafárik UniversityKošiceSlovak Republic
  2. 2.Institute of NeurobiologySlovak Academy of SciencesKošiceSlovak Republic
  3. 3.Department of Medical BiophysicsPavol Jozef Šafárik UniversityKošiceSlovak Republic
  4. 4.Department of AnatomyPavol Jozef Šafárik UniversityKošiceSlovak Republic
  5. 5.Hubrecht Institute for Developmental Biology and Stem Cell ResearchThe Royal Netherlands Academy of Arts and SciencesUtrechtThe Netherlands

Personalised recommendations