Cellular and Molecular Neurobiology

, Volume 29, Issue 6–7, pp 799–805 | Cite as

New Age of Neuroproteomics in Alzheimer’s Disease Research

Original Paper

Abstract

Alzheimer’s disease (AD) is the leading cause of dementia, a condition that gradually destroys brain cells and leads to progressive decline in mental functions. The disease is characterized by accumulation of misfolded neuronal proteins, amyloid and tau, into insoluble aggregates known as extracellular senile plaques and intracellular neurofibrillary tangles, respectively. However, only tau pathology appears to correlate with the progression of the disease and it is believed to play a central role in the progression of neurodegeneration. In AD, tau protein undergoes various types of posttranslational modifications, most notably hyperphosphorylation and truncation. Using four proteomics approaches we aimed to uncover the key steps leading to neurofibrillary degeneration and thus to identify therapeutic targets for AD. Functional neuroproteomics was employed to generate the first transgenic rat model of AD by expressing a truncated misordered form of tau, “Alzheimer’s tau”. The rat model showed that Alzheimer’s tau toxic gain of function is responsible for the induction of abnormal tau cascade and is the driving force in the development of neurofibrillary degeneration. Structural neuroproteomics allowed us to determine partial 3D structure of the Alzheimer’s filament core at a resolution of 1.6 Å. Signaling neuroproteomics data lead to the identification and characterization of relevant phosphosites (the tau phosphosignalome) contributing to neurodegeneration. Interaction neuroproteomics revealed links to a new group of proteins interacting with Alzheimer’s tau (tau interactome) under normal and pathological conditions, which would provide novel drug targets and novel biomarkers for treatment of AD and other tauopathies.

Keywords

Intrinsically disordered tau Alzheimer’s disease Neuroproteomics Hyperphosphorylation Truncation 

Notes

Acknowledgments

This work was supported by research grants VEGA 2/6183/26 and 2/5101/27, APVV 0631-07, APVV 0603-06, LPP-0326-06, LPP-0353-06, LPP-0354-06 and LPP-0363-06.

References

  1. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207. doi: 10.1038/nature01511 PubMedCrossRefGoogle Scholar
  2. Alonso AC, Zaidi T, Grundke-Iqbal I, Iqbal K (1994) Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci USA 91(12):5562–5566. doi: 10.1073/pnas.91.12.5562 PubMedCrossRefGoogle Scholar
  3. Alonso AC, Grundke-Iqbal I, Iqbal K (1996) Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med 2(7):783–787. doi: 10.1038/nm0796-783 PubMedCrossRefGoogle Scholar
  4. Alzheimer A (1907) Über eine eigenartigeErkrankung der Hirnrinde. Allg Z Psychiatry Psych-Gerichtl Med 64:146–148Google Scholar
  5. Baker M, Kwok JB, Kucera S, Crook R, Farrer M, Houlden H, Isaacs A, Lincoln S, Onstead L, Hardy J, Wittenberg L, Dodd P, Webb S, Hayward N, Tannenberg T, Andreadis A, Hallupp M, Schofield P, Dark F, Hutton M (1997) Localization of frontotemporal dementia with parkinsonism in an Australian kindred to chromosome 17q21–22. Ann Neurol 42(5):794–798. doi: 10.1002/ana.410420516 PubMedCrossRefGoogle Scholar
  6. Baudier J, Cole RD (1988) Interactions between the microtubule-associated tau proteins and S100b regulate tau phosphorylation by the Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 263(12):5876–5883PubMedGoogle Scholar
  7. Berriman J, Serpell LC, Oberg KA, Fink AL, Goedert M, Crowther RA (2003) Tau filaments from human brain and from in vitro assembly of recombinant protein show cross-beta structure. Proc Natl Acad Sci USA 100(15):9034–9038. doi: 10.1073/pnas.1530287100 PubMedCrossRefGoogle Scholar
  8. Binder LI, Guillozet-Bongaarts AL, Garcia-Sierra F, Berry RW (2005) Tau, tangles, and Alzheimer’s disease. Biochim Biophys Acta 1739(2–3):216–223PubMedGoogle Scholar
  9. Caceres A, Kosik KS (1990) Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature 343(6257):461–463. doi: 10.1038/343461a0 PubMedCrossRefGoogle Scholar
  10. Cente M, Filipcik P, Pevalova M, Novak M (2006) Expression of a truncated tau protein induces oxidative stress in a rodent model of tauopathy. Eur J NeuroSci 24(4):1085–1090. doi: 10.1111/j.1460-9568.2006.04986.x PubMedCrossRefGoogle Scholar
  11. Dawson HN, Ferreira A, Eyster MV, Ghoshal N, Binder LI, Vitek MP (2001) Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J Cell Sci 114(Pt 6):1179–1187PubMedGoogle Scholar
  12. Dickey CA, Kamal A, Lundgren K, Klosak N, Bailey RM, Dunmore J, Ash P, Shoraka S, Zlatkovic J, Eckman CB, Patterson C, Dickson DW, Nahman NS Jr, Hutton M, Burrows F, Petrucelli L (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117(3):648–658. doi: 10.1172/JCI29715 PubMedCrossRefGoogle Scholar
  13. Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312(5771):212–217. doi: 10.1126/science.1124619 PubMedCrossRefGoogle Scholar
  14. Eidenmuller J, Fath T, Maas T, Pool M, Sontag E, Brandt R (2001) Phosphorylation-mimicking glutamate clusters in the proline-rich region are sufficient to simulate the functional deficiencies of hyperphosphorylated tau protein. Biochem J 357(Pt 3):759–767. doi: 10.1042/0264-6021:3570759 PubMedCrossRefGoogle Scholar
  15. Esmaeli-Azad B, McCarty JH, Feinstein SC (1994) Sense and antisense transfection analysis of tau function: tau influences net microtubule assembly, neurite outgrowth and neuritic stability. J Cell Sci 107(Pt 4):869–879PubMedGoogle Scholar
  16. Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y, Jorm A, Mathers C, Menezes PR, Rimmer E, Scazufca M (2005) Global prevalence of dementia: a Delphi consensus study. Lancet 366(9503):2112–2117. doi: 10.1016/S0140-6736(05)67889-0 PubMedCrossRefGoogle Scholar
  17. Gamblin TC, Chen F, Zambrano A, Abraha A, Lagalwar S, Guillozet AL, Lu M, Fu Y, Garcia-Sierra F, LaPointe N, Miller R, Berry RW, Binder LI, Cryns VL (2003) Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc Natl Acad Sci USA 100(17):10032–10037. doi: 10.1073/pnas.1630428100 PubMedCrossRefGoogle Scholar
  18. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120(3):885–890. doi: 10.1016/S0006-291X(84)80190-4 PubMedCrossRefGoogle Scholar
  19. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3(4):519–526. doi: 10.1016/0896-6273(89)90210-9 PubMedCrossRefGoogle Scholar
  20. Goedert M, Crowther RA, Spillantini MG (1998) Tau mutations cause frontotemporal dementias. Neuron 21(5):955–958. doi: 10.1016/S0896-6273(00)80615-7 PubMedCrossRefGoogle Scholar
  21. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261(13):6084–6089PubMedGoogle Scholar
  22. Hanemaaijer R, Ginzburg I (1991) Involvement of mature tau isoforms in the stabilization of neurites in PC12 cells. J Neurosci Res 30(1):163–171. doi: 10.1002/jnr.490300117 PubMedCrossRefGoogle Scholar
  23. Hanger DP, Byers HL, Wray S, Leung KY, Saxton MJ, Seereeram A, Reynolds CH, Ward MA, Anderton BH (2007) Novel phosphorylation sites in tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. J Biol Chem 282(32):23645–23654. doi: 10.1074/jbc.M703269200 PubMedCrossRefGoogle Scholar
  24. Harada A, Oguchi K, Okabe S, Kuno J, Terada S, Ohshima T, Sato-Yoshitake R, Takei Y, Noda T, Hirokawa N (1994) Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature 369(6480):488–491. doi: 10.1038/369488a0 PubMedCrossRefGoogle Scholar
  25. Horiguchi T, Uryu K, Giasson BI, Ischiropoulos H, LightFoot R, Bellmann C, Richter-Landsberg C, Lee VM, Trojanowski JQ (2003) Nitration of tau protein is linked to neurodegeneration in tauopathies. Am J Pathol 163(3):1021–1031PubMedGoogle Scholar
  26. Hrnkova M, Zilka N, Minichova Z, Koson P, Novak M (2007) Neurodegeneration caused by expression of human truncated tau leads to progressive neurobehavioural impairment in transgenic rats. Brain Res 1130(1):206–213. doi: 10.1016/j.brainres.2006.10.085 PubMedCrossRefGoogle Scholar
  27. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd PR, Hayward N, Kwok JB, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP–17. Nature 393(6686):702–705. doi: 10.1038/31508 PubMedCrossRefGoogle Scholar
  28. Inouye H, Sharma D, Goux WJ, Kirschner DA (2006) Structure of core domain of fibril-forming PHF/Tau fragments. Biophys J 90(5):1774–1789. doi: 10.1529/biophysj.105.070136 PubMedCrossRefGoogle Scholar
  29. Iqbal K, Grundke-Iqbal I (2008) Alzheimer neurofibrillary degeneration: significance, etiopathogenesis, therapeutics and prevention. J Cell Mol Med 12(1):38–55. doi: 10.1111/j.1582-4934.2008.00225.x PubMedCrossRefGoogle Scholar
  30. Iqbal K, Alonso Adel C, Chen S, Chohan MO, El-Akkad E, Gong CX, Khatoon S, Li B, Liu F, Rahman A, Tanimukai H, Grundke-Iqbal I (2005) Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta 1739(2–3):198–210PubMedGoogle Scholar
  31. Ivanovova N, Handzusova M, Hanes J, Kontsekova E, Novak M (2008) High-yield purification of fetal tau preserving its structure and phosphorylation pattern. J Immunol Methods 339(1):17–22. doi: 10.1016/j.jim.2008.07.014 PubMedCrossRefGoogle Scholar
  32. Jensen PH, Hager H, Nielsen MS, Hojrup P, Gliemann J, Jakes R (1999) Alpha-synuclein binds to Tau and stimulates the protein kinase A-catalyzed tau phosphorylation of serine residues 262 and 356. J Biol Chem 274(36):25481–25489. doi: 10.1074/jbc.274.36.25481 PubMedCrossRefGoogle Scholar
  33. Khuebachova M, Verzillo V, Skrabana R, Ovecka M, Vaccaro P, Panni S, Bradbury A, Novak M (2002) Mapping the C terminal epitope of the Alzheimer’s disease specific antibody MN423. J Immunol Methods 262(1–2):205–215. doi: 10.1016/S0022-1759(02)00006-6 PubMedCrossRefGoogle Scholar
  34. Koson P, Zilka N, Kovac A, Kovacech B, Korenova M, Filipcik P, Novak M (2008) Truncated tau expression levels determine life span of a rat model of tauopathy without causing neuronal loss or correlating with terminal neurofibrillary tangle load. Eur J NeuroSci 28(2):239–246. doi: 10.1111/j.1460-9568.2008.06329.x PubMedCrossRefGoogle Scholar
  35. Lee G (2005) Tau and src family tyrosine kinases. Biochim Biophys Acta 1739(2–3):323–330PubMedGoogle Scholar
  36. Lim J, Lu KP (2005) Pinning down phosphorylated tau and tauopathies. Biochim Biophys Acta 1739(2–3):311–322PubMedGoogle Scholar
  37. Liu F, Li B, Tung EJ, Grundke-Iqbal I, Iqbal K, Gong CX (2007) Site-specific effects of tau phosphorylation on its microtubule assembly activity and self-aggregation. Eur J NeuroSci 26(12):3429–3436PubMedCrossRefGoogle Scholar
  38. Magnani E, Fan J, Gasparini L, Golding M, Williams M, Schiavo G, Goedert M, Amos LA, Spillantini MG (2007) Interaction of tau protein with the dynactin complex. EMBO J 26(21):4546–4554. doi: 10.1038/sj.emboj.7601878 PubMedCrossRefGoogle Scholar
  39. Mesco ER, Timiras PS (1991) Tau-ubiquitin protein conjugates in a human cell line. Mech Ageing Dev 61(1):1–9. doi: 10.1016/0047-6374(91)90002-H PubMedCrossRefGoogle Scholar
  40. Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Titani K, Ihara Y (1993) Ubiquitin is conjugated with amino-terminally processed tau in paired helical filaments. Neuron 10(6):1151–1160. doi: 10.1016/0896-6273(93)90063-W PubMedCrossRefGoogle Scholar
  41. Mukrasch MD, von Bergen M, Biernat J, Fischer D, Griesinger C, Mandelkow E, Zweckstetter M (2007) The “jaws” of the tau-microtubule interaction. J Biol Chem 282(16):12230–12239. doi: 10.1074/jbc.M607159200 PubMedCrossRefGoogle Scholar
  42. Novak M (1994) Truncated tau protein as a new marker for Alzheimer’s disease. Acta Virol 38(3):173–189PubMedGoogle Scholar
  43. Novak M, Wischik CM, Edwards P, Pannell R, Milstein C (1989) Characterisation of the first monoclonal antibody against the pronase resistant core of the Alzheimer PHF. Prog Clin Biol Res 317:755–761PubMedGoogle Scholar
  44. Novak M, Jakes R, Edwards PC, Milstein C, Wischik CM (1991) Difference between the tau protein of Alzheimer paired helical filament core and normal tau revealed by epitope analysis of monoclonal antibodies 423 and 7.51. Proc Natl Acad Sci USA 88(13):5837–5841. doi: 10.1073/pnas.88.13.5837 PubMedCrossRefGoogle Scholar
  45. Pevalova M, Filipcik P, Novak M, Avila J, Iqbal K (2006) Post-translational modifications of tau protein. Bratisl Lek Listy (Tlacene Vyd) 107(9–10):346–353Google Scholar
  46. Rapoport M, Dawson HN, Binder LI, Vitek MP, Ferreira A (2002) Tau is essential to beta -amyloid-induced neurotoxicity. Proc Natl Acad Sci USA 99(9):6364–6369. doi: 10.1073/pnas.092136199 PubMedCrossRefGoogle Scholar
  47. Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316(5825):750–754. doi: 10.1126/science.1141736 PubMedCrossRefGoogle Scholar
  48. Ruben GC, Iqbal K, Grundke-Iqbal I, Wisniewski HM, Ciardelli TL, Johnson JE Jr (1991) The microtubule-associated protein tau forms a triple-stranded left-hand helical polymer. J Biol Chem 266(32):22019–22027PubMedGoogle Scholar
  49. Schneider A, Biernat J, von Bergen M, Mandelkow E, Mandelkow EM (1999) Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry 38(12):3549–3558. doi: 10.1021/bi981874p PubMedCrossRefGoogle Scholar
  50. Seabrook GR, Ray WJ, Shearman M, Hutton M (2007) Beyond amyloid: the next generation of Alzheimer’s disease therapeutics. Mol Interv 7(5):261–270. doi: 10.1124/mi.7.5.8 PubMedCrossRefGoogle Scholar
  51. Sevcik J, Skrabana R, Dvorsky R, Csokova N, Iqbal K, Novak M (2007) X-ray structure of the PHF core C-terminus: insight into the folding of the intrinsically disordered protein tau in Alzheimer’s disease. FEBS Lett 581(30):5872–5878. doi: 10.1016/j.febslet.2007.11.067 PubMedCrossRefGoogle Scholar
  52. Siuti N, Kelleher NL (2007) Decoding protein modifications using top-down mass spectrometry. Nat Methods 4(10):817–821. doi: 10.1038/nmeth1097 PubMedCrossRefGoogle Scholar
  53. Skrabana R, Kontsek P, Mederlyova A, Iqbal K, Novak M (2004) Folding of Alzheimer’s core PHF subunit revealed by monoclonal antibody 423. FEBS Lett 568(1–3):178–182. doi: 10.1016/j.febslet.2004.04.098 PubMedCrossRefGoogle Scholar
  54. Skrabana R, Sevcik J, Novak M (2006) Intrinsically disordered proteins in the neurodegenerative processes: formation of tau protein paired helical filaments and their analysis. Cell Mol Neurobiol 26(7–8):1085–1097. doi: 10.1007/s10571-006-9083-3 PubMedGoogle Scholar
  55. Steinhilb ML, Dias-Santagata D, Fulga TA, Felch DL, Feany MB (2007a) Tau phosphorylation sites work in concert to promote neurotoxicity in vivo. Mol Biol Cell 18(12):5060–5068. doi: 10.1091/mbc.E07-04-0327 PubMedCrossRefGoogle Scholar
  56. Steinhilb ML, Dias-Santagata D, Mulkearns EE, Shulman JM, Biernat J, Mandelkow EM, Feany MB (2007b) S/P and T/P phosphorylation is critical for tau neurotoxicity in Drosophila. J Neurosci Res 85(6):1271–1278. doi: 10.1002/jnr.21232 PubMedCrossRefGoogle Scholar
  57. Uversky VN (2002) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11(4):739–756. doi: 10.1110/ps.4210102 PubMedCrossRefGoogle Scholar
  58. Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246. doi: 10.1146/annurev.biophys.37.032807.125924 PubMedCrossRefGoogle Scholar
  59. Visser NF, Heck AJ (2008) Surface plasmon resonance mass spectrometry in proteomics. Expert Rev Proteomics 5(3):425–433. doi: 10.1586/14789450.5.3.425 PubMedCrossRefGoogle Scholar
  60. Walsh DM, Selkoe DJ (2004) Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44(1):181–193. doi: 10.1016/j.neuron.2004.09.010 PubMedCrossRefGoogle Scholar
  61. Wischik CM, Novak M, Edwards PC, Klug A, Tichelaar W, Crowther RA (1988a) Structural characterization of the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci USA 85(13):4884–4888. doi: 10.1073/pnas.85.13.4884 PubMedCrossRefGoogle Scholar
  62. Wischik CM, Novak M, Thogersen HC, Edwards PC, Runswick MJ, Jakes R, Walker JE, Milstein C, Roth M, Klug A (1988b) Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci USA 85(12):4506–4510. doi: 10.1073/pnas.85.12.4506 PubMedCrossRefGoogle Scholar
  63. Zilka N, Filipcik P, Koson P, Fialova L, Skrabana R, Zilkova M, Rolkova G, Kontsekova E, Novak M (2006) Truncated tau from sporadic Alzheimer’s disease suffices to drive neurofibrillary degeneration in vivo. FEBS Lett 580(15):3582–3588. doi: 10.1016/j.febslet.2006.05.029 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Branislav Kovacech
    • 1
    • 2
  • Norbert Zilka
    • 1
    • 2
  • Michal Novak
    • 1
  1. 1.Institute of Neuroimmunology, AD Centre, Slovak Academy of SciencesBratislavaSlovak Republic
  2. 2.Axon Neuroscience GmbHViennaAustria

Personalised recommendations