Cellular and Molecular Neurobiology

, Volume 29, Issue 2, pp 141–155 | Cite as

Progress on Potential Strategies to Target Brain Tumor Stem Cells

Review Paper


The identification of brain tumor stem cells (BTSCs) leads to promising progress on brain tumor treatment. For some brain tumors, BTSCs are the driving force of tumor growth and the culprits that make tumor revive and resistant to radiotherapy and chemotherapy. Therefore, it is specifically significant to eliminate BTSCs for treatment of brain tumors. There are considerable similarities between BTSCs and normal neural stem cells (NSCs), and diverse aspects of BTSCs have been studied to find potential targets that can be manipulated to specifically eradicate BTSCs without damaging normal NSCs, including their surface makers, surrounding niche, and aberrant signaling pathways. Many strategies have been designed to kill BTSCs, and some of them have reached, or are approaching, effective therapeutic results. Here, we will focus on advantages in the issue of BTSCs and emphasize on potential therapeutic strategies targeting BTSCs.


Brain tumor stem cell Brain tumor Neural stem cell Targeting therapy 


  1. Al-Hajj M, Wicha MS, ito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988. doi:10.1073/pnas.0530291100 PubMedGoogle Scholar
  2. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al (2006a) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760. doi:10.1038/nature05236 PubMedGoogle Scholar
  3. Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB et al (2006b) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66:7843–7848. doi:10.1158/0008-5472.CAN-06-1010 PubMedGoogle Scholar
  4. Bar EE, Chaudhry A, Lin A, Fan X, Schreck K, Matsui W et al (2007) Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25:2524–2533. doi:10.1634/stemcells.2007-0166 PubMedGoogle Scholar
  5. Baron M (2003) An overview of the Notch signalling pathway. Semin Cell Dev Biol 14:113–119. doi:10.1016/S1084-9521(02)00179-9 PubMedGoogle Scholar
  6. Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ et al (2007) CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010–4015. doi:10.1158/0008-5472.CAN-06-4180 PubMedGoogle Scholar
  7. Berman DM, Karhadkar SS, Hallahan AR, Pritchard JI, Eberhart CG, Watkins DN et al (2002) Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297:1559–1561. doi:10.1126/science.1073733 PubMedGoogle Scholar
  8. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737. doi:10.1038/nm0797-730 PubMedGoogle Scholar
  9. Bonni A, Sun Y, Nadal-Vicens M, Bhatt A, Frank DA, Rozovsky I et al (1997) Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science 278:477–483. doi:10.1126/science.278.5337.477 PubMedGoogle Scholar
  10. Bruggeman SWM, Hulsman D, Tanger E, Buckle T, Blom M, Zevenhoven J et al (2007) Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell 12:328–341. doi:10.1016/j.ccr.2007.08.032 PubMedGoogle Scholar
  11. Cai C, Thorne J, Grabel L (2008) Hedgehog serves as a mitogen and survival factor during embryonic stem cell neurogenesis. Stem Cells 26(5):1097–1108PubMedGoogle Scholar
  12. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82. doi:10.1016/j.ccr.2006.11.020 PubMedGoogle Scholar
  13. Challen GA, Little MH (2006) A side order of stem cells: the SP phenotype. Stem Cells 24:3–12. doi:10.1634/stemcells.2005-0116 PubMedGoogle Scholar
  14. Chen HL, Panchision DM (2007) Concise review: bone morphogenetic protein pleiotropism in neural stem cells and their derivatives–alternative pathways, convergent signals. Stem Cells 25:63–68. doi:10.1634/stemcells.2006-0339 PubMedGoogle Scholar
  15. Chiba S (2006) Notch signaling in stem cell regulation. Stem Cells 24:2437–2447. doi:10.1634/stemcells.2005-0661 PubMedGoogle Scholar
  16. Clark PA, Treisman DM, Ebben J, Kuo JS (2007) Developmental signaling pathways in brain tumor-derived stem-like cells. Dev Dyn 236:3297–3308. doi:10.1002/dvdy.21381 PubMedGoogle Scholar
  17. Clement V, Sanchez P, de Tribolet N, Radovanovic I, Altaba A (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17:165–172. doi:10.1016/j.cub.2006.11.033 PubMedGoogle Scholar
  18. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480. doi:10.1016/j.cell.2006.10.018 PubMedGoogle Scholar
  19. Clifford SC, Lusher ME, Lindsey JC, Langdon JA, Gilbertson RJ, Straughton D et al (2006) Wnt/Wingless pathway activation and chromosome 6 loss characterize a distinct molecular sub-group of medulloblastomas associated with a favorable prognosis. Cell Cycle 5:2666–2670PubMedGoogle Scholar
  20. Colak D, Mori T, Brill MS, Pfeifer A, Falk S, Deng C et al (2008) Adult neurogenesis requires Smad4-mediated bone morphogenic protein signaling in stem cells. J Neurosci 28:434–446. doi:10.1523/JNEUROSCI.4374-07.2008 PubMedGoogle Scholar
  21. Dahmane N, Sanchez P, Gitton Y, Palma V, Sun T, Beyna M et al (2001) The sonic hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development 128:5201–5212PubMedGoogle Scholar
  22. Dakubo GD, Mazerolle CJ, Wallace VA (2006) Expression of Notch and Wnt pathway components and activation of Notch signaling in medulloblastomas from heterozygous patched mice. J Neurooncol 79:221–227. doi:10.1007/s11060-006-9132-2 PubMedGoogle Scholar
  23. de la Iglesia N, Konopka G, Puram SV, Chan JA, Bachoo RM, You MJ et al (2008) Identification of a PTEN-regulated STAT3 brain tumor suppressor pathway. Genes Dev 22:449–462. doi:10.1101/gad.1606508 PubMedGoogle Scholar
  24. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284. doi:10.1038/nrc1590 PubMedGoogle Scholar
  25. Dellovade T, Romer JT, Curran T, Rubin LL (2006) The hedgehog pathway and neurological disorders. Annu Rev Neurosci 29:539–563. doi:10.1146/annurev.neuro.29.051605.112858 PubMedGoogle Scholar
  26. Dirks P (2007) Bmi1 and cell of origin determinants of brain tumor phenotype. Cancer Cell 12:295–297. doi:10.1016/j.ccr.2007.10.003 PubMedGoogle Scholar
  27. Eramo A, Ricci-Vitiani L, Zeuner A, Pallini R, Lotti F, Sette G et al (2006) Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ 13:1238–1241. doi:10.1038/sj.cdd.4401872 PubMedGoogle Scholar
  28. Fan X, Matsui W, Khaki L, Stearns D, Chun J, Li YM et al (2006) Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 66:7445–7452. doi:10.1158/0008-5472.CAN-06-0858 PubMedGoogle Scholar
  29. Ferretti E, De SE, Di ML, Screpanti I, Gulino A (2005) Hedgehog checkpoints in medulloblastoma: the chromosome 17p deletion paradigm. Trends Mol Med 11:537–545. doi:10.1016/j.molmed.2005.10.005 PubMedGoogle Scholar
  30. Fischer C, Jonckx B, Mazzone M, Zacchigna S, Loges S, Pattarini L, Chorianopoulos E, Liesenborghs L, Koch M, De MM, Autiero M, Wyns S, Plaisance S, Moons L, van RN, Giacca M, Stassen JM, Dewerchin M, Collen D, Carmeliet P (2007) Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131:463–475. doi:10.1016/j.cell.2007.08.038 PubMedGoogle Scholar
  31. Folkins C, Man S, Xu P, Shaked Y, Hicklin DJ, Kerbel RS (2007) Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res 67:3560–3564. doi:10.1158/0008-5472.CAN-06-4238 PubMedGoogle Scholar
  32. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De VS et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021. doi:10.1158/0008-5472.CAN-04-1364 PubMedGoogle Scholar
  33. Galvin KE, Ye H, Erstad DJ, Feddersen R, Wetmore C (2008) Gli1 induces G2/M arrest and apoptosis in hippocampal but not tumor-derived neural stem cells. Stem Cells 26(4):1027–1036PubMedGoogle Scholar
  34. Groszer M, Erickson R, Scripture-Adams DD, Dougherty JD, Le Belle J, Zack JA et al (2006) PTEN negatively regulates neural stem cell self-renewal by modulating G0–G1 cell cycle entry. Proc Natl Acad Sci USA 103:111–116. doi:10.1073/pnas.0509939103 PubMedGoogle Scholar
  35. Groszer M, Erickson R, Scripture-Adams DD, Lesche R, Trumpp A, Zack JA et al (2001) Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294:2186–2189. doi:10.1126/science.1065518 PubMedGoogle Scholar
  36. Guan Y, Gerhard B, Hogge DE (2003) Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood 101:3142–3149. doi:10.1182/blood-2002-10-3062 PubMedGoogle Scholar
  37. Gulino A, Di Marcotullio L, Ferretti E, De Smaele E, Screpanti I (2007) Hedgehog signaling pathway in neural development and disease. Psychoneuroendocrinology 32:S52–S56. doi:10.1016/j.psyneuen.2007.03.017 PubMedGoogle Scholar
  38. Gutierrez A, Look AT (2007) NOTCH and PI3 K-AKT pathways intertwined. Cancer Cell 12:411–413. doi:10.1016/j.ccr.2007.10.027 PubMedGoogle Scholar
  39. Hall AK, Miller RH (2004) Emerging roles for bone morphogenetic proteins in central nervous system glial biology. J Neurosci Res 76:1–8. doi:10.1002/jnr.20019 PubMedGoogle Scholar
  40. Hamburger AW, Salmon SE (1977) Primary bioassay of human tumor stem cells. Science 197:461–463. doi:10.1126/science.560061 PubMedGoogle Scholar
  41. He F, Ge W, Martinowich K, Becker-Catania S, Coskun V, Zhu W, Wu H, Castro D, Guillemot F, Fan G, de VJ, Sun YE (2005) A positive autoregulatory loop of Jak-STAT signaling controls the onset of astrogliogenesis. Nat Neurosci 8:616–625. doi:10.1038/nn1440 PubMedGoogle Scholar
  42. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100:15178–15183. doi:10.1073/pnas.2036535100 PubMedGoogle Scholar
  43. Hill RP (2006) Identifying cancer stem cells in solid tumors. Case not proven. Cancer Res 66:1891–1896PubMedGoogle Scholar
  44. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U et al (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101:14228–14233. doi:10.1073/pnas.0400067101 PubMedGoogle Scholar
  45. Holland EC (2000) Glioblastoma multiforme: the terminator. Proc Natl Acad Sci USA 97:6242–6244. doi:10.1073/pnas.97.12.6242 PubMedGoogle Scholar
  46. Hopewell JW, Wright EA (1969) The importance of implantation site in cerebral carcinogenesis in rats. Cancer Res 29:1927–1931PubMedGoogle Scholar
  47. Huntly BJ, Gilliland DG (2005) Leukemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 5:311–321. doi:10.1038/nrc1592 PubMedGoogle Scholar
  48. Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39:193–206. doi:10.1002/glia.10094 PubMedGoogle Scholar
  49. Ille F, Sommer L (2005) Wnt signaling: multiple functions in neural development. Cell Mol Life Sci 62:1100–1108. doi:10.1007/s00018-005-4552-2 PubMedGoogle Scholar
  50. Jones SE, Hamburger AW, Kim MB, Salmon SE (1979) Development of a bioassay for putative human lymphoma stem cells. Blood 53:294–303PubMedGoogle Scholar
  51. Jozwiak J, Kotulska K, Grajkowska W, Jozwiak S, Zalewski W, Oldak M et al (2007) Upregulation of the WNT pathway in tuberous sclerosis-associated subependymal giant cell astrocytomas. Brain Dev 29:273–280. doi:10.1016/j.braindev.2006.09.009 PubMedGoogle Scholar
  52. Kanamori M, Kawaguchi T, Nigro JM, Feuerstein BG, Berger MS, Miele L et al (2007) Contribution of Notch signaling activation to human glioblastoma multiforme. J Neurosurg 106:417–427. doi:10.3171/jns.2007.106.3.417 PubMedGoogle Scholar
  53. Kang KB, Wang TT, Woon CT, Cheah ES, Moore XL, Zhu C et al (2007) Enhancement of glioblastoma radioresponse by a selective COX-2 inhibitor celecoxib: inhibition of tumor angiogenesis with extensive tumor necrosis. Int J Radiat Oncol Biol Phys 67:888–896. doi:10.1016/j.ijrobp.2006.09.055 PubMedGoogle Scholar
  54. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A (2007) Tumor growth need not be driven by rare cancer stem cells. Science 317:337. doi:10.1126/science.1142596 PubMedGoogle Scholar
  55. Kim JYH, Nelson AL, Algon SA, Graves O, Sturla LM, Goumnerova LC et al (2003) Medulloblastoma tumorigenesis diverges from cerebellar granule cell differentiation in patched heterozygous mice. Dev Biol 263:50–66. doi:10.1016/S0012-1606(03)00434-2 PubMedGoogle Scholar
  56. Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC et al (2002) The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 61:215–225PubMedGoogle Scholar
  57. Knobbe CB, Merlo A, Reifenberger G (2002) Pten signaling in gliomas. Neuro-oncol 4:196–211. doi:10.1215/15228517-4-3-196 PubMedGoogle Scholar
  58. Kondo T, Setoguchi T, Taga T (2004) Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA 101:781–786. doi:10.1073/pnas.0307618100 PubMedGoogle Scholar
  59. Lai K, Kaspar BK, Gage FH, Schaffer DV (2003) Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci 6:21–27. doi:10.1038/nn983 PubMedGoogle Scholar
  60. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al (1994) A cell initiating human acute myeloid leukemia after transplantation into SCID mice. Nature 367:645–648. doi:10.1038/367645a0 PubMedGoogle Scholar
  61. Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM et al (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403. doi:10.1016/j.ccr.2006.03.030 PubMedGoogle Scholar
  62. Lee J, Son MJ, Woolard K, Donin NM, Li A, Cheng CH et al (2008) Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell 13:69–80. doi:10.1016/j.ccr.2007.12.005 PubMedGoogle Scholar
  63. Lessard J, Sauvageau G (2003) Bmi-1 determines the proliferative capacity of normal and leukemic stem cells. Nature 423:255–260. doi:10.1038/nature01572 PubMedGoogle Scholar
  64. Leung C, Lingbeek M, Shakhova O, Liu J, Tanger E, Saremaslani P et al (2004) Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 428:337–341. doi:10.1038/nature02385 PubMedGoogle Scholar
  65. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR et al (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67. doi:10.1186/1476-4598-5-67 PubMedGoogle Scholar
  66. MacDiarmid JA, Mugridge NB, Weiss JC, Phillips L, Burn AL, Paulin RP et al (2007) Bacterially derived 400 nm particles for encapsulation and cancer cell targeting of chemotherapeutics. Cancer Cell 11:431–445. doi:10.1016/j.ccr.2007.03.012 PubMedGoogle Scholar
  67. Machold R, Hayashi S, Rutlin M, Muzumdar MD, Nery S, Corbin JG et al (2003) Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39:937–950. doi:10.1016/S0896-6273(03)00561-0 PubMedGoogle Scholar
  68. Mellinghoff IK, Cloughesy TF, Mischel PS (2007) PTEN-mediated resistance to epidermal growth factor receptor kinase inhibitors. Clin Cancer Res 13:378–381. doi:10.1158/1078-0432.CCR-06-1992 PubMedGoogle Scholar
  69. Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ et al (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353:2012–2024. doi:10.1056/NEJMoa051918 PubMedGoogle Scholar
  70. Michaelidis T, Lie D (2008) Wnt signaling and neural stem cells: caught in the Wnt web. Cell Tissue Res 331:193–210. doi:10.1007/s00441-007-0476-5 PubMedGoogle Scholar
  71. Mimeault M, Hauke R, Mehta PP, Batra SK (2007) Recent advances in cancer stem/progenitor cell research: therapeutic implications for overcoming resistance to the most aggressive cancers. J Cell Mol Med 11:981–1011. doi:10.1111/j.1582-4934.2007.00088.x PubMedGoogle Scholar
  72. Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250. doi:10.1146/annurev.neuro.28.051804.101459 PubMedGoogle Scholar
  73. Mizrak D, Brittan M, Alison MR (2008) CD133: molecule of the moment. J Pathol 214:3–9. doi:10.1002/path.2283 PubMedGoogle Scholar
  74. Mizutani Ki, Yoon K, Dang L, Tokunaga A, Gaiano N (2007) Differential notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 449:351–355. doi:10.1038/nature06090 PubMedGoogle Scholar
  75. Molofsky AV, He S, Bydon M, Morrison SJ, Pardal R (2005) Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev 19:1432–1437. doi:10.1101/gad.1299505 PubMedGoogle Scholar
  76. Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311:1880–1885. doi:10.1126/science.1110542 PubMedGoogle Scholar
  77. Nakano I, Saigusa K, Kornblum HI (2008) BMPing off glioma stem cells. Cancer Cell 13:3–4. doi:10.1016/j.ccr.2007.12.018 PubMedGoogle Scholar
  78. Nikuseva-Martic T, Beros V, Pecina-Slaus N, Ivan Pecina H, Bulic-Jakus F (2007) Genetic changes of CDH1, APC, and CTNNB1 found in human brain tumors. Pathol Res Pract 203:779–787. doi:10.1016/j.prp.2007.07.009 PubMedGoogle Scholar
  79. Nomura M, Nomura M, Yamagishi Si, Harada Si, Yamashima T, Yamashita J, Yamamoto H (1998) Placenta growth factor (PlGF) mRNA expression in brain tumors. J Neurooncol 40:123–130. doi:10.1023/A:1006198422718 PubMedGoogle Scholar
  80. Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170:1445–1453. doi:10.2353/ajpath.2007.070011 PubMedGoogle Scholar
  81. Oliver TG, Read TA, Kessler JD, Mehmeti A, Wells JF, Huynh TTT et al (2005) Loss of patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma. Development 132:2425–2439. doi:10.1242/dev.01793 PubMedGoogle Scholar
  82. Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M et al (2007) Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 13:1203–1210. doi:10.1038/nm1636 PubMedGoogle Scholar
  83. Panchision DM, Pickel JM, Studer L, Lee SH, Turner PA, Hazel TG et al (2001) Sequential actions of BMP receptors control neural precursor cell production and fate. Genes Dev 15:2094–2110. doi:10.1101/gad.894701 PubMedGoogle Scholar
  84. Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+and ABCG2− cancer cells are similarly tumorigenic. Cancer Res 65:6207–6219. doi:10.1158/0008-5472.CAN-05-0592 PubMedGoogle Scholar
  85. Peacock CD, Wang Q, Gesell GS, Corcoran-Schwartz IM, Jones E, Kim J et al (2007) Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci USA 104:4048–4053. doi:10.1073/pnas.0611682104 PubMedGoogle Scholar
  86. Pfenninger CV, Roschupkina T, Hertwig F, Kottwitz D, Englund E, Bengzon J et al (2007) CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res 67:5727–5736. doi:10.1158/0008-5472.CAN-07-0183 PubMedGoogle Scholar
  87. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD et al (2006a) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173. doi:10.1016/j.ccr.2006.02.019 PubMedGoogle Scholar
  88. Phillips TM, McBride WH, Pajonk F (2006b) The response of CD24(−/low)/CD44+breast cancer-initiating cells to radiation. J Natl Cancer Inst 98:1777–1785PubMedCrossRefGoogle Scholar
  89. Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G et al (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444:761–765. doi:10.1038/nature05349 PubMedGoogle Scholar
  90. Platet N, Mayol JF, Berger F, Herodin F, Wion D (2007) Fluctuation of the SP/non-SP phenotype in the C6 glioma cell line. FEBS Lett 581:1435–1440. doi:10.1016/j.febslet.2007.02.071 PubMedGoogle Scholar
  91. Prados MD, Lamborn KR, Chang S, Burton E, Butowski N, Malec M et al (2006) Phase 1 study of erlotinib HCl alone and combined with temozolomide in patients with stable or recurrent malignant glioma. Neuro-oncol 8:67–78. doi:10.1215/S1522851705000451 PubMedGoogle Scholar
  92. Purow BW, Haque RM, Noel MW, Su Q, Burdick MJ, Lee J et al (2005) Expression of notch-1 and Its ligands, delta-like-1 and jagged-1, is critical for glioma cell survival and proliferation. Cancer Res 65:2353–2363. doi:10.1158/0008-5472.CAN-04-1890 PubMedGoogle Scholar
  93. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111. doi:10.1038/35102167 PubMedGoogle Scholar
  94. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710. doi:10.1126/science.1553558 PubMedGoogle Scholar
  95. Rich JN, Reardon DA, Peery T, Dowell JM, Quinn JA, Penne KL, Wikstrand CJ, Van Duyn LB, Dancey JE, McLendon RE, Kao JC, Stenzel TT, hmed Rasheed BK, Tourt-Uhlig SE, Herndon JE, Vredenburgh JJ, Sampson JH, Friedman AH, Bigner DD, Friedman HS (2004) Phase II trial of gefitinib in recurrent glioblastoma. J Clin Oncol 22:133–142. doi:10.1200/JCO.2004.08.110 PubMedGoogle Scholar
  96. Robey R, Polgar O, Deeken J, To K, Bates S (2007) ABCG2: determining its relevance in clinical drug resistance. Cancer Metastasis Rev 26:39–57. doi:10.1007/s10555-007-9042-6 PubMedGoogle Scholar
  97. Salmaggi A, Boiardi A, Gelati M, Russo A, Calatozzolo C, Ciusani E et al (2006) Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia 54:850–860. doi:10.1002/glia.20414 PubMedGoogle Scholar
  98. Sanai N, varez-Buylla A, Berger MS (2005) Neural stem cells and the origin of gliomas. N Engl J Med 353:811–822. doi:10.1056/NEJMra043666 PubMedGoogle Scholar
  99. Scharenberg CW, Harkey MA, Torok-Storb B (2002) The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 99:507–512. doi:10.1182/blood.V99.2.507 PubMedGoogle Scholar
  100. Setoguchi T, Taga T, Kondo T (2004) Cancer stem cells persist in many cancer cell lines. Cell Cycle 3:414–415PubMedGoogle Scholar
  101. Shakhova O, Leung C, Marino S (2005) Bmi1 in development and tumorigenesis of the central nervous system. J Mol Med 83:596–600. doi:10.1007/s00109-005-0682-0 PubMedGoogle Scholar
  102. Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N et al (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304:1338–1340. doi:10.1126/science.1095505 PubMedGoogle Scholar
  103. Shih AH, Holland EC (2006) Notch signaling enhances nestin expression in gliomas. Neoplasia 8:1072–1082. doi:10.1593/neo.06526 PubMedGoogle Scholar
  104. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMedGoogle Scholar
  105. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401. doi:10.1038/nature03128 PubMedGoogle Scholar
  106. Smith JS, Tachibana I, Passe SM, Huntley BK, Borell TJ, Iturria N et al (2001) PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J Natl Cancer Inst 93:1246–1256. doi:10.1093/jnci/93.16.1246 PubMedGoogle Scholar
  107. Soeda A, Inagaki A, Oka N, Ikegame Y, Aoki H, Yoshimura SI, Nakashima S, Kunisada T, Iwama T (2008) Epidermal growth factor plays a crucial role in mitogenic regulation of human brain tumor stem cells. J Biol Chem 283(16):10958–10966PubMedGoogle Scholar
  108. Stiles B, Groszer M, Wang S, Jiao J, Wu H (2004) PTEN less means more. Dev Biol 273:175–184. doi:10.1016/j.ydbio.2004.06.008 PubMedGoogle Scholar
  109. Sun H, Lesche R, Li DM, Liliental J, Zhang H, Gao J et al (1999) PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci USA 96:6199–6204. doi:10.1073/pnas.96.11.6199 PubMedGoogle Scholar
  110. Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P et al (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335. doi:10.1016/j.ccr.2005.09.001 PubMedGoogle Scholar
  111. van Diepen MT, Eickholt BJ (2008) Function of PTEN during the formation and maintenance of neuronal circuits in the brain. Dev Neurosci 30:59–64. doi:10.1159/000109852 PubMedGoogle Scholar
  112. Valk-Lingbeek ME, Bruggeman SW, van LM (2004) Stem cells and cancer; the polycomb connection. Cell 118:409–418. doi:10.1016/j.cell.2004.08.005 PubMedGoogle Scholar
  113. Vescovi AL, Galli R, Reynolds BA (2006) Brain tumour stem cells. Nat Rev Cancer 6:425. doi:10.1038/nrc1889 PubMedGoogle Scholar
  114. Vick NA, Lin MJ, Bigner DD (1977) The role of the subependymal plate in glial tumorigenesis. Acta Neuropathol 40:63–71. doi:10.1007/BF00688574 PubMedGoogle Scholar
  115. Wang JC, Dick JE (2005) Cancer stem cells: lessons from leukemia. Trends Cell Biol 15:494–501. doi:10.1016/j.tcb.2005.07.004 PubMedGoogle Scholar
  116. Wang MY, Lu KV, Zhu S, Dia EQ, Vivanco I, Shackleford GM et al (2006) Mammalian target of rapamycin inhibition promotes response to epidermal growth factor receptor kinase inhibitors in PTEN-deficient and PTEN-intact glioblastoma cells. Cancer Res 66:7864–7869. doi:10.1158/0008-5472.CAN-04-4392 PubMedGoogle Scholar
  117. Wang J, Wang X, Jiang S, Lin P, Zhang J, Wu Y, Xiong Z, Ren JJ, Yang H (2008) Partial biological characterization of cancer stem-like cell line (WJ(2)) of human glioblastoma multiforme. Cell Mol Neurobiol. doi:10.1007/s10571-008-9273-2
  118. Weijzen S, Rizzo P, Braid M, Vaishnav R, Jonkheer SM, Zlobin A et al (2002) Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med 8:979–986. doi:10.1038/nm754 PubMedGoogle Scholar
  119. Wiederschain D, Chen L, Johnson B, Bettano K, Jackson D, Taraszka J et al (2007) Contribution of polycomb homologues Bmi-1 and Mel-18 to medulloblastoma pathogenesis. Mol Cell Biol 27:4968–4979. doi:10.1128/MCB.02244-06 PubMedGoogle Scholar
  120. Xiangpeng Y, James C, Yizhi X, Gentao L, Sebastian W, Daniel LF, Keith LB, Yu JS (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23:9392. doi:10.1038/sj.onc.1208311 Google Scholar
  121. Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H et al (2006) Pten dependence distinguishes hematopoietic stem cells from leukemia-initiating cells. Nature 441:475–482. doi:10.1038/nature04703 PubMedGoogle Scholar
  122. Yoon K, Gaiano N (2005) Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat Neurosci 8:709–715. doi:10.1038/nn1475 PubMedGoogle Scholar
  123. Yu JM, Jun ES, Jung JS, Suh SY, Han JY, Kim JY et al (2007) Role of Wnt5a in the proliferation of human glioblastoma cells. Cancer Lett 257:172–181. doi:10.1016/j.canlet.2007.07.011 PubMedGoogle Scholar
  124. Zencak D, Lingbeek M, Kostic C, Tekaya M, Tanger E, Hornfeld D, Jaquet M, Munier FL, Schorderet DF, van Lohuizen M, Arsenijevic Y (2005) Bmi1 loss produces an increase in astroglial cells and a decrease in neural stem cell population and proliferation. J Neurosci 25:5774–5783. doi:10.1523/JNEUROSCI.3452-04.2005 PubMedGoogle Scholar
  125. Zeppernick F, Ahmadi R, Campos B, Dictus C, Helmke BM, Becker N et al (2008) Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res 14:123–129. doi:10.1158/1078-0432.CCR-07-0932 PubMedGoogle Scholar
  126. Zhang Z, Schittenhelm J, Guo K, Buhring HJ, Trautmann K, Meyermann R et al (2006) Upregulation of frizzled 9 in astrocytomas. Neuropathol Appl Neurobiol 32:615–624. doi:10.1111/j.1365-2990.2006.00770.x PubMedGoogle Scholar
  127. Zhao C, Blum J, Chen A, Kwon HY, Jung SH, Cook JM et al (2007) Loss of [beta]-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 12:528–541. doi:10.1016/j.ccr.2007.11.003 PubMedGoogle Scholar
  128. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660. doi:10.1016/j.cell.2008.01.033 PubMedGoogle Scholar
  129. Zheng X, Shen G, Yang X, Liu W (2007) Most C6 cells are cancer stem cells: evidence from clonal and population analyses. Cancer Res 67:3691–3697. doi:10.1158/0008-5472.CAN-06-3912 PubMedGoogle Scholar
  130. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ et al (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028–1034. doi:10.1038/nm0901-1028 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing HospitalFourth Military Medical UniversityXi’anPeople’s Republic of China

Personalised recommendations