Cellular and Molecular Neurobiology

, Volume 29, Issue 1, pp 115–121 | Cite as

Interaction Between Syntaxin 8 and HECTd3, a HECT Domain Ligase

  • Lisheng Zhang
  • Liang Kang
  • William Bond
  • Nian Zhang
Original Paper


Ubiquitination of proteins and their degradation within the proteasome has emerged as the major proteolytic mechanism used by mammalian cells to regulate cytosolic and nuclear protein levels. Substrate ubiquitylation is mediated by ubiquitin (Ub) ligases, also called E3 Ub ligases. HECT-E3 Ub ligases are characterized by the presence of a C-terminal HECT domain that contains the active site for Ub transfer onto substrates. Among the many E3 Ub ligases, the family homologous to E6-Ap C-terminus (HECT) E3 Ub ligases, which includes the yeast protein Rsp5p and the mammalian homolog NEDD4, AIP4/Itch, and Smurf, has been shown to ubiquitylate membrane proteins and, in some instances, to induce their degradation. In this report, we have identified Syntaxin 8 as a binding protein to a novel HECT domain protein, HECT domain containing 3 (HECTd3), by yeast two-hybrid screen. Besides HECT domain, HECTd3 contains an anaphase-promoting complex, subunit 10 (APC10) domain. Our co-immunoprecipitation experiments show that Syntaxin 8 directly interacts with HECTd3 and that the overexpression of HECTd3 promotes the ubiquitination of Syntaxin 8. Immunofluorescence results show that Syntaxin 8 and HECTd3 have similar subcellular localization.


Syntaxin 8 Ubiquitination HECT E3 ubiquitin ligases HECTd3 


  1. Ardley HC, Robinson PA (2004) The role of ubiquitin-protein ligases in neurodegenerative disease. Neurodegener Dis 1:71–87. doi:10.1159/000080048 PubMedCrossRefGoogle Scholar
  2. Bogdanovic A, Bennett N, Kieffer S, Louwagie M, Morio T, Garin J, Satre M, Bruckert F (2002) Syntaxin 7, syntaxin 8, Vti1 and VAMP7 (vesicle-associated membrane protein 7) form an active SNARE complex for early macropinocytic compartment fusion in Dictyostelium discoideum. Biochem J 368(Pt 1):29–39PubMedCrossRefGoogle Scholar
  3. Chin LS, Vavalle JP, Li L (2002) Staring, a novel E3 ubiquitin-protein ligase that targets syntaxin 1 for degradation. J Biol Chem 277:35071–35079. doi:10.1074/jbc.M203300200 PubMedCrossRefGoogle Scholar
  4. Giasson BI, Lee VM (2001) Parkin and the molecular pathways of Parkinson’s disease. Neuron 31:885–888. doi:10.1016/S0896-6273(01)00439-1 PubMedCrossRefGoogle Scholar
  5. Glickman MH, Ciechanover (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428PubMedGoogle Scholar
  6. Hicks AA, Petursson H, Jonsson T, Stefansson H, Johannsdottir HS, Sainz J et al (2002) A susceptibility gene for late-onset idiopathic Parkinson’s disease. Ann Neurol 52:549–555. doi:10.1002/ana.10324 PubMedCrossRefGoogle Scholar
  7. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608. doi:10.1038/33416 PubMedCrossRefGoogle Scholar
  8. Kornitzer D, Ciechanover (2000) Modes of regulation of ubiquitin-mediated protein degradation. J Cell Physiol 182:1–11. doi :10.1002/(SICI)1097-4652(200001)182:1<1::AID-JCP1>3.0.CO;2-VPubMedCrossRefGoogle Scholar
  9. Li YJ, Scott WK, Hedges DJ, Zhang F, Gaskell PC, Nance MA et al (2002) Age at onset in two common neurodegenerative diseases is genetically controlled. Am J Hum Genet 70:985–993. doi:10.1086/339815 PubMedCrossRefGoogle Scholar
  10. Ota T, Suzuki Y, Nishikawa T (2004) Complete sequencing and characterization of 21, 243 full-length human cDNAs. Nat Genet 36:40–45. doi:10.1038/ng1285 PubMedCrossRefGoogle Scholar
  11. Peters SU, Goddard-Finegold J, Beaudet AL, Madduri N, Turcich M, Bacino CA (2004) Cognitive and adaptive behavior profiles of children with Angelman syndrome. Am J Med Genet A 128:110–113. doi:10.1002/ajmg.a.30065 CrossRefGoogle Scholar
  12. Roessel VP, Elliott DA, Robinson IM, Prokop A, Brand AH (2004) Independent regulation of synaptic size and activity by the anaphase-promoting complex. Cell 119:707–718. doi:10.1016/j.cell.2004.11.028 PubMedCrossRefGoogle Scholar
  13. Schwarz ES, Rosa José L, Scheffner M (1998) Characterization of human hect domain family members and their interaction with UbcH5 and UbcH7. J Biol Chem 273:12148–12154. doi:10.1074/jbc.273.20.12148 PubMedCrossRefGoogle Scholar
  14. Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R et al (2001) Ubiquitination of a new form of α-synuclein by parkin from human brain: implications for Parkinson’s disease. Science 293:263–269. doi:10.1126/science.1060627 PubMedCrossRefGoogle Scholar
  15. Strausberg RL, Feingold EA, Grouse LH, Derge JG (2002) Generation and initial analysis of more than 15, 000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA 99:16899–16903. doi:10.1073/pnas.242603899 PubMedCrossRefGoogle Scholar
  16. Subramaniam VN, Loh E, Horstmann H, Habermann A, Xu Y, Coe J, Griffiths G, Hong W (2000) Preferential association of syntaxin 8 with the early endosome. J Cell Sci 113(Pt 6):997–1008PubMedGoogle Scholar
  17. Watahiki A, Waki K, Hayatsu N, Shiraki T, Kondo S, Nakamura M et al (2004) Libraries enriched for alternatively spliced exons reveal splicing patterns in melanocytes and melanomas. Nat Methods 1:233–239. doi:10.1038/nmeth719 PubMedCrossRefGoogle Scholar
  18. Yoo MS, Chun HS, Son JJ, DeGiorgio LA, Kim DJ, Peng C et al (2003) Oxidative stress regulated genes in nigral dopaminergic neuronal cells: correlation with the known pathology in Parkinson’s disease. Brain Res Mol Brain Res 110:76–84. doi:10.1016/S0169-328X(02)00586-7 PubMedCrossRefGoogle Scholar
  19. Yu J, Lan J, Zhu Y, Li X, Lai X, Xue Y, Jin C, Huang H (2008) The E3 ubiquitin ligase HECTD3 regulates ubiquitination and degradation of Tara. Biochem Biophys Res Commun 367`(4):805–812Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lisheng Zhang
    • 1
  • Liang Kang
    • 1
  • William Bond
    • 1
    • 2
  • Nian Zhang
    • 1
    • 3
  1. 1.Laboratory of Mammalian Developmental GeneticsVan Andel Research InstituteGrand RapidsUSA
  2. 2.Department of Biology and BiochemistryBath UniversityBathUK
  3. 3.Stower Institute for Medical ResearchKansas CityUSA

Personalised recommendations