Cellular and Molecular Neurobiology

, Volume 28, Issue 4, pp 469–478 | Cite as

The Cerebellum in Feeding Control: Possible Function and Mechanism

Review Paper


Accumulating anatomical, functional, and behavioral studies reveal that the cerebellum is involved in the regulation of various visceral functions including feeding control. Cerebellar lesions may induce alterations in feeding behavior and decreases in body weight. Although the exact mechanisms underlying the cerebellar regulation of food intake is still unclear, a series of studies have demonstrated that there are neural pathways directly and/or indirectly connecting the cerebellum with several important centers for feeding control, such as the hypothalamus. Electrophysiological data suggest that via the direct cerebellohypothalamic projections, the cerebellar outputs may reach, converge, and be integrated with some critical feeding signals including gastric vagal afferents, CCK, leptin, and glycemia on single hypothalamic neurons. Furthermore, recent functional imaging studies provide substantial evidences that hunger, satiation, and thirst are accompanied with a cerebellar activation. Here we describe that the cerebellum may be much more than a movement coordinator and actively participate in feeding control, i.e., it may act as an essential node linking somatic and visceral systems and help to generate an integrated and coordinated somatic-visceral response in feeding behavior.


Cerebellum Cerebellar-hypothalamic circuits Feeding regulation Somatic-visceral integration 


  1. Aas JE, Brodal P (1989) Demonstration of a mamillo-ponto-cerebellar pathway. Eur J Neurosci 1:61–74CrossRefPubMedGoogle Scholar
  2. Aou S, Takaki A, Karadi Z, Hori T, Nishino H, Oomura Y (1991) Functional heterogeneity of the monkey lateral hypothalamus in the control of feeding. Brain Res Bull 27:451–455CrossRefPubMedGoogle Scholar
  3. Azizi SA, Mihailoff GA, Burne RA, Woodward DJ (1981) The pontocerebellar system in the rat: an HRP study. I. Posterior vermis. J Comp Neurol 197:543–548CrossRefPubMedGoogle Scholar
  4. Ban T, Inoue K, Ozaki S, Kurotsu T (1956) Interrelation between anterior lobe of cerebellum and hypothalamus in rabbit. Med J Osaka Univ 7:101–115Google Scholar
  5. Bard P, Woolsey CN, Snider RS, Mountcastle VB, Bromiley RB (1947) Delimitation of central nervous mechanisms involved in motion sickness. Fed Proc 6:72PubMedGoogle Scholar
  6. Beller NN, Talan MI (1971) Significance of the cerebellar nuclei for vegetative responses to the stimulation of the efferent visceral areas of the cat cerebellar cortex. Sechenov Physiol J USSR LVII:28–37Google Scholar
  7. Bernard C (1858) Leçon sur la physiologie et la pathologie du system nerveux, vol 1. JB Baillière et Fils, ParisGoogle Scholar
  8. Brodal P, Walberg F (1977) The pontine projection to the cerebellar anterior lobe: an experimental study in the cat with retrograde transport of horseradish peroxidase. Exp Brain Res 29:233–248CrossRefPubMedGoogle Scholar
  9. Campfield LA, Smith FJ (2003) Blood glucose dynamics and control of meal initiation: a pattern detection and recognition theory. Physiol Rev 83:25–58PubMedGoogle Scholar
  10. Çavdar S, Şan T, Aker R, Şehirli U, Onat F (2001a) Cerebellar connections to the dorsomedial and posterior nuclei of the hypothalamus in the rat. J Anat 198:37–45CrossRefPubMedGoogle Scholar
  11. Çavdar S, Onat F, Aker R, Şehirli U, Şan T, Yananli HR (2001b) The afferent connections of the posterior hypothalamic nucleus in the rat using horseradish peroxidase. J Anat 198:463–472CrossRefPubMedGoogle Scholar
  12. Cerf-Ducastel B, Murphy C (2001) fMRI activation in response to odorants orally delivered in aqueous solutions. Chem Senses 26:625–637CrossRefPubMedGoogle Scholar
  13. Colombel C, Lalonde R, Caston J (2002) The effects of unilateral removal of the cerebellar hemispheres on motor functions and weight gain in rats. Brain Res 950:231–238CrossRefPubMedGoogle Scholar
  14. Dietrichs E (1984) Cerebellar autonomic function: direct hypothalamocerebellar pathway. Science 223:591–593CrossRefPubMedGoogle Scholar
  15. Dietrichs E, Haines DE (1984) Demonstration of hypothalamocerebellar and cerebellohypothalamic fibers in a prosimian primate (Galago crassicaudatus). Anat Embryol 170:313–318CrossRefPubMedGoogle Scholar
  16. Dietrichs E, Haines DE (1985) Do hypothalamo-cerebellar fibres terminate in all layers of the cerebellar cortex? Anat Embryol 173:279–284CrossRefPubMedGoogle Scholar
  17. Dietrichs E, Haines DE (1986) Do the same hypothalamic neurons project to both amygdala and cerebellum? Brain Res 364:241–248CrossRefPubMedGoogle Scholar
  18. Dietrichs E, Haines DE (2002) Possible pathway for cerebellar modulation of autonomic responses: micturition. Scand J Urol Nephrol 210(Suppl):16–20CrossRefGoogle Scholar
  19. Dietrichs E, Haines DE, Qvist H (1985) Indirect hypothalamocerebellar pathway? Demonstration of hypothalamic efferent to the lateral reticular nucleus. Exp Brain Res 60:483–491CrossRefPubMedGoogle Scholar
  20. Dietrichs E, Wiklund L, Haines DE (1992) The hypothalamocerebellar projection in the rat: origin and transmitter. Arch Ital Biol 130:203–211PubMedGoogle Scholar
  21. Dietrichs E, Haines DE, Røste GK, Røste LS (1994) Hypothalamocerebellar and cerebellohypothalamic projections: circuits for regulating nonsomatic cerebellar activity? Histol Histopathol 9:603–614PubMedGoogle Scholar
  22. Fink H, Rex A, Voits M, Voigt JP (1998) Major biological actions of CCK: a critical evaluation of research findings. Exp Brain Res 123:77–83CrossRefPubMedGoogle Scholar
  23. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770CrossRefPubMedGoogle Scholar
  24. Gao JH, Parsons LM, Bower JM, Xiong J, Li J, Fox PT (1996) Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science 272:545–547CrossRefPubMedGoogle Scholar
  25. Gautier JF, Chen K, Uecker A, Bandy D, Frost J, Salbe AD, Pratley RE, Lawson M, Ravussin E, Reiman EM, Tataranni PA (1999) Regions of the human brain affected during a liquid-meal taste perception in the fasting state: a positron emission tomography study. Am J Clin Nutr 70:806–810PubMedGoogle Scholar
  26. Gautier JF, Chen K, Salbe AD, Bandy D, Pratley RE, Heiman M, Ravussin E, Reiman EM, Tataranni PA (2000) Differential brain responses to satiation in obese and lean men. Diabetes 49:838–846CrossRefPubMedGoogle Scholar
  27. Gautier JF, Del Parigi A, Chen K, Salbe AD, Bandy D, Pratley RE, Ravussin E, Reiman EM, Tataranni PA (2001) Effect of satiation on brain activity in obese and lean women. Obes Res 9:676–684CrossRefPubMedGoogle Scholar
  28. Gzgzian DM, Kuzina MM, Tanasiĭchuk OF (1978) Effect of the cerebellum on the motor activity of the stomach in the scorpion fish, Scorpaena porcus. Zh Evol Biokhim Fiziol 14:408–410PubMedGoogle Scholar
  29. Haines DE, Dietrichs E (1984) An HRP study of hypothalamocerebellar and cerebellohypothalamic connections in squirrel monkey (Saimiri sciureus). J Comp Neurol 229:559–575CrossRefPubMedGoogle Scholar
  30. Haines DE, Dietrichs E (1989) Nonsomatic cerebellar circuits: a broader view of cerebellar involvements in locomotion. J Motor Behav 21:518–525Google Scholar
  31. Haines DE, Dietrichs E (1991) Evidence of an x zone in lobule V of the squirrel monkey cerebellum: the distribution of corticonuclear fibers. Anat Embryol 184:255–268CrossRefPubMedGoogle Scholar
  32. Haines DE, Dietrichs E, Sowa TE (1984) Hypothalamo-cerebellar and cerebello-hypothalamic pathways: a review and hypothesis concerning cerebellar circuits which may influence autonomic centers affective behavior. Brain Behav Evol 24:198–220CrossRefPubMedGoogle Scholar
  33. Haines DE, Sowa TE, Dietrichs E (1985) Connections between the cerebellum and hypothalamus in tree shrew (Tupain glis). Brain Res 328:367–373CrossRefPubMedGoogle Scholar
  34. Haines DE, Dietrichs E, Culberson JL, Sowa TE (1986) The organization of hypothalamocerebellar cortical fibers in the squirrel monkey (Saimiri sciureus). J Comp Neurol 250:377–388CrossRefPubMedGoogle Scholar
  35. Haines DE, May PJ, Dietrichs E (1990) Neuronal connections between the cerebellar nuclei and hypothalamus in Macaca fascicularis: cerebello-visceral circuits. J Comp Neurol 299:106–122CrossRefPubMedGoogle Scholar
  36. Haines DE, Dietrichs E, Mihailoff GA, McDonald EF (1997) The cerebellar-hypothalamic axis: basic circuits and clinical observations. Int Rev Neurobiol 41:83–107CrossRefPubMedGoogle Scholar
  37. Himmi T, Boyer A, Orsini JC (1988) Changes in lateral hypothalamic neuronal activity accompanying hyper- and hypoglycemias. Physiol Behav 44:347–354CrossRefPubMedGoogle Scholar
  38. Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195PubMedGoogle Scholar
  39. Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78:272–303CrossRefPubMedGoogle Scholar
  40. Karadi Z, Oomura Y, Nishino H, Scott TR, Lenard L, Aou S (1990) Complex attribute of lateral hypothalamic neurons in the regulation of feeding of alert rhesus monkeys. Brain Res Bull 25:933–939CrossRefPubMedGoogle Scholar
  41. Katafuchi T, Koizumi K (1990) Fastigial inputs to paraventricular neurosecretory neurones studied by extra- and intracellular recordings in rats. J Physiol (Lond) 421:535–551Google Scholar
  42. Killgore WD, Young AD, Femia LA, Bogorodzki P, Rogowska J, Yurgelun-Todd DA (2003) Cortical and limbic activation during viewing of high- versus low-calorie foods. Neuroimage 19:1381–1394CrossRefPubMedGoogle Scholar
  43. Liu H, Mihailoff GA (1999) Hypothalamopontine projections in the rat: anterograde axonal transport studies utilizing light and electron microscopy. Anat Rec 255:428–451CrossRefPubMedGoogle Scholar
  44. Liu YJ, Gao JH, Liu HL, Fox PT (2000) The temporal response of the brain after eating revealed by functional MRI. Nature 405:1058–1061CrossRefPubMedGoogle Scholar
  45. Mahler JM (1993) An unexpected role of the cerebellum: involvement in nutritional organization. Physiol Behav 54:1063–1067CrossRefPubMedGoogle Scholar
  46. Manchanda SK, Tandon OP, Aneja IS (1972) Role of the cerebellum in the control of gastro-intestinal motility. J Neural Transm 33:195–209CrossRefPubMedGoogle Scholar
  47. Martin JH, Cooper SE, Hacking A, Ghez C (2000) Differential effects of deep cerebellar nuclei inactivation on reaching and adaptive control. J Neurophysiol 83:1886–1899PubMedGoogle Scholar
  48. Martner J (1975) Cerebellar influences on autonomic mechanisms. An experimental study in the cat with special reference to the fastigial nucleus. Acta Physiol Scand 425(Suppl):1–42Google Scholar
  49. Mihailoff GA (1993) Cerebellar nuclear projections from the basilar pontine nuclei and nucleus reticularis tegmenti pontis as demonstrated with PHA-L tracing in the rat. J Comp Neurol 330:130–146CrossRefPubMedGoogle Scholar
  50. Min B, Oomura Y, Katafuchi T (1989) Responses of rat lateral hypothalamic neuronal activity to fastigial nucleus stimulation. J Neurophysiol 61:1178–1184PubMedGoogle Scholar
  51. Milak MS, Shimansky Y, Bracha V, Bloedel JR (1997) Effects of inactivating individual cerebellar nuclei on the performance and retention of an operantly conditioned forelimb movement. J Neurophysiol 78:939–959PubMedGoogle Scholar
  52. Noble F, Wank SA, Crawley JN, Bradwejn J, Seroogy KB, Hamon M, Roques BP (1999) Structure, distribution, and functions of cholecystokinin receptors. Pharmacol Rev 51:745–781PubMedGoogle Scholar
  53. Oomura Y, Ono T, Ooyama H, Wayner MJ (1969) Glucose and osmosensitive neurones of the rat hypothalamus. Nature 222:282–284CrossRefPubMedGoogle Scholar
  54. Orsini JC, Wiser AK, Himmi T, Boyer A (1991) Sensitivity of lateral hypothalamic neurons to glycemia level: possible involvement of an indirect adrenergic mechanism. Brain Res Bull 26:472–478CrossRefGoogle Scholar
  55. Parada MA, Hernandez L, Puig de Parada M, Paez X, Hoebel BG (1990) Dopamine in the lateral hypothalamus may be involved in the inhibition of locomotion related to food and water seeding. Brain Res Bull 25:961–968CrossRefPubMedGoogle Scholar
  56. Parsons LM, Denton D, Enga G, McKinley M, Shade R, Lancaster J, Fox PT (2000) Neuroimaging evidence implicating cerebellum in support of sensory/cognitive processes associated with thirst. Proc Natl Acad Sci USA 97:2332–2334CrossRefPubMedGoogle Scholar
  57. Parsons LM, Enga G, Liotti M, Brannan S, Denton D, Shade R, Robillard R, Madden L, Abplanalp B, Fox PT (2001) Neuroimaging evidence implicating cerebellum in the experience of hypercapnia and hunger for air. Proc Natl Acad Sci USA 98:2041–2046CrossRefPubMedGoogle Scholar
  58. Peng YP, Qiu YH, Chao BB, Wang JJ (2005) Effect of lesions of cerebellar fastigial nuclei on lymphocyte functions of rats. Neurosci Res 51:275–284CrossRefPubMedGoogle Scholar
  59. Peng YP, Qiu YH, Qiu J, Wang JJ (2006) Cerebellar interposed nucleus lesions suppress lymphocyte function in rats. Brain Res Bull 71:10–17CrossRefPubMedGoogle Scholar
  60. Pu YM, Wang JJ, Wang T, Yu QX (1995) Cerebellar interpositus nucleus modulates neuronal activity of lateral hypothalamic area. Neuroreport 6:985–988CrossRefPubMedGoogle Scholar
  61. Reiman EM, Lane RD, Ahern GL, Schwartz GE, Davidson RJ, Friston KJ, Yun LS, Chen K (1997) Neuroanatomical correlates of externally and internally generated human emotion. Am J Psychiatry 154:918–925PubMedGoogle Scholar
  62. Reis DJ, Golanov EV (1997) Autonomic and vasomotor regulation. Int Rev Neurobiol 41:121–149CrossRefPubMedGoogle Scholar
  63. Scalera G (1991) Effects of corticocerebellar lesions on taste preferences, body weight gain, food and fluid intake in the rat. J Physiol (Paris) 85:214–222Google Scholar
  64. Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121:561–579CrossRefPubMedGoogle Scholar
  65. Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS, Kabani N, Toga A, Evans A, Petrides M (1999) Three-dimensional MRI atlas of the cerebellum in proportional stereotaxic space. Neuroimage 10:233–260CrossRefPubMedGoogle Scholar
  66. Schwartz GJ (2000) The role of gastrointestinal vagal afferents in the control of food intake: current prospects. Nutrition 16:866–873CrossRefPubMedGoogle Scholar
  67. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671PubMedGoogle Scholar
  68. Shparkovskiĭ IA, Vataev SI (1985) Effect of electrostimulation of different brain structures on the motor activity of the digestive tract of the cod. Fiziol Zh SSSR Im I M Sechenova 71:1265–1270PubMedGoogle Scholar
  69. Sobel N, Prabhakaran V, Hartley CA, Desmond JE, Zhao Z, Glover GH, Gabrieli JD, Sullivan EV (1998) Odorant-induced and sniff-induced activation in the cerebellum of the human. J Neurosci 18:8990–9001PubMedGoogle Scholar
  70. Somana R, Walberg F (1979) Cerebellar afferents from the nucleus of the solitary tract. Neurosci Lett 11:41–47CrossRefPubMedGoogle Scholar
  71. Supple WF (1993) Hypothalamic modulation of Purkinje cell activity in the anterior cerebellar vermis. Neuroreport 4:979–982PubMedCrossRefGoogle Scholar
  72. Tataranni PA, Gautier JF, Chen K, Uecker A, Bandy D, Salbe AD, Pratley RE, Lawson M, Reiman EM, Ravussin E (1999) Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc Natl Acad Sci USA 96:4569–4574CrossRefPubMedGoogle Scholar
  73. Teves D, Videen TO, Cryer PE, Powers WJ (2004) Activation of human medial prefrontal cortex during autonomic responses to hypoglycemia. Proc Natl Acad Sci USA 101:6217–6221CrossRefPubMedGoogle Scholar
  74. Voronin LG (1938) New data on the motor activity of intestinal tract and on its regulatory mechanism. Izv naucn Inst Lesgafta 21:3–74Google Scholar
  75. Voronin LG, Simkina AM (1938) The influence of electrical stimulation of the cerebellum on the motor function of the intestinal tract. Izv naucn Inst Lesgafta 21:75–85Google Scholar
  76. Wang T, Yu QX, Wang JJ (1994) Effects of stimulating lateral hypothalamic area and ventromedial nucleus of hypothalamus on cerebellar cortical neuronal activity in the cat. Chin J Physiol Sci 10:17–25Google Scholar
  77. Wang JJ, Pu YM, Wang T (1997) Influences of cerebellar interpositus nucleus and fastigial nucleus on the neuronal activity of lateral hypothalamic area. Sci China (Series C) 40:176–183CrossRefGoogle Scholar
  78. Wen YQ, Zhu JN, Zhang YP, Wang JJ (2004) Cerebellar interpositus nuclear inputs impinge on paraventricular neurons of the hypothalamus in rats. Neurosci Lett 370:25–29CrossRefPubMedGoogle Scholar
  79. Wolfe JW (1969) Chronic gastric ulceration associated with experimentally induced posterior cerebellar vermal lesions. Physiol Behav 4:1011–1013CrossRefGoogle Scholar
  80. Xu FD, Frazier DT (2000) Modulation of respiratory motor output by cerebellar deep nuclei in the rat. J Appl Physiol 89:996–1004PubMedGoogle Scholar
  81. Yuan CS, Barber WD (1992) Hypothalamic unitary responses to gastric vagal input from the proximal stomach. Am J Physiol 262:G74–G80PubMedGoogle Scholar
  82. Yuan CS, Barber WD (1996) Interactions of gastric vagal and peripheral nerves on single neurons of lateral hypothalamus in the cat. Am J Physiol 271:G858–G865PubMedGoogle Scholar
  83. Yung WH, Chan YS, Chow BK, Wang JJ (2006) The role of secretin in the cerebellum. Cerebellum 5:43–48CrossRefPubMedGoogle Scholar
  84. Zanchetti A, Zoccolini A (1954) Autonomic hypothalamic outbursts elicited by cerebellar stimulation. J Neurophysiol 17:475–483PubMedGoogle Scholar
  85. Zhang YP, Ma C, Wen YQ, Wang JJ (2003) Convergence of gastric vagal and cerebellar fastigial nuclear inputs on glycemia-sensitive neurons of lateral hypothalamic area in the rat. Neurosci Res 45:9–16CrossRefPubMedGoogle Scholar
  86. Zhang YP, Zhu JN, Chen K, Li HZ, Wang JJ (2005) Neurons in the rat lateral hypothalamic area integrate information from the gastric vagal nerves and the cerebellar interpositus nucleus. Neurosignals 14:234–243CrossRefPubMedGoogle Scholar
  87. Zheng Z, Dietrichs E, Walberg F (1982) Cerebellar afferent fibres from the dorsal motor vagal nucleus in the cat. Neurosci Lett 32:113–118CrossRefPubMedGoogle Scholar
  88. Zhu JN, Zhang YP, Song YN, Wang JJ (2004) Cerebellar interpositus nuclear and gastric vagal afferent inputs could reach and converge onto glycemia-sensitive neurons of the ventromedial hypothalamic nucleus in rats. Neurosci Res 48:405–417CrossRefPubMedGoogle Scholar
  89. Zhu JN, Li HZ, Ding Y, Wang JJ (2006a) Cerebellar modulation of feeding-related neurons in rat dorsomedial hypothalamic nucleus. J Neurosci Res 84:1597–1609CrossRefPubMedGoogle Scholar
  90. Zhu JN, Yung WH, Chow BKC, Chan YS, Wang JJ (2006b) The cerebellar-hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res Rev 52:93–106CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Biological Science and Technology and State Key Laboratory of Pharmaceutical BiotechnologySchool of Life Sciences, Nanjing UniversityNanjingChina

Personalised recommendations