Skip to main content
Log in

Progesterone Effects on Neuronal Ultrastructure and Expression of Microtubule-associated Protein 2 (MAP2) in Rats with Acute Spinal Cord Injury

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

(1) Following acute spinal cord injury, progesterone modulates several molecules essential for motoneuron function, although the morphological substrates for these effects are unknown. (2) The present study analyzed morphological changes in motoneurons distal to the lesion site from rats with or without progesterone treatment. We employed electron microscopy to study changes in nucleus and cytoplasm and immunohistochemistry for the microtubule-associated protein 2 (MAP2) for changes in cytoskeleton. (3) After spinal cord injury, the nucleoplasm appeared more finely dispersed resulting in reduced electron opacity and the nucleus adopted an eccentric position. Changes of perikarya included dissolution of Nissl bodies and dissociation of polyribosomes (chromatolysis). After progesterone treatment for 3 days, the deafferented motoneurons now presented a clumped nucleoplasm, a better-preserved rough endoplasmic reticulum and absence of chromatolysis. Progesterone partially prevented development of nuclear eccentricity. Whereas 50% of injured motoneurons showed nuclear eccentricity, only 16% presented this phenotype after receiving progesterone. Additionally, injured rats showed reduced immunostaining for MAP2 in dendrites, pointing to cytoskeleton abnormalities, whereas progesterone treatment attenuated the injury-induced loss of MAP2. (4) Our data indicated that progesterone maintained in part neuronal ultrastructure, attenuated chromatolysis, and preclude the loss of MAP2, suggesting a protective effect during the early phases of spinal cord injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acheson A, Linsday RM (1996) Non target-derived roles of the neurotrophins. Philos Trans R Soc Lond B Biol Sci 351:417–422

    Article  PubMed  CAS  Google Scholar 

  • Azbill RD, Mu X, Bruce-Keller AJ, Mattson MP, Springer JE (1997) Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Res 765:283–290. doi:10.1016/S0006-8993(97)00573-8

    Article  PubMed  CAS  Google Scholar 

  • Azcoitia J, Leonelli E, Magnaghi V, Veiga S, García-Segura LM, Melcangi RC (2003) Progesterone and its derivatives dihydroprogesterone and tetrahydroprogesterone reduce myelin fiber morphological abnormalities and myelin fiber loss in the sciatic nerve of aged rats. Neurobiol Aging 24:853–860. doi:10.1016/S0197-4580(02)00234-8

    Article  PubMed  CAS  Google Scholar 

  • Bareyre FM, Schwab ME (2003) Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays. Trends Neurosci 26:555–563. doi:10.1016/j.tins.2003.08.004

    Article  PubMed  CAS  Google Scholar 

  • Barr M, Hamilton JD (1948) A quantitative study of certain morphological changes in spinal motor neurons during axon reaction. J Comp Neurol 89:93–121. doi:10.1002/cne.900890203

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt R, Matus A (1984) Light and electron microscopic studies of the distribution of microtubule-associated protein 2 in rat brain: a difference between dendritic and axonal cytoskeletons. J Comp Neurol 226:203–221. doi:10.1002/cne.902260205

    Article  PubMed  CAS  Google Scholar 

  • Bjugn R, Nyengaard JR, Rosland JH (1997) Spinal cord transection–no loss of distal ventral horn neurons. Modern stereological techniques reveal no transneuronal changes in the ventral horns of the mouse lumbar spinal cord after thoracic cord transection. Exp Neurol 148:179–186. doi:10.1006/exnr.1997.6610

    Article  CAS  Google Scholar 

  • Caceres A, Busciglio J, Ferreira A, Steward O (1988) An immunocytochemical and biochemical study of the microtubule-associated protein MAP-2 during post-lesion dendritic remodeling in the central nervous system of adult rats. Brain Res 427:233–246

    PubMed  CAS  Google Scholar 

  • Cragg BG (1970) What is the signal for chromatolysis? Brain Res 23:1–21. doi:10.1016/0006-8993(70)90345-8

    Article  PubMed  CAS  Google Scholar 

  • Cutler SM, Cekic M, Miller DM, Wali B, Van Landingham JW, Stein DG (2007) Progesterone improves acute recovery after traumatic brain injury in the aged rat. J Neurotrauma 24:1475–1486. doi:10.1089/neu.2007.0294

    Article  PubMed  Google Scholar 

  • Davies AM (1996) Paracrine and autocrine actions of neurotrophic factors. Neurochem Res 2:749–753. doi:10.1007/BF02532296

    Article  Google Scholar 

  • De Nicola AF, Gonzalez SL, Labombarda F, Gonzalez Deniselle MC, Garay L, Guennoun R et al (2006) Progesterone treatment of spinal cord injury: Effects on receptors, neurotrophins, and myelination. J Mol Neurosci 28:3–15. doi:10.1385/JMN:28:1:3

    Article  PubMed  Google Scholar 

  • Desarnaud F, Do Thai AN, Brown AM, Lemke G, Suter U, Baulieu EE et al (1998) Progesterone stimulates the activity of the promoters of peripheral myelin protein-22 and protein zero genes in Schwann cells. J Neurochem 71:1765–1768

    PubMed  CAS  Google Scholar 

  • di Michele F, Lekieffre D, Pasini A, Bernardi G, Benavides J, Romeo E (2000) Increased neurosteroids synthesis after brain and spinal cord injury in rats. Neurosci Lett 284:65–68. doi:10.1016/S0304-3940(00)00965-4

    Article  PubMed  Google Scholar 

  • Di Stefano G, Casoli T, Fattoretti P, Balietti M, Grossi Y, Giorgetti B et al (2006) Level and distribution of microtubule-associated protein-2 (MAP2) as an index of dendritic structural dynamics. Rejuvenation Res 9:94–98. doi:10.1089/rej.2006.9.94

    Article  PubMed  Google Scholar 

  • Eidelberg E, Nguyen LH, Polich R, Walden JG (1989) Transsynaptic degeneration of motoneurones caudal to spinal cord lesions. Brain Res Bull 22:39–45. doi:10.1016/0361-9230(89)90125-1

    Article  PubMed  CAS  Google Scholar 

  • Farah CA, Liazoghli D, Perreault S, Desjardins M, Guimont A, Anton A et al (2005) Interaction of microtubule-associated protein-2 and p63: a new link between microtubules and rough endoplasmic reticulum membranes in neurons. J Biol Chem 280:9439–9449. doi:10.1074/jbc.M412304200

    Article  PubMed  CAS  Google Scholar 

  • Fee DB, Swartz KR, Joy KM, Roberts KN, Scheff NN, Scheff SW (2007) Effects of progesterone on experimental spinal cord injury. Brain Res 1137:146–152. doi:10.1016/j.brainres.2006.12.024

    Article  PubMed  CAS  Google Scholar 

  • Fontaine-Lenoir V, Chambraud B, Fellous A, David S, Duchossoy Y, Baulieu EE et al (2006) Microtubule-associated protein 2 (MAP2) is a neurosteroid receptor. Proc Natl Acad Sci USA 103:4711–4716. doi:10.1073/pnas.0600113103

    Article  PubMed  CAS  Google Scholar 

  • Fukumitsu H, Ohashi A, Nitta A, Nomoto H, Furukawa S (1997) BDNF and NT-3 modulate expression and threonine phosphorylation of microtubule-associated protein 2 analogues, and alter their distribution in the developing rat cerebral cortex. Neurosci Lett 238:107–110. doi:10.1016/S0304-3940(97)00852-5

    Article  PubMed  CAS  Google Scholar 

  • Garay L, Gonzalez Deniselle MC, Lima A, Roig P, De Nicola AF (2007) Effects of progesterone in the spinal cord of a mouse model of multiple sclerosis. J Steroid Biochem Mol Biol 107:228–237. doi:10.1016/j.jsbmb.2007.03.040

    Article  PubMed  CAS  Google Scholar 

  • Ghoumari AM, Ibanez C, El-Etr M, Leclerc P, Eychenne B, O’Malley BW et al (2003) Progesterone and its metabolites increase myelin basic protein expression in organotypic slices cultures of rat cerebellum. J Neurochem 86:848–859. doi:10.1046/j.1471-4159.2003.01881.x

    Article  PubMed  CAS  Google Scholar 

  • Gold BG, Mobley WC, Matheson SF (1991) Regulation of axonal caliber, neurofilament content, and nuclear localization in mature sensory neurons by nerve growth factor. J Neurosci 11:943–955

    PubMed  CAS  Google Scholar 

  • González SL, Labombarda F, González Deniselle MC, Guennoun R, Schumacher M, De Nicola AF (2004) Progesterone up-regulates neuronal brain-derived neurotrophic factor expression in the injured spinal cord. Neuroscience 125:605–614. doi:10.1016/j.neuroscience.2004.02.024

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez SL, Labombarda F, Gonzalez Deniselle MC, Mougel A, Guennoun R, Schumacher M et al (2005) Progesterone neuroprotection in spinal cord trauma involves up-regulation of brain-derived neurotrophic factor in motoneurons. J Steroid Biochem Mol Biol 94:143–149. doi:10.1016/j.jsbmb.2005.01.016

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez Deniselle MC, Garay L, Gonzalez SL, Guennoun R, Schumacher M, De Nicola AF (2005) Progesterone restores retrograde labelling of cervical motoneurons in Wobbler mouse motoneuron disease. Exp Neurol 195:518–523. doi:10.1016/j.expneurol.2005.06.015

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez Deniselle MC, Garay L, Gonzalez SL, Saravia F, Labombarda F, Guennoun R et al (2007) Progesterone modulates brain-derived neurotrophic factor and choline acetyltransferase in degenerating Wobbler motoneurons. Exp Neurol 203:406–414. doi:10.1016/j.expneurol.2006.08.019

    Article  PubMed  CAS  Google Scholar 

  • González Deniselle MC, López-Costa JJ, González SL, Labombarda F, Garay L, Guennoun R et al (2003) Basis of progesterone neuroprotection in spinal cord neurodegeneration. J Steroid Biochem Mol Biol 83:199–209. doi:10.1016/S0960-0760(02)00262-5

    Article  CAS  Google Scholar 

  • Grossman KJ, Goss CW, Stein DG (2004) Effects of progesterone on the inflammatory response to brain injury in the rat. Brain Res 1008:29–39. doi:10.1016/j.brainres.2004.02.022

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Sakurai M, Abe K, Sadahiro M, Tabayashi K, Itoyama Y (1998) Apoptosis of motor neurons with induction of caspases in the spinal cord after ischemia. Stroke 29:1007–1012

    PubMed  CAS  Google Scholar 

  • Hayes RL, Yang K, Whitson JS, Postmantur R (1995) Cytoskeletal derangements following central nervous system injury: modulation of neurotrophic gene transfection. J Neurotrauma 2:933–941

    Article  Google Scholar 

  • Ibanez C, Shields SA, El-Etr M, Leonelli E, Magnaghi V, Li WW et al (2003) Steroids and the reversal of age-associated changes in myelination and remyelination. Prog Neurobiol 71:49–56. doi:10.1016/j.pneurobio.2003.09.002

    Article  PubMed  CAS  Google Scholar 

  • Jamieson SMF, Liu JJ, Connor B, Dragunow M, McKeage MJ (2007) Nucleolar enlargement, nuclear eccentricity and altered cell body immunostaining characteristics of large-sized sensory neurons following treatment of rats with paclitaxel. Neurotoxicology 28:1092–1098. doi:10.1016/j.neuro.2007.04.009

    Article  PubMed  CAS  Google Scholar 

  • Kaur P, Jodhka PK, Underwood WA, Bowles CA, de Fiebre NC, de Fiebre CM et al (2007) Progesterone increases brain-derived neuroptrophic factor expression and protects against glutamate toxicity in a mitogen-activated protein kinase- and phosphoinositide-3 kinase-dependent manner in cerebral cortical explants. J Neurosci Res 85:2441–2449. doi:10.1002/jnr.21370

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi H, Doh-ura K, Kawashima T, Kira J, Iwaki T (1999) Immunohistochemical analysis of spinal cord lesions in amyotrophic lateral sclerosis using microtubule-associated protein 2 (MAP2) antibodies. Acta Neuropathol 97:13–21. doi:10.1007/s004010050950

    Article  PubMed  CAS  Google Scholar 

  • Koenig HL, Schumacher M, Ferzaz B (1995) Progesterone synthesis and myelin formation by Schwann cells. Science 268:1500–1502. doi:10.1126/science.7770777

    Article  PubMed  CAS  Google Scholar 

  • Kupina NC, Detloff MR, Bobrowski WF, Snyder BJ, Hall ED (2003) Cytoskeletal protein degradation and neurodegeneration evolves differently in males and females following experimental head injury. Exp Neurol 180:55–73. doi:10.1016/S0014-4886(02)00048-1

    Google Scholar 

  • Labombarda F, González SL, Gonzalez Deniselle MC, Guennoun R, Schumacher M, De Nicola AF (2002) Cellular basis for progesterone neuroprotection in the injured spinal cord. J Neurotrauma 19:343–355. doi:10.1089/089771502753594918

    Article  PubMed  Google Scholar 

  • Labombarda F, Gonzalez S, Gonzalez Deniselle MC, Vinson GP, Schumacher M, De Nicola AF et al (2003) Effects of injury and progesterone treatment on progesterone receptor and progesterone binding protein 25 Dx in the rat spinal cord. J Neurochem 87:902–913. doi:10.1046/j.1471-4159.2003.02055.x

    Article  PubMed  CAS  Google Scholar 

  • Labombarda F, Gonzalez S, Gonzalez Deniselle MC, Garay L, Guennoun R, Schumacher M et al (2006a) Progesterone increases the expression of myelin basic protein and the number of cells showing NG2 immunostaining in the lesioned spinal cord. J Neurotrauma 23:181–192. doi:10.1089/neu.2006.23.181

    Article  PubMed  Google Scholar 

  • Labombarda F, Pianos A, Liere P, Eychenne B, Gonzalez S, Cambourg A et al (2006b) Injury elicited increase in spinal cord neurosteroid content analyzed by gas chromatography mass spectrometry. Endocrinology 147:1847–1859. doi:10.1210/en.2005-0955

    Article  PubMed  CAS  Google Scholar 

  • Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598. doi:10.1038/35085008

    Article  PubMed  CAS  Google Scholar 

  • Magnaghi V, Cavarretta I, Galbiati M, Martini L, Melcangi RC (2001) Neuroactive steroids and peripheral myelin proteins. Brain Res Brain Res Rev 37:360–371. doi:10.1016/S0165-0173(01)00140-0

    Article  PubMed  CAS  Google Scholar 

  • Marsh HN, Scholz WK, Lamballe F, Klein R, Nanduri V, Barbacid M et al (1993) Signal transduction events mediated by the BDNF receptor gp 145trkB in primary hippocampal pyramidal cell culture. J Neurosci 13:4281–4292

    PubMed  CAS  Google Scholar 

  • McIlwain DL, Hoke VB (2005) The role of the cytoskeleton in cell body enlargement, increased nuclear eccentricity and chromatolysis in axotomized spinal motor neurons. BMC Neurosci 6:1–13. doi:10.1186/1471-2202-6-19

    Article  Google Scholar 

  • Melcangi RC, Mensah-Nyagan AG (2006) Neuroprotective effects of neuroactive steroids in the spinal cord and peripheral nerves. J Mol Neurosci 28:1–2. doi:10.1385/JMN:28:1:1

    Article  PubMed  CAS  Google Scholar 

  • Miranda RC, Sohrabji F, Toran-Allerand CD (1993) Neuronal colocalization of mRNAs for neurotrophins and their receptors in the developing central nervous system suggests a potential for autocrine interactions. Proc Natl Acad Sci USA 90:6439–6443. doi:10.1073/pnas.90.14.6439

    Article  PubMed  CAS  Google Scholar 

  • Nacimiento W, Sappok T, Brook GA, Tóth L, Schoen SW, Noth J et al (1995) Structural changes of anterior horn neurons and their synaptic input caudal to low thoracic spinal cord hemisection in the adult rat: a light and electron microscopic study. Acta Neuropathol 90:552–564. doi:10.1007/BF00318567

    Article  PubMed  CAS  Google Scholar 

  • Patte-Mensah C, Penning TM, Mensah-Nyagan AG (2004) Anatomical and cellular localization of neuroactive 5 alpha/3 alpha-reduced steroid-synthesizing enzymes in the spinal cord. J Comp Neurol 477:286–299. doi:10.1002/cne.20251

    Article  PubMed  CAS  Google Scholar 

  • Price DL, Porter KR (1972) The response of ventral horn neurons to axonal transection. J Cell Biol 53:24–37. doi:10.1083/jcb.53.1.24

    Article  PubMed  CAS  Google Scholar 

  • Reyna-Neyra A, Camacho-Arroyo I, Ferrera P, Arias C (2002) Estradiol and progesterone modify microtubule associated protein 2 content in the rat hippocampus. Brain Res Bull 58:607–612. doi:10.1016/S0361-9230(02)00829-8

    Article  PubMed  CAS  Google Scholar 

  • Roof R, Hoffman S, Stein D (1997) Progesterone protects against lipid peroxidation following traumatic brain injury in rats. Mol Chem Neuropathol 31:1–11. doi:10.1007/BF02815156

    Article  PubMed  CAS  Google Scholar 

  • Siegel S, Castellan N (1989) Nonparametric Statistics for Behavioral Sciences, 2nd ed edn. Singapore, McGraw-Hill

    Google Scholar 

  • Sperandio S, de Belle I, Bredesen DE (2000) An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci USA 97:14376–14381. doi:10.1073/pnas.97.26.14376

    Article  PubMed  CAS  Google Scholar 

  • Springer JE, Azbill RD, Kennedy SE, George J, Geddes JW (1997) Rapid calpain I activation and cytoskeletal protein degradation following traumatic spinal cord injury: attenuation with riluzole pretreatment. J Neurochem 69:1592–1600

    Article  PubMed  CAS  Google Scholar 

  • Stein DG (2005) The case for progesterone. Ann N Y Acad Sci 1052:152–169. doi:10.1196/annals.1347.011

    Article  PubMed  CAS  Google Scholar 

  • Thomas A, Nockels R, Pan H, Shaffrey CI, Chopp M (1999) Progesterone is neuroprotective after acute experimental spinal cord trauma in rats. Spine 24:2134–2138. doi:10.1097/00007632-199910150-00013

    Article  PubMed  CAS  Google Scholar 

  • Wakayama I (1992) Morphometry of spinal motor neurons in amyotrophic lateral sclerosis with special reference to chromatolysis and intracytoplasmic inclusion bodies. Brain Res 586:12–18. doi:10.1016/0006-8993(92)91365-L

    Article  PubMed  CAS  Google Scholar 

  • Wright DW, Kellermann AL, Hertzberg VS, Clark PL, Frankel M, Goldstein FC et al (2007) ProTECT: a randomized clinical trial of progesterone for acute traumatic brain injury. Ann Emerg Med 49:391–402. doi:10.1016/j.annemergmed.2006.07.932

    Article  PubMed  Google Scholar 

  • Yu WR, Westergren H, Farooque M, Holtz A, Olsson Y (2000) Systemic hypothermia following spinal cord compression injury in the rat: an immunohistochemical study on MAP 2 with special reference to dendrite changes. Acta Neuropathol 100:546–552. doi:10.1007/s004010000206

    Article  PubMed  CAS  Google Scholar 

  • Zeman RJ, Peng H, Etingler JD (2004) Clenbuterol retards loss of motor function in motor neuron degeneration mice. Exp Neurol 187:460–467. doi:10.1016/j.expneurol.2004.03.006

    Article  PubMed  CAS  Google Scholar 

  • Zhang SX, Underwood M, Landfield A, Huang FF, Gison S, Geddes JW (2000) Cytoskeletal disruption following contusion injury to the rat spinal cord. J Neuropathol Exp Neurol 59:287–296

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of FONCYT (BID OC AR PICT 2004 # 25610), the National Research Council of Argentina (CONICET, PIP 5542), and the University of Buenos Aires (M022 and M808). We deeply thank Ms. Mariana López Ravasio for electron microscopic techniques and Juan Pablo Corazza for help with photography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro F. De Nicola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, S.L., López-Costa, J.J., Labombarda, F. et al. Progesterone Effects on Neuronal Ultrastructure and Expression of Microtubule-associated Protein 2 (MAP2) in Rats with Acute Spinal Cord Injury. Cell Mol Neurobiol 29, 27–39 (2009). https://doi.org/10.1007/s10571-008-9291-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-008-9291-0

Keywords

Navigation