Cellular and Molecular Neurobiology

, Volume 29, Issue 2, pp 219–224 | Cite as

The Binding of Donepezil with External Mouth of K+-Channels of Molluscan Neurons

  • Elena I. SolntsevaEmail author
  • Julia V. Bukanova
  • Evgeny V. Marchenko
  • Alexey V. Rossokhin
  • Vladimir G. Skrebitsky
Original Paper


Earlier, we have shown a strong inhibitory effect of donepezil on K+-current of molluscan neurons (Solntseva et al., Comp Biochem Physiol 144, 319–326, 2007). In the present work, a possible interaction of donepezil with the external mouth of the channel was examined using, as a tool, tetraethylammonium (TEA), a classical antagonist of potassium channels. Experiments were conducted in isolated neurons of snail Helix aspersa using the two-microelectrode voltage-clamp technique. A high-threshold slow-inactivating K+-current involving Ca2+-dependent (I C) and Ca2+-independent (I K) components was recorded. The I C was estimated at 30 mV, and I K at 100 mV. The IC50 values for blocking effect of donepezil on I C varied from 5.0 to 8.9 μM in different cells. Corresponding values for I K varied from 4.9 to 9.9 μM. The IC50 values for blocking effect of TEA on I C lied in the range of 200 to 910 μM, and on I K lied in the range of 100 to 990 μM. The comparison of the effects of donepezil and TEA on the same cells revealed significant correlation between IC50 values of these effects. The value of Spearman coefficient of correlation (r) was 0.77 for I C (P < 0.05), and 0.82 for I K (P < 0.05). In the presence of TEA, the effect of donepezil, both on I C and I K, appears significantly weaker than in control solution. Dose–response curves of donepezil effect both on I C and I K were shifted right along horizontal axis when donepezil was applied in combination with TEA. Results suggest that TEA interferes with donepezil and precludes the occupation by donepezil of its own site. We suppose that the site for donepezil is situated near the TEA site with possible overlap.


Donepezil Tetraethylammonium Voltage-gated potassium current Molluscan neurons 



This work was supported by Grant 07-04-00636 from the Russian Foundation for Basic Research.


  1. Andalib P, Consiglio JF, Trapani JG, Korn SJ (2004) The external TEA binding site and C-type inactivation in voltage-gated potassium channels. Biophys J 87:3148–3161. doi: 10.1529/biophysj.104.046664 PubMedCrossRefGoogle Scholar
  2. Arias E, Gallego-Sandin S, Villarroya M, Garcia AG, Lopez MG (2005) Unequal neuroprotection afforded by the acetylcholinesterase inhibitors galantamine, donepezil, and rivastigmine in SH- SY5Y neuroblastoma cells: role of nicotinic receptors. J Pharmacol Exp Ther 315:1346–1353. doi: 10.1124/jpet.105.090365 PubMedCrossRefGoogle Scholar
  3. Bal R, Janahmadi M, Green GG, Sanders DJ (2001) Two kinds of transient outward currents, I A and I Adepol, in F76 and D1 soma membranes of the subesophageal ganglia of Helix aspersa. J Membr Biol 179:71–78. doi: 10.1007/s002320010038 PubMedCrossRefGoogle Scholar
  4. Cheng DH, Ren H, Tang XC (1996) Huperzine A, a novel promising acetylcholinesterase inhibitor. Neuroreport 8:97–101. doi: 10.1097/00001756-199612200-00020 PubMedCrossRefGoogle Scholar
  5. Chung S, Lee J, Joe EH, Uhm DY (2001) Beta-amyloid peptide induces the expression of voltage dependent outward rectifying K+ channels in rat microglia. Neurosci Lett 300:67–70. doi: 10.1016/S0304-3940(01)01516-6 PubMedCrossRefGoogle Scholar
  6. Colom LV, Diaz ME, Beers DR, Neely A, Xie W, Appel SH (1998) Role of potassium channels in amyloid-induced cell death. J Neurochem 70:1925–1934PubMedCrossRefGoogle Scholar
  7. Consiglio JF, Korn SJ (2004) Influence of permeant ions on voltage sensor function in the Kv2.1 potassium channel. J Gen Physiol 123:387–400. doi: 10.1085/jgp.200308976 PubMedCrossRefGoogle Scholar
  8. Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA et al (2005) International union of pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev 57:473–508. doi: 10.1124/pr.57.4.10 PubMedCrossRefGoogle Scholar
  9. Hagiwara S, Saito N (1959) Voltage-current relations in nerve cell membrane of Onchidium verruculatum. J Physiol 148:161–179PubMedGoogle Scholar
  10. Hayashi T, Su T (2005) The sigma receptor: evolution of the concept in neuropsychopharmacology. Curr Neuropharmacol 3:267–280. doi: 10.2174/157015905774322516 PubMedCrossRefGoogle Scholar
  11. Kimura M, Akasofu S, Ogura H, Sawada K (2005) Protective effect of donepezil against Abeta (1–40) neurotoxicity in rat septal neurons. Brain Res 1047:72–84. doi: 10.1016/j.brainres.2005.04.014 PubMedCrossRefGoogle Scholar
  12. Korn SJ, Trapani JG (2005) Potassium channels. IEEE Trans Nanobioscience 4:21–33. doi: 10.1109/TNB.2004.842466 PubMedCrossRefGoogle Scholar
  13. Maurice T, Meunier J, Feng B, Ieni J, Monaghan DT (2006) Interaction with {sigma}1 protein, but not NMDA receptor, is involved in the pharmacological activity of donepezil. J Pharmacol Exp Ther 317:606–614. doi: 10.1124/jpet.105.097394 PubMedCrossRefGoogle Scholar
  14. Miller LJ (2007) The use of cognitive enhancers in behavioral disturbances of Alzheimer’s disease. Consult Pharm 22:754–762PubMedGoogle Scholar
  15. Pan Y, Xu X, Tong X, Wang X (2004) Messenger RNA and protein expression analysis of voltage-gated potassium channels in the brain of Abeta(25–35)-treated rats. J Neurosci Res 77:94–99. doi: 10.1002/jnr.20134 PubMedCrossRefGoogle Scholar
  16. Pannaccione A, Boscia F, Scorziello A, Adornetto A, Castaldo P, Sirabella R et al (2007) Up-regulation and increased activity of KV3.4 channels and their accessory subunit MinK-related peptide 2 induced by amyloid peptide are involved in apoptotic neuronal death. Mol Pharmacol 72:665–673. doi: 10.1124/mol.107.034868 PubMedCrossRefGoogle Scholar
  17. Rogers SL, Doody RS, Mohs RS, Friedhoff LT (1998) Donepezil improves cognition and global function in Alzheimer disease: a 15-week, double-blind, placebo-controlled study. Donepezil Study Group. Arch Intern Med 158:1021–1031. doi: 10.1001/archinte.158.9.1021 PubMedCrossRefGoogle Scholar
  18. Seltzer B (2007) Donepezil: an update. Expert Opin Pharmacother 8:1011–1023. doi: 10.1517/14656566.8.7.1011 PubMedCrossRefGoogle Scholar
  19. Snape MF, Misra A, Murray TK, De Sousa RJ, Williams JL, Cross AJ et al (1999) A comparative study in rats of the in vitro and in vivo pharmacology of the acetylcholinesterase inhibitors tacrine, donepezil and NXX-066. Neuropharmacology 38:181–193. doi: 10.1016/S0028-3908(98)00164-6 PubMedCrossRefGoogle Scholar
  20. Solntseva EI, Bukanova JV, Marchenko E, Skrebitsky VG (2007) Donepezil is a strong antagonist of voltage-gated calcium and potassium channels in molluscan neurons. Comp Biochem Physiol 144(Part C):319–326Google Scholar
  21. Trapani JG, Andalib P, Consiglio JF, Korn SJ (2006) Control of single channel conductance in the outer vestibule of the Kv2.1 potassium channel. J Gen Physiol 128:231–246. doi: 10.1085/jgp.200509465 PubMedCrossRefGoogle Scholar
  22. Vilner BJ, Bowen WD (2000) Modulation of cellular calcium by sigma-2 receptors: release from intracellular stores in human SK-N-SH neuroblastoma cells. (2000). J Pharmacol Exp Ther 292:900–911PubMedGoogle Scholar
  23. Watanabe T, Iwasaki K, Ishikane S, Naitou T, Yoshimitsu Y, Yamagata N et al (2008) Spatial memory impairment without apoptosis induced by the combination of beta-amyloid oligomers and cerebral ischemia is related to decreased acetylcholine release in rats. J Pharmacol Sci 106:84–91. doi: 10.1254/jphs.FP0071648 PubMedCrossRefGoogle Scholar
  24. Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H (2005) International union of pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol Rev 57:463–472. doi: 10.1124/pr.57.4.9 PubMedCrossRefGoogle Scholar
  25. Yu SP (2003) Regulation and critical role of potassium homeostasis in apoptosis. Prog Neurobiol 70:363–386. doi: 10.1016/S0301-0082(03)00090-X PubMedCrossRefGoogle Scholar
  26. Yu B, Hu G-Y (2005) Donepezil blocks voltage-gated ion channels in rat dissociated hippocampal neurons. Eur J Pharmacol 508:15–21. doi: 10.1016/j.ejphar.2004.12.004 PubMedCrossRefGoogle Scholar
  27. Yu SP, Farhangrazi ZS, Ying HS, Yeh CH, Choi DW (1998) Enhancement of outward potassium current may participate in beta-amyloid peptide-induced cortical neurons death. Neurobiol Dis 5:81–88. doi: 10.1006/nbdi.1998.0186 PubMedCrossRefGoogle Scholar
  28. Zhang H, Cuevas J (2002) Sigma receptors inhibit high-voltage-activated calcium channels in rat sympathetic and parasympathetic neurons. J Neurophysiol 87:2867–2879PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Elena I. Solntseva
    • 1
    Email author
  • Julia V. Bukanova
    • 1
  • Evgeny V. Marchenko
    • 1
  • Alexey V. Rossokhin
    • 1
  • Vladimir G. Skrebitsky
    • 1
  1. 1.Department of Brain ResearchCenter of Neurology RAMSMoscowRussia

Personalised recommendations