Advertisement

Expression of the Dominant-Negative Tail of Myosin Va Enhances Exocytosis of Large Dense Core Vesicles in Neurons

  • Claudia Margarethe Bittins
  • Tilo Wolf Eichler
  • Hans-Hermann GerdesEmail author
Original Paper

Abstract

Regulated exocytosis of secretory vesicles is a fundamental process in neurotransmission and the release of hormones and growth factors. The F-actin-binding motor protein myosin Va was recently shown to be involved in exocytosis of peptide-containing large dense core vesicles of neuroendocrine cells. It has not previously been discussed whether it plays a similar role in neurons. We performed live-cell imaging of cultured hippocampal neurons to measure the exocytosis of large dense core vesicles containing fluorescently labelled neuropeptide Y. To address the role of myosin Va in this process, neurons were transfected with the dominant-negative tail domain of myosin Va (myosinVa-tail). Under control conditions, about 0.75% of the labelled large dense core vesicles underwent exocytosis during 5 min of stimulation. This value was doubled to 1.80% of the vesicles when myosinVa-tail was expressed. Depolymerization of F-actin using latrunculin B resulted in a similar increase in exocytosis in both control and myosinVa-tail expressing cells. Interestingly, the increase in exocytosis caused by myosinVa-tail expression was completely abolished in the presence of KN-62, an inhibitor of calcium–calmodulin-dependent kinase II. We suggest that myosinVa-tail causes the liberation of large dense core vesicles from the actin cytoskeleton, leading to an increase in exocytosis in the cultured hippocampal neurons.

Keywords

Neuropeptide Y Hippocampal neurons Large dense core vesicles Exocytosis Myosin Va 

Abbreviations

BPB

Bromphenol blue

EGFP

Enhanced green fluorescent protein

NPY

Neuropeptide Y

LDCVs

Large dense core vesicles

K+

Potassium ions

ROI

Region of interest

CaMKII

Calcium- and calmodulin-dependent kinase II

BDNF

Brain-derived neurotrophic factor

SGII

Secretogranin II

Notes

Acknowledgements

The imaging was performed at the Molecular Imaging Center (FUGE, Norwegian Research Council), University of Bergen. The authors are grateful to W. Almers for providing NPY-EGFP and NPY-mRFP, to J. A. Hammer III for providing myosinVa-tail-mCherry, to C. Kaether providing synaptophysin-EGFP and to the University of Bergen for financial support including research fellowships. H.-H. G. acknowledges grants from the Meltzer Foundation.

Supplementary material

Time-lapse recording of a neuron at 18 DIV transfected with NPY-EGFP (green) and mCherry (not shown). One frame was taken every two seconds for ten minutes. Cells were kept in a low- K+-buffer (2,5mM K+) for five minutes (−300s - 0s) followed by a high- K+-buffer (60 mM K+) to depolarize the plasma membrane for another five minutes (0s - 300s).The arrow points to a vesicle (a) that disappears at 214s (= 3,5 min) of depolarization. Please see figure 1 B1 for the intensity profile of vesicle (a).

Control experiment with a neuron transfected with synaptophysin-GFP. The cell was imaged as in movie 1. Note that synaptophysin-GFP signals do not disappear.

The time-lapse recording of a neuron transfected with NPY-EGFP and myosinVa-tail-mCherry.The movie shows NPY-EGFP fluorescence. Arrows point to the vesicles that disappear during plasma membrane depolarization (60 mM K+; 0s - 300s).

References

  1. Abney JR, Meliza CD, Cutler B, Kingma M, Lochner JE, Scalettar BA (1999) Real-time imaging of the dynamics of secretory granules in growth cones. Biophys J 77:2887–2895. doi: 10.1016/S0006-3495(99)77120-1 PubMedCrossRefGoogle Scholar
  2. Alfalah M, Beck-Sickinger AG, Bedoui S, Brennauer A, Buschauer A, Carvajal C, Cox HM, Crowley WR, Della-Zuana O, Dove S et al (2004) Neuropeptide Y and related peptides, vol 162. Springer, BerlinGoogle Scholar
  3. Brown JR, Stafford P, Langford GM (2004) Short-range axonal/dendritic transport by myosin-V: a model for vesicle delivery to the synapse. J Neurobiol 58:175–188. doi: 10.1002/neu.10317 PubMedCrossRefGoogle Scholar
  4. Burgoyne RD, Morgan A (1998) Calcium sensors in regulated exocytosis. Cell Calcium 24:367–376. doi: 10.1016/S0143-4160(98)90060-4 PubMedCrossRefGoogle Scholar
  5. Burgoyne RD, Morgan A (2003) Secretory granule exocytosis. Physiol Rev 83:581–632PubMedGoogle Scholar
  6. Burgoyne RD, Morgan A, O’Sullivan AJ (1989) The control of cytoskeletal actin and exocytosis in intact and permeabilized adrenal chromaffin cells: role of calcium and protein kinase C. Cell Signal 1:323–334. doi: 10.1016/0898-6568(89)90051-X PubMedCrossRefGoogle Scholar
  7. Cheek TR, Burgoyne RD (1987) Cyclic AMP inhibits both nicotine-induced actin disassembly and catecholamine secretion from bovine adrenal chromaffin cells. J Biol Chem 262:11663–11666PubMedGoogle Scholar
  8. Cingolani LA, Goda Y (2008) Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci 9:344–356. doi: 10.1038/nrn2373 PubMedCrossRefGoogle Scholar
  9. Coelho MV, Larson RE (1993) Ca(2+)-dependent phosphorylation of the tail domain of myosin-V, a calmodulin-binding myosin in vertebrate brain. Braz J Med Biol Res 26:465–472PubMedGoogle Scholar
  10. Correia SS, Bassani S, Brown TC, Lise MF, Backos DS, El-Husseini A, Passafaro M, Esteban JA (2008) Motor protein-dependent transport of AMPA receptors into spines during long-term potentiation. Nat Neurosci 11:457–466. doi: 10.1038/nn2063 PubMedCrossRefGoogle Scholar
  11. Costa MC, Mani F, Santoro W Jr, Espreafico EM, Larson RE (1999) Brain myosin-V, a calmodulin-carrying myosin, binds to calmodulin-dependent protein kinase II and activates its kinase activity. J Biol Chem 274:15811–15819. doi: 10.1074/jbc.274.22.15811 PubMedCrossRefGoogle Scholar
  12. Degtyar VE, Allersma MW, Axelrod D, Holz RW (2007) Increased motion and travel, rather than stable docking, characterize the last moments before secretory granule fusion. Proc Natl Acad Sci USA 104:15929–15934. doi: 10.1073/pnas.0705406104 PubMedCrossRefGoogle Scholar
  13. Desnos C, Huet S, Fanget I, Chapuis C, Bottiger C, Racine V, Sibarita JB, Henry JP, Darchen F (2007) Myosin Va mediates docking of secretory granules at the plasma membrane. J Neurosci 27:10636–10645. doi: 10.1523/JNEUROSCI.1228-07.2007 PubMedCrossRefGoogle Scholar
  14. Douglas WW (1968) Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br J Pharmacol 34:451–474PubMedGoogle Scholar
  15. Duncan RR, Greaves J, Wiegand UK, Matskevich I, Bodammer G, Apps DK, Shipston MJ, Chow RH (2003) Functional and spatial segregation of secretory vesicle pools according to vesicle age. Nature 422:176–180. doi: 10.1038/nature01389 PubMedCrossRefGoogle Scholar
  16. Eichler TW, Kogel T, Bukoreshtliev NV, Gerdes HH (2006) The role of myosin Va in secretory granule trafficking and exocytosis. Biochem Soc Trans 34:671–674. doi: 10.1042/BST0340671 PubMedCrossRefGoogle Scholar
  17. Eitzen G (2003) Actin remodeling to facilitate membrane fusion. Biochim Biophys Acta 1641:175–181. doi: 10.1016/S0167-4889(03)00087-9 PubMedCrossRefGoogle Scholar
  18. Goslin K, Banker GA (1998) Rat hippocampal neurons in low-density culture. In culturing nerve cells, 2nd edn. MIT Press, Cambridge, MA, pp 339–370Google Scholar
  19. Han W, Ng YK, Axelrod D, Levitan ES (1999) Neuropeptide release by efficient recruitment of diffusing cytoplasmic secretory vesicles. Proc Natl Acad Sci USA 96:14577–14582. doi: 10.1073/pnas.96.25.14577 PubMedCrossRefGoogle Scholar
  20. Harata NC, Choi S, Pyle JL, Aravanis AM, Tsien RW (2006) Frequency-dependent kinetics and prevalence of kiss-and-run and reuse at hippocampal synapses studied with novel quenching methods. Neuron 49:243–256. doi: 10.1016/j.neuron.2005.12.018 PubMedCrossRefGoogle Scholar
  21. Hvalby O, Hemmings HC Jr, Paulsen O, Czernik AJ, Nairn AC, Godfraind JM, Jensen V, Raastad M, Storm JF, Andersen P et al (1994) Specificity of protein kinase inhibitor peptides and induction of long-term potentiation. Proc Natl Acad Sci USA 91:4761–4765. doi: 10.1073/pnas.91.11.4761 PubMedCrossRefGoogle Scholar
  22. Ivarsson R, Jing X, Waselle L, Regazzi R, Renstrom E (2005) Myosin 5a controls insulin granule recruitment during late-phase secretion. Traffic 6:1027–1035. doi: 10.1111/j.1600-0854.2005.00342.x PubMedCrossRefGoogle Scholar
  23. Johns LM, Levitan ES, Shelden EA, Holz RW, Axelrod D (2001) Restriction of secretory granule motion near the plasma membrane of chromaffin cells. J Cell Biol 153:177–190. doi: 10.1083/jcb.153.1.177 PubMedCrossRefGoogle Scholar
  24. Kaether C, Skehel P, Dotti CG (2000) Axonal membrane proteins are transported in distinct carriers: a two-color video microscopy study in cultured hippocampal neurons. Mol Biol Cell 11:1213–1224PubMedGoogle Scholar
  25. Karatekin E, Tran VS, Huet S, Fanget I, Cribier S, Henry JP (2008) A 20-nm step toward the cell membrane preceding exocytosis may correspond to docking of tethered granules. Biophys J 94:2891–2905. doi: 10.1529/biophysj.107.116756 PubMedCrossRefGoogle Scholar
  26. Karcher RL, Roland JT, Zappacosta F, Huddleston MJ, Annan RS, Carr SA, Gelfand VI (2001) Cell cycle regulation of myosin-V by calcium/calmodulin-dependent protein kinase II. Science 293:1317–1320. doi: 10.1126/science.1061086 PubMedCrossRefGoogle Scholar
  27. Katz B, Miledi R (1965) The effect of calcium on acetylcholine release from motor nerve terminals. Proc R Soc Lond B Biol Sci 161:496–503. doi: 10.1098/rspb.1965.0017 PubMedCrossRefGoogle Scholar
  28. Kolarow R, Brigadski T, Lessmann V (2007) Postsynaptic secretion of BDNF and NT-3 from hippocampal neurons depends on calcium calmodulin kinase II signaling and proceeds via delayed fusion pore opening. J Neurosci 27:10350–10364. doi: 10.1523/JNEUROSCI.0692-07.2007 PubMedCrossRefGoogle Scholar
  29. Lang T, Wacker I, Wunderlich I, Rohrbach A, Giese G, Soldati T, Almers W (2000) Role of actin cortex in the subplasmalemmal transport of secretory granules in PC-12 cells. Biophys J 78:2863–2877. doi: 10.1016/S0006-3495(00)76828-7 PubMedCrossRefGoogle Scholar
  30. Li G, Rungger-Brandle E, Just I, Jonas JC, Aktories K, Wollheim CB (1994) Effect of disruption of actin filaments by Clostridium botulinum C2 toxin on insulin secretion in HIT-T15 cells and pancreatic islets. Mol Biol Cell 5:1199–1213PubMedGoogle Scholar
  31. Libby RT, Lillo C, Kitamoto J, Williams DS, Steel KP (2004) Myosin Va is required for normal photoreceptor synaptic activity. J Cell Sci 117:4509–4515. doi: 10.1242/jcs.01316 PubMedCrossRefGoogle Scholar
  32. Malinow R, Schulman H, Tsien RW (1989) Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245:862–866. doi: 10.1126/science.2549638 PubMedCrossRefGoogle Scholar
  33. Mercer JA, Seperack PK, Strobel MC, Copeland NG, Jenkins NA (1991) Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature 349:709–713. doi: 10.1038/349709a0 PubMedCrossRefGoogle Scholar
  34. Miyata M, Finch EA, Khiroug L, Hashimoto K, Hayasaka S, Oda SI, Inouye M, Takagishi Y, Augustine GJ, Kano M (2000) Local calcium release in dendritic spines required for long-term synaptic depression. Neuron 28:233–244. doi: 10.1016/S0896-6273(00)00099-4 PubMedCrossRefGoogle Scholar
  35. Morales M, Colicos MA, Goda Y (2000) Actin-dependent regulation of neurotransmitter release at central synapses. Neuron 27:539–550. doi: 10.1016/S0896-6273(00)00064-7 PubMedCrossRefGoogle Scholar
  36. Ng YK, Lu X, Levitan ES (2002) Physical mobilization of secretory vesicles facilitates neuropeptide release by nerve growth factor-differentiated PC12 cells. J Physiol 542:395–402. doi: 10.1113/jphysiol.2002.021733 PubMedCrossRefGoogle Scholar
  37. Nguyen H, Higuchi H (2005) Motility of myosin V regulated by the dissociation of single calmodulin. Nat Struct Mol Biol 12:127–132. doi: 10.1038/nsmb894 PubMedCrossRefGoogle Scholar
  38. Ohashi S, Koike K, Omori A, Ichinose S, Ohara S, Kobayashi S, Sato TA, Anzai K (2002) Identification of mRNA/protein (mRNP) complexes containing Puralpha, mStaufen, fragile X protein, and myosin Va and their association with rough endoplasmic reticulum equipped with a kinesin motor. J Biol Chem 277:37804–37810. doi: 10.1074/jbc.M203608200 PubMedCrossRefGoogle Scholar
  39. Oheim M, Loerke D, Stuhmer W, Chow RH (1999) Multiple stimulation-dependent processes regulate the size of the releasable pool of vesicles. Eur Biophys J 28:91–101. doi: 10.1007/s002490050188 PubMedCrossRefGoogle Scholar
  40. Ohyama A, Komiya Y, Igarashi M (2001) Globular tail of myosin-V is bound to vamp/synaptobrevin. Biochem Biophys Res Commun 280:988–991. doi: 10.1006/bbrc.2001.4236 PubMedCrossRefGoogle Scholar
  41. Orci L, Gabbay KH, Malaisse WJ (1972) Pancreatic beta-cell web: its possible role in insulin secretion. Science 175:1128–1130. doi: 10.1126/science.175.4026.1128 PubMedCrossRefGoogle Scholar
  42. Pastural E, Barrat FJ, Dufourcq-Lagelouse R, Certain S, Sanal O, Jabado N, Seger R, Griscelli C, Fischer A, t Basile G (1997) Griscelli disease maps to chromosome 15q21 and is associated with mutations in the myosin-Va gene. Nat Genet 16:289–292. doi: 10.1038/ng0797-289 PubMedCrossRefGoogle Scholar
  43. Pelletier G, Guy J, Allen YS, Polak JM (1984) Electron microscope immunocytochemical localization of neuropeptide Y (NPY) in the rat brain. Neuropeptides 4:319–324. doi: 10.1016/0143-4179(84)90006-4 PubMedCrossRefGoogle Scholar
  44. Prekeris R, Terrian DM (1997) Brain myosin V is a synaptic vesicle-associated motor protein: evidence for a Ca2+-dependent interaction with the synaptobrevin–synaptophysin complex. J Cell Biol 137:1589–1601. doi: 10.1083/jcb.137.7.1589 PubMedCrossRefGoogle Scholar
  45. Rao MV, Engle LJ, Mohan PS, Yuan A, Qiu D, Cataldo A, Hassinger L, Jacobsen S, Lee VM, Andreadis A et al (2002) Myosin Va binding to neurofilaments is essential for correct myosin Va distribution and transport and neurofilament density. J Cell Biol 159:279–290. doi: 10.1083/jcb.200205062 PubMedCrossRefGoogle Scholar
  46. Reck-Peterson SL, Provance DW Jr, Mooseker MS, Mercer JA (2000) Class V myosins. Biochim Biophys Acta 1496:36–51. doi: 10.1016/S0167-4889(00)00007-0 PubMedCrossRefGoogle Scholar
  47. Rose SD, Lejen T, Casaletti L, Larson RE, Pene TD, Trifaro JM (2003) Myosins II and V in chromaffin cells: myosin V is a chromaffin vesicle molecular motor involved in secretion. J Neurochem 85:287–298. doi: 10.1046/j.1471-4159.2003.01649.x PubMedCrossRefGoogle Scholar
  48. Rudolf R, Kogel T, Kuznetsov SA, Salm T, Schlicker O, Hellwig A, Hammer JAIII, Gerdes HH (2003) Myosin Va facilitates the distribution of secretory granules in the F-actin rich cortex of PC12 cells. J Cell Sci 116:1339–1348. doi: 10.1242/jcs.00317 PubMedCrossRefGoogle Scholar
  49. Schnell E, Nicoll RA (2001) Hippocampal synaptic transmission and plasticity are preserved in myosin Va mutant mice. J Neurophysiol 85:1498–1501PubMedGoogle Scholar
  50. Seward EP, Chernevskaya NI, Nowycky MC (1995) Exocytosis in peptidergic nerve terminals exhibits two calcium-sensitive phases during pulsatile calcium entry. J Neurosci 15:3390–3399PubMedGoogle Scholar
  51. Silverman MA, Johnson S, Gurkins D, Farmer M, Lochner JE, Rosa P, Scalettar BA (2005) Mechanisms of transport and exocytosis of dense-core granules containing tissue plasminogen activator in developing hippocampal neurons. J Neurosci 25:3095–3106. doi: 10.1523/JNEUROSCI.4694-04.2005 PubMedCrossRefGoogle Scholar
  52. Sloane JA, Vartanian TK (2007) Myosin Va controls oligodendrocyte morphogenesis and myelination. J Neurosci 27:11366–11375. doi: 10.1523/JNEUROSCI.2326-07.2007 PubMedCrossRefGoogle Scholar
  53. Steyer JA, Almers W (1999) Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy. Biophys J 76:2262–2271. doi: 10.1016/S0006-3495(99)77382-0 PubMedCrossRefGoogle Scholar
  54. Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547. doi: 10.1146/annurev.neuro.26.041002.131412 PubMedCrossRefGoogle Scholar
  55. Takagishi Y, Oda S, Hayasaka S, Dekker-Ohno K, Shikata T, Inouye M, Yamamura H (1996) The dilute-lethal (dl) gene attacks a Ca2+ store in the dendritic spine of Purkinje cells in mice. Neurosci Lett 215:169–172PubMedGoogle Scholar
  56. Thurmond DC, Gonelle-Gispert C, Furukawa M, Halban PA, Pessin JE (2003) Glucose-stimulated insulin secretion is coupled to the interaction of actin with the t-SNARE (target membrane soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein) complex. Mol Endocrinol 17:732–742. doi: 10.1210/me.2002-0333 PubMedCrossRefGoogle Scholar
  57. Tobin VA, Ludwig M (2007) The role of the actin cytoskeleton in oxytocin and vasopressin release from rat supraoptic nucleus neurons. J Physiol 582:1337–1348. doi: 10.1113/jphysiol.2007.132639 PubMedCrossRefGoogle Scholar
  58. Varadi A, Tsuboi T, Rutter GA (2005) Myosin Va transports dense core secretory vesicles in pancreatic MIN6 beta-cells. Mol Biol Cell 16:2670–2680. doi: 10.1091/mbc.E04-11-1001 PubMedCrossRefGoogle Scholar
  59. Verhage M, McMahon HT, Ghijsen WE, Boomsma F, Scholten G, Wiegant VM, Nicholls DG (1991) Differential release of amino acids, neuropeptides, and catecholamines from isolated nerve terminals. Neuron 6:517–524. doi: 10.1016/0896-6273(91)90054-4 PubMedCrossRefGoogle Scholar
  60. Vitale ML, Seward EP, Trifaro JM (1995) Chromaffin cell cortical actin network dynamics control the size of the release-ready vesicle pool and the initial rate of exocytosis. Neuron 14:353–363. doi: 10.1016/0896-6273(95)90291-0 PubMedCrossRefGoogle Scholar
  61. Watanabe M, Nomura K, Ohyama A, Ishikawa R, Komiya Y, Hosaka K, Yamauchi E, Taniguchi H, Sasakawa N, Kumakura K et al (2005) Myosin-Va regulates exocytosis through the submicromolar Ca2+-dependent binding of syntaxin-1A. Mol Biol Cell 16:4519–4530. doi: 10.1091/mbc.E05-03-0252 PubMedCrossRefGoogle Scholar
  62. Wu X, Bowers B, Rao K, Wei Q, Hammer JAIII (1998) Visualization of melanosome dynamics within wild-type and dilute melanocytes suggests a paradigm for myosin V function in vivo. J Cell Biol 143:1899–1918. doi: 10.1083/jcb.143.7.1899 PubMedCrossRefGoogle Scholar
  63. Yoshizaki T, Imamura T, Babendure JL, Lu JC, Sonoda N, Olefsky JM (2007) Myosin 5a is an insulin-stimulated Akt2 (protein kinase Bbeta) substrate modulating GLUT4 vesicle translocation. Mol Cell Biol 27:5172–5183. doi: 10.1128/MCB.02298-06 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Claudia Margarethe Bittins
    • 1
  • Tilo Wolf Eichler
    • 1
  • Hans-Hermann Gerdes
    • 1
    Email author
  1. 1.Department of BiomedicineUniversity of BergenBergenNorway

Personalised recommendations