Advertisement

Cellular and Molecular Neurobiology

, Volume 29, Issue 3, pp 309–316 | Cite as

Detachment of Brain Pericytes from the Basal Lamina is Involved in Disruption of the Blood–Brain Barrier Caused by Lipopolysaccharide-Induced Sepsis in Mice

  • Tsuyoshi Nishioku
  • Shinya Dohgu
  • Fuyuko Takata
  • Tomoaki Eto
  • Naoko Ishikawa
  • Kota B. Kodama
  • Shinsuke Nakagawa
  • Atsushi Yamauchi
  • Yasufumi KataokaEmail author
Original Paper

Abstract

The blood–brain barrier (BBB) is highly restrictive of the transport of substances between blood and the central nervous system. Brain pericytes are one of the important cellular constituents of the BBB and are multifunctional, polymorphic cells that lie within the microvessel basal lamina. The present study aimed to evaluate the role of pericytes in the mediation of BBB disruption using a lipopolysaccharide (LPS)-induced model of septic encephalopathy in mice. ICR mice were injected intraperitoneally with LPS or saline and were sacrificed at 1, 3, 6, and 24 h after injection. Sodium fluorescein accumulated with time in the hippocampus after LPS injection; this hyperpermeability was supported by detecting the extravasation of fibrinogen. Microglia were activated and the number of microglia increased with time after LPS injection. LPS-treated mice exhibited a broken basal lamina and pericyte detachment from the basal lamina at 6–24 h after LPS injection. The disorganization in the pericyte and basal lamina unit was well correlated with increased microglial activation and increased cerebrovascular permeability in LPS-treated mice. These findings suggest that pericyte detachment and microglial activation may be involved in the mediation of BBB disruption due to inflammatory responses in the damaged brain.

Keywords

Blood–brain barrier Brain pericytes Basal lamina Microglia Lipopolysaccharide Inflammation 

Notes

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research [(B) 17390159], Grants-in-Aid for Young Scientists [(Start-up) 18890227], Grants-in-Aid for Young Scientists [(B) 19790199] from JSPS, Japan, the Ministry of Health, Labor and Welfare of Japan (H19-nanchi-ippan-006), the Nakatomi Foundation and Research Foundation ITSUU Laboratory. The authors thank Dr. Mária A. Deli (Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences) for pertinent comments on the manuscript and Ms. Hiromi Nakanishi for technical assistance.

References

  1. Adams RA, Bauer J, Flick MJ, Sikorski SL, Nuriel T, Lassmann H, Degen JL, Akassoglou K (2007) The fibrin-derived gamma377–395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease. J Exp Med 204(3):571–582. doi: 10.1084/jem.20061931 PubMedCrossRefGoogle Scholar
  2. Allt G, Lawrenson JG (2001) Pericytes: cell biology and pathology. Cells Tissues Organs 169(1):1–11. doi: 10.1159/000047855 PubMedCrossRefGoogle Scholar
  3. Clawson CC, Hartmann JF, Vernier RL (1966) Electron microscopy of the effect of gram-negative endotoxin on the blood–brain barrier. J Comp Neurol 127:183–198. doi: 10.1002/cne.901270204 PubMedCrossRefGoogle Scholar
  4. Cogan DG, Toussaint D, Kuwabara T (1961) Retinal vascular patterns. IV. Diabetic retinopathy. Arch Ophthalmol 66:366–378PubMedGoogle Scholar
  5. Crosby JR, Seifert RA, Soriano P, Bowen-Pope DF (1998) Chimaeric analysis reveals role of Pdgf receptors in all muscle lineages. Nat Genet 18(4):385–388. doi: 10.1038/ng0498-385 PubMedCrossRefGoogle Scholar
  6. Deng X, Wang X, Anderrson R (1995) Endothelial barrier resistance in multiple organs after septic and nonseptic challenges in the rat. J Appl Physiol 78:2052–2061PubMedGoogle Scholar
  7. Dohgu S, Takata F, Yamauchi A, Nakagawa S, Egawa T, Naito M, Tsuruo T, Sawada Y, Niwa M, Kataoka Y (2005) Brain pericytes contribute to the induction and up-regulation of blood-brain barrier functions through transforming growth factor-beta production. Brain Res 1038:208–215. doi: 10.1016/j.brainres.2005.01.027 PubMedCrossRefGoogle Scholar
  8. Dore-Duffy P, Owen C, Balabanov R, Murphy S, Beaumont T, Rafols JA (2000) Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res 60(1):55–69. doi: 10.1006/mvre.2000.2244 PubMedCrossRefGoogle Scholar
  9. Edelman DA, Jiang Y, Tyburski J, Wilson RF, Steffes C (2006) Toll-like receptor-4 message is up-regulated in lipopolysaccharide-exposed rat lung pericytes. J Surg Res 134(1):22–27. doi: 10.1016/j.jss.2006.03.007 PubMedCrossRefGoogle Scholar
  10. Edelman DA, Jiang Y, Tyburski JG, Wilson RF, Steffes CP (2007a) Cytokine production in lipopolysaccharide-exposed rat lung pericytes. J Trauma 62(1):89–93. doi: 10.1097/TA.0b013e31802dd712 PubMedCrossRefGoogle Scholar
  11. Edelman DA, Jiang Y, Tyburski JG, Wilson RF, Steffes CP (2007b) Lipopolysaccharide activation of pericyte’s Toll-like receptor-4 regulates co-culture permeability. Am J Surg 193(6):730–735. doi: 10.1016/j.amjsurg.2006.08.086 PubMedCrossRefGoogle Scholar
  12. Farkas E, Luiten PG (2001) Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol 64(6):575–611. doi: 10.1016/S0301-0082(00)00068-X PubMedCrossRefGoogle Scholar
  13. Gonul E, Duz B, Kahraman S, Kayali H, Kubar A, Timurkaynak E (2002) Early pericyte response to brain hypoxia in cats: an ultrastructural study. Microvasc Res 64(1):116–119. doi: 10.1006/mvre.2002.2413 PubMedCrossRefGoogle Scholar
  14. Gurney KJ, Estrada EY, Rosenberg GA (2006) Blood-brain barrier disruption by stromelysin-1 facilitates neutrophil infiltration in neuroinflammation. Neurobiol Dis 23(1):87–96. doi: 10.1016/j.nbd.2006.02.006 PubMedCrossRefGoogle Scholar
  15. Gursoy-Ozdemir Y, Qiu J, Matsuoka N, Bolay H, Bermpohl D, Jin H, Wang X, Rosenberg GA, Lo EH, Moskowitz MA (2004) Cortical spreading depression activates and upregulates MMP-9. J Clin Invest 113(10):1447–1455PubMedGoogle Scholar
  16. Hammes HP, Lin J, Renner O, Shani M, Lundqvist A, Betsholtz C, Brownlee M, Deutsch U (2002) Pericytes and the pathogenesis of diabetic retinopathy. Diabetes 51(10):3107–3112. doi: 10.2337/diabetes.51.10.3107 PubMedCrossRefGoogle Scholar
  17. Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173–185. doi: 10.1124/pr.57.2.4 PubMedCrossRefGoogle Scholar
  18. Hellstrom M, Gerhardt H, Kalen M, Li X, Eriksson U, Wolburg H, Betsholtz C (2001) Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153:543–553. doi: 10.1083/jcb.153.3.543 PubMedCrossRefGoogle Scholar
  19. Jeppson B, Freund HR, Gimmon Z, James JH, von Meyenfeldt MF, Fischer JE (1981) Blood–brain barrier derangement in sepsis: cause of septic encephalopathy? Am J Surg 141:136–141. doi: 10.1016/0002-9610(81)90026-X CrossRefGoogle Scholar
  20. Lemstra AW, Groen in’t Woud JC, Hoozemans JJ, van Haastert ES, Rozemuller AJ, Eikelenboom P, van Gool WA (2007) Microglia activation in sepsis: a case-control study. J Neuroinflammation 4:4. doi: 10.1186/1742-2094-4-4 PubMedCrossRefGoogle Scholar
  21. Lindahl P, Johansson BR, Levéen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277(5323):242–245. doi: 10.1126/science.277.5323.242 PubMedCrossRefGoogle Scholar
  22. Löscher W, Potschka H (2005) Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 6(8):591–602. doi: 10.1038/nrn1728 PubMedCrossRefGoogle Scholar
  23. Maekawa T, Fujii Y, Sadamitsu D, Yokota K, Soejima Y, Ishikawa T, Miyauchi Y, Takeshita H (1991) Cerebral circulation and metabolism in patients with septic encephalopathy. Am J Emerg Med 9(2):139–143. doi: 10.1016/0735-6757(91)90175-J PubMedCrossRefGoogle Scholar
  24. Melgar MA, Rafols J, Gloss D, Diaz FG (2005) Postischemic reperfusion: ultrastructural blood-brain barrier and hemodynamic correlative changes in an awake model of transient forebrain ischemia. Neurosurgery 56(3):571–581. doi: 10.1227/01.NEU.0000154702.23664.3D PubMedCrossRefGoogle Scholar
  25. Nakagawa S, Deli MA, Nakao S, Honda M, Hayashi K, Nakaoke R, Kataoka Y, Niwa M (2007) Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol 27(6):687–694. doi: 10.1007/s10571-007-9195-4 PubMedCrossRefGoogle Scholar
  26. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318. doi: 10.1126/science.1110647 PubMedCrossRefGoogle Scholar
  27. Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates. Academic Press, San DiegoGoogle Scholar
  28. Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443(7112):700–704. doi: 10.1038/nature05193 PubMedCrossRefGoogle Scholar
  29. Ramsauer M, Krause D, Dermietzel R (2002) Angiogenesis of the blood-brain barrier in vitro and the function of cerebral pericytes. FASEB J 16(10):1274–1276PubMedGoogle Scholar
  30. Rucker HK, Wynder HJ, Thomas WE (2000) Cellular mechanisms of CNS pericytes. Brain Res Bull 51(5):363–369. doi: 10.1016/S0361-9230(99)00260-9 PubMedCrossRefGoogle Scholar
  31. Semmler A, Frisch C, Debeir T, Ramanathan M, Okulla T, Klockgether T, Heneka MT (2007) Long-term cognitive impairment, neuronal loss and reduced cortical cholinergic innervation after recovery from sepsis in a rodent model. Exp Neurol 204(2):733–740. doi: 10.1016/j.expneurol.2007.01.003 PubMedCrossRefGoogle Scholar
  32. Shepro D, Morel NM (1993) Pericyte physiology. FASEB J 7(11):1031–1038PubMedGoogle Scholar
  33. Takata F, Dohgu S, Yamauchi A, Sumi N, Nakagawa S, Naito M, Tsuruo T, Shuto H, Kataoka Y (2007) Inhibition of transforming growth factor-beta production in brain pericytes contributes to cyclosporin A-induced dysfunction of the blood-brain barrier. Cell Mol Neurobiol 27(3):317–328. doi: 10.1007/s10571-006-9125-x PubMedCrossRefGoogle Scholar
  34. Titheradge MA (1999) Nitric oxide in septic shock. Biochim Biophys Acta 1411(2–3):437–455. doi: 10.1016/S0005-2728(99)00031-6 PubMedGoogle Scholar
  35. von Tell D, Armulik A, Betsholtz C (2006) Pericytes and vascular stability. Exp Cell Res 312(5):623–629. doi: 10.1016/j.yexcr.2005.10.019 CrossRefGoogle Scholar
  36. Young GB, Bolton CF, Austin TW, Archibald YM, Gonder J, Wells GA (1990) The encephalopathy associated with septic illness. Clin Invest Med 13(6):297–304PubMedGoogle Scholar
  37. Young GB, Bolton CF, Archibald YM, Austin TW, Wells GA (1992) The electroencephalogram in sepsis-associated encephalopathy. J Clin Neurophysiol 9(1):145–152. doi: 10.1097/00004691-199201000-00016 PubMedCrossRefGoogle Scholar
  38. Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57(2):178–201. doi: 10.1016/j.neuron.2008.01.003 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Tsuyoshi Nishioku
    • 1
  • Shinya Dohgu
    • 1
  • Fuyuko Takata
    • 1
    • 2
  • Tomoaki Eto
    • 1
  • Naoko Ishikawa
    • 1
  • Kota B. Kodama
    • 1
  • Shinsuke Nakagawa
    • 2
    • 3
  • Atsushi Yamauchi
    • 1
  • Yasufumi Kataoka
    • 1
    • 2
    Email author
  1. 1.Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
  2. 2.BBB LaboratoryPharmaCo-Cell Co., LtdNagasakiJapan
  3. 3.Department of Pharmacology 1, Graduate School of MedicineNagasaki UniversityNagasakiJapan

Personalised recommendations