Cellular and Molecular Neurobiology

, Volume 27, Issue 5, pp 609–639 | Cite as

Cognitive Deficits in Schizophrenia: Focus on Neuronal Nicotinic Acetylcholine Receptors and Smoking

  • Enrique L. M. OchoaEmail author
  • Jose Lasalde-Dominicci
Original Paper


Patients with schizophrenia present with deficits in specific areas of cognition. These are quantifiable by neuropsychological testing and can be clinically observable as negative signs. Concomitantly, they self-administer nicotine in the form of cigarette smoking. Nicotine dependence is more prevalent in this patient population when compared to other psychiatric conditions or to non-mentally ill people. The target for nicotine is the neuronal nicotinic acetylcholine receptor (nAChR). There is ample evidence that these receptors are involved in normal cognitive operations within the brain. This review describes neuronal nAChR structure and function, focusing on both cholinergic agonist-induced nAChR desensitization and nAChR up-regulation. The several mechanisms proposed for the nAChR up-regulation are examined in detail. Desensitization and up-regulation of nAChRs may be relevant to the physiopathology of schizophrenia. The participation of several subtypes of neuronal nAChRs in the cognitive processing of non-mentally ill persons and schizophrenic patients is reviewed. The role of smoking is then examined as a possible cognitive remediator in this psychiatric condition. Finally, pharmacological strategies focused on neuronal nAChRs are discussed as possible therapeutic avenues that may ameliorate the cognitive deficits of schizophrenia.


Schizophrenia Nicotinic receptors 





Apathy Evaluation Scale




Brief Psychiatric Rating Scale






Food and Drug Administration


Gamma aminobutyric acid




Measurement and Treatment Research to Improve Cognition in Schizophrenia


National Institute of Mental Health




Nicotinic acetylcholine receptor


N-methyl-d-aspartic acid


Open Label


Positive and Negative Symptom Scale for Schizophrenia


Protein kinase A


Protein kinase C


Repeatable Battery for the Assessment of Neuropsychological status


Rey Complex Figure Test


Randomized Controlled Trial


Scale for the Assessment of Negative Symptms in Schizoprenia


Scale for the Assessment of Cognitive Impairment in Psychosis


Second generation antipsychotics


Substantia nigra




Ventral tegmental area



The authors are grateful to Drs. Gretchen Lopez-Hernandez, and Javier Sanchez for insights and perspectives. Work in the author’s laboratory (JLD) is supported by the National Institutes of Health grants 2RO1GM56371–10, GM08102–27 and SNRP U54NS0430311. This work was supported in part by grants from the National Institutes of Health NIGMS 2RO1GM56371-10, GM08102-27, NINDS SNRP U54NS0430311 and UPR Insitutional Funds for Research.


  1. Adams DJ, Nutter TJ (1992) Calcium permeability and modulation of nicotinic acetylcholine receptor-channels in rat parasympathetic neurons. J Physiol Paris 86:67–76PubMedCrossRefGoogle Scholar
  2. Adler LE, Hoffer LD, Wiser A, Freedman R (1993) Normalization of auditory physiology by cigarette smoking in schizophrenic patients. Am J Psychiatry 150:1856–1861PubMedGoogle Scholar
  3. Adler LE, Hoffer LJ, Griffith J, Waldo MC, Freedman R (1992) Normalization by nicotine of deficient auditory sensory gating in the relatives of schizophrenics. Biol Psychiatry 32:607–616PubMedCrossRefGoogle Scholar
  4. Albuquerque EX, Alkondon M, Pereira EF, Castro NG, Schrattenholz A, Barbosa CT, Bonfante-Cabarcas R, Aracava Y, Eisenberg HM, Maelicke A (1997) Properties of neuronal nicotinic acetylcholine receptors: pharmacological characterization and modulation of synaptic function. J Pharmacol Exp Ther 280:1117–1136PubMedGoogle Scholar
  5. Albuquerque EX, Pereira EF, Mike A, Eisenberg HM, Maelicke A, Alkondon M (2000) Neuronal nicotinic receptors in synaptic functions in humans and rats: physiological and clinical relevance. Behav Brain Res 113:131–141PubMedCrossRefGoogle Scholar
  6. Albuquerque EX, Santos MD, Alkondon M, Pereira EF, Maelicke A (2001) Modulation of nicotinic receptor activity in the central nervous system: a novel approach to the treatment of Alzheimer disease. Alzheimer Dis Assoc Disord 15(Suppl. 1):S19–25PubMedCrossRefGoogle Scholar
  7. Alkondon M, Albuquerque EX (2001) Nicotinic acetylcholine receptor alpha7 and alpha4beta2 subtypes differentially control GABAergic input to CA1 neurons in rat hippocampus. J Neurophysiol 86:3043–3055PubMedGoogle Scholar
  8. Allen TB, McEvoy JP (2002) Galantamine for treatment-resistant schizophrenia. Am J Psychiatry 159:1244–1245PubMedCrossRefGoogle Scholar
  9. Anand R, Conroy WG, Schoepfer R, Whiting P, Lindstrom J (1991) Neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes have a pentameric quaternary structure. J Biol Chem 266:11192–11198PubMedGoogle Scholar
  10. Anand R, Peng X, Lindstrom J (1993) Homomeric and native alpha 7 acetylcholine receptors exhibit remarkably similar but non-identical pharmacological properties, suggesting that the native receptor is a heteromeric protein complex. FEBS Lett 327:241–246PubMedCrossRefGoogle Scholar
  11. Andreasen NC (1982) Negative symptoms in schizophrenia. Definition and reliability. Arch Gen Psychiatry 39:784–788PubMedGoogle Scholar
  12. Andreasen NC, Arndt S, Swayze V II, Cizadlo T, Flaum M, O’Leary D, Ehrhardt JC, Yuh WT (1994) Thalamic abnormalities in schizophrenia visualized through magnetic resonance image averaging. Science 266:294–298PubMedCrossRefGoogle Scholar
  13. Arendash GW, Sengstock GJ, Sanberg PR, Kem WR (1995) Improved learning and memory in aged rats with chronic administration of the nicotinic receptor agonist GTS-21. Brain Res 674:252–259PubMedCrossRefGoogle Scholar
  14. Arnold DS, Rosse RB, Dickinson D, Benham R, Deutsch SI, Nelson MW (2004) Adjuvant Therapeutic effects of galantamine on apathy in a Schizophrenia patient. J Clin Psychiatry 65:1723–1724PubMedCrossRefGoogle Scholar
  15. Barrantes GE, Rogers AT, Lindstrom J, Wonnacott S (1995) Alpha-Bungarotoxin Binding Sites in Rat Hippocampal and Cortical Cultures - Initial Characterisation, Colocalisation with Alpha-7 Subunits and Up-Regulation By Chronic Nicotine Treatment. Brain Res 672:228–236PubMedCrossRefGoogle Scholar
  16. Benowitz N (1990) Pharmacokinetic considerations in understanding nicotine dependence. In The biology of nicotine dependence, CIBA foundation symposium, vol 152. Wiley, Chichester, pp 186–209Google Scholar
  17. Benowitz NL (1992) Cigarette smoking and nicotine addiction. Med Clin North Am 76:415–437PubMedGoogle Scholar
  18. Benwell ME, Balfour DJ, Anderson JM (1988a) Evidence that tobacco smoking increases the density of (-)-[3H]nicotine binding sites in human brain. J Neurochem 50:1243–1247PubMedCrossRefGoogle Scholar
  19. Benwell MEM, Balfour DJK, Anderson JM (1988b) Evidence that tobacco smoking increases the density of (-)-[3H]nicotine binding sites in human brain. J Neurochem 50:1243–1247PubMedCrossRefGoogle Scholar
  20. Berman JA, Talmage DA, Role LW (2007) Cholinergic circuits and signaling in the pathophysiology of schizophrenia. Int Rev Neurobiol 78:193–223PubMedGoogle Scholar
  21. Bertrand D, Ballivet M, Rungger D (1990) Activation and blocking of neuronal nicotinic acetylcholine receptor reconstituted in Xenopus oocytes. Proc Natl Acad Sci USA 87:1993–1997PubMedCrossRefGoogle Scholar
  22. Bhat RV, Turner SL, Selvaag SR, Marks MJ, Collins AC (1991) Regulation of brain nicotinic receptors by chronic agonist infusion. J Neurochem 56:1932–1939PubMedCrossRefGoogle Scholar
  23. Bora E, Veznedaroglu B, Kayahan B (2005) The effect of galantamine added to clozapine on cognition of five patients with schizophrenia. Clin Neuropharmacol 28:139–141PubMedCrossRefGoogle Scholar
  24. Borison RL (1996) The role of cognition in the risk–benefit and safety analysis of antipsychotic medication. Acta Psychiatr Scand Suppl 389:5–11PubMedGoogle Scholar
  25. Breese CR, Lee MJ, Adams CE, Sullivan B, Logel J, Gillen KM, Marks MJ, Collins AC, Leonard S (2000) Abnormal regulation of high affinity nicotinic receptors in subjects with schizophrenia. Neuropsychopharmacology 23:351–364PubMedCrossRefGoogle Scholar
  26. Breese CR, Marks MJ, Logel J, Adams CE, Sullivan B, Collins AC, Leonard S (1997) Effect of smoking history on [3H]nicotine binding in human postmortem brain. J Pharmacol Exp Ther 282:7–13PubMedGoogle Scholar
  27. Briggs CA, Anderson DJ, Brioni JD, Buccafusco JJ, Buckley MJ, Campbell JE, Decker MW, Donnelly-Roberts D, Elliott RL, Gopalakrishnan M, Holladay MW, Hui YH, Jackson WJ, Kim DJ, Marsh KC, O’Neill A, Prendergast MA, Ryther KB, Sullivan JP, Arneric SP (1997) Functional characterization of the novel neuronal nicotinic acetylcholine receptor ligand GTS-21 in vitro and in vivo. Pharmacol Biochem Behav 57:231–241PubMedCrossRefGoogle Scholar
  28. Brody AL, Mandelkern MA, London ED, Olmstead RE, Farahi J, Scheibal D, Jou J, Allen V, Tiongson E, Chefer SI, Koren AO, Mukhin AG (2006) Cigarette smoking saturates brain alpha 4 beta 2 nicotinic acetylcholine receptors. Arch Gen Psychiatry 63:907–915PubMedCrossRefGoogle Scholar
  29. Buchanan RW, Summerfelt A, Tek C, Gold J (2003) An open-labeled trial of adjunctive donepezil for cognitive impairments in patients with schizophrenia. Schizophr Res 59:29–33PubMedCrossRefGoogle Scholar
  30. Buisson B, Bertrand D (2001) Chronic exposure to nicotine upregulates the human (alpha)4((beta)2 nicotinic acetylcholine receptor function. J Neurosci 21:1819–1829PubMedGoogle Scholar
  31. Carter CS (2006) Re-conceptualizing schizophrenia as a disorder of cognitive and emotional processing: a shot in the arm for translational research. Biol Psychiatry 60:1169–1170PubMedCrossRefGoogle Scholar
  32. Censits DM, Ragland JD, Gur RC, Gur RE (1997) Neuropsychological evidence supporting a neurodevelopmental model of schizophrenia: a longitudinal study. Schizophr Res 24:289–298PubMedCrossRefGoogle Scholar
  33. Chadwick PD, Lowe CF (1990) Measurement and modification of delusional beliefs. J Consult Clin Psychol 58:225–232PubMedCrossRefGoogle Scholar
  34. Chadwick PD, Lowe CF (1994) A cognitive approach to measuring and modifying delusions. Behav Res Ther 32:355–367PubMedCrossRefGoogle Scholar
  35. Changeux J-P(1990) Functional architecture and dynamics of the nicotinic acetylcholine receptor: an allosteric ligand-gated ion channel. In: Changeux J-P, Llinas RR, Purves D, Bloom FE (eds) Fidia research foundation neuroscience award lectures, Vol. 4. Raven Press, New York, pp 21–168Google Scholar
  36. Changeux JP, Bertrand D, Corringer PJ, Dehaene S, Edelstein S, Léna C, Le Novère N, Marubio L, Picciotto M, Zoli M (1998) Brain nicotinic receptors: structure and regulation, role in learning and reinforcement. Brain Res Brain Res Rev 26:198–216PubMedCrossRefGoogle Scholar
  37. Changeux JP, Edelstein SJ (2005) Allosteric mechanisms of signal transduction. Science 308:1424–1428PubMedCrossRefGoogle Scholar
  38. Changeux J-P, Revah F (1987) The Acetylcholine Receptor Molecule: Allosteric Sites and the Ion Channel. Trends in Neurosci 10:245–250CrossRefGoogle Scholar
  39. Coe JW, Brooks PR, Vetelino MG, Wirtz MC, Arnold EP, Huang J, Sands SB, Davis TI, Lebel LA, Fox CB, Shrikhande A, Heym JH, Schaeffer E, Rollema H, Lu Y, Mansbach RS, Chambers LK, Rovetti CC, Schulz DW, Tingley FD III, O’Neill BT (2005a) Varenicline: an alpha4beta2 nicotinic receptor partial agonist for smoking cessation. J Med Chem 48:3474–3477PubMedCrossRefGoogle Scholar
  40. Coe JW, Vetelino MG, Bashore CG, Wirtz MC, Brooks PR, Arnold EP, Lebel LA, Fox CB, Sands SB, Davis TI, Schulz DW, Rollema H, Tingley FD III, O’Neill BT (2005b) In pursuit of alpha4beta2 nicotinic receptor partial agonists for smoking cessation: carbon analogs of (−)-cytisine. Bioorg Med Chem Lett 15:2974–2979PubMedCrossRefGoogle Scholar
  41. Coggan JS, Bartol TM, Esquenazi E, Stiles JR, Lamont S, Martone ME, Berg DK, Ellisman MH, Sejnowski TJ (2005) Evidence for ectopic neurotransmission at a neuronal synapse. Science 309:446–451PubMedCrossRefGoogle Scholar
  42. Collins AC (1990) An analysis of the addiction liability of nicotine. Adv Alcohol Subst Abuse 9:83–101PubMedGoogle Scholar
  43. Collins AC, Luo Y, Selvaag S, Marks MJ (1994) Sensitivity to nicotine and brain nicotinic receptors are altered by chronic nicotine and mecamylamine infusion. J Pharmacol Exp Ther 271:125–133PubMedGoogle Scholar
  44. Collins AC, Marks MJ (1987) The effects of chronic nicotine administration on brain nicotinic receptor numbers. In: Martin WR, Van Loon GR, Iwamoto ET, Davis L (eds) Tobacco smoking and nicotine. A neurobiological approach. Plenum Press, New York-London, pp. 439–450Google Scholar
  45. Collins AC, Romm E, Wehner JM (1988) Nicotine tolerance: an analysis of the time course of its development and loss in the rat. Psychopharmacology (Berl) 96:7–14CrossRefGoogle Scholar
  46. Collins AC, Romm E, Wehner JM (1990) Dissociation of the apparent relationship between nicotine tolerance and up-regulation of nicotinic receptors. Brain Res Bull 25:373–379PubMedCrossRefGoogle Scholar
  47. Cooper E, Couturier S, Ballivet M (1991) Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor. Nature 350:235–238PubMedCrossRefGoogle Scholar
  48. Corrigall WA, Franklin KB, Coen KM, Clarke PB (1992) The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology (Berl) 107:285–289CrossRefGoogle Scholar
  49. Court J, Spurden D, Lloyd S, McKeith I, Ballard C, Cairns N, Kerwin R, Perry R, Perry E (1999) Neuronal nicotinic receptors in dementia with Lewy bodies and schizophrenia: alpha-bungarotoxin and nicotine binding in the thalamus [In Process Citation]. J Neurochem 73:1590–1597PubMedCrossRefGoogle Scholar
  50. Coyle JT, Price DL, Delong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science (Washington DC) 219:1184–1190CrossRefGoogle Scholar
  51. Dalack GW, Healy DJ, Meador-Woodruff JH (1998) Nicotine dependence in schizophrenia: clinical phenomena and laboratory findings. Amer J Psych 155:1490–1501Google Scholar
  52. Dalack GW, Meador-Woodruff JH (1996) Smoking, smoking withdrawal and schizophrenia: case reports and a review of the literature. Schizophr Res 22:133–141PubMedCrossRefGoogle Scholar
  53. Dani JA, De Biasi M (2001) Cellular mechanisms of nicotine addiction. Pharmacol Biochem Behav 70:439–446PubMedCrossRefGoogle Scholar
  54. Dani JA, Heinemann S (1996) Molecular And Cellular Aspects Of Nicotine Abuse. Neuron 16:905–908PubMedCrossRefGoogle Scholar
  55. Darsow T, Booker TK, Pina-Crespo JC, Heinemann SF (2005) Exocytic trafficking is required for nicotine-induced up-regulation of alpha 4 beta 2 nicotinic acetylcholine receptors. J Biol Chem 280:18311–18320PubMedCrossRefGoogle Scholar
  56. Dawe S, Gerada C, Russell MA, Gray JA (1995) Nicotine intake in smokers increases following a single dose of haloperidol. Psychopharmacology 117:110–115PubMedCrossRefGoogle Scholar
  57. de Leon J, Dadvand M, Canuso C, White AO, Stanilla JK, Simpson GM (1995) Schizophrenia and smoking: an epidemiological survey in a state hospital. Am J Psychiatry 152:453–455PubMedGoogle Scholar
  58. De Luca V, Voineskos S, Wong G, Kennedy JL (2006) Genetic interaction between alpha4 and beta2 subunits of high affinity nicotinic receptor: analysis in schizophrenia. Exp Brain Res 174:292–296PubMedCrossRefGoogle Scholar
  59. Decker ER, Dani JA (1990) Calcium permeability of the nicotinic acetylcholine receptor: the single-channel calcium influx is significant. J Neurosci 10:3413–3420PubMedGoogle Scholar
  60. DeLeon J, Dadvand M, Canuso C, White AO, Stanilla JK, Simpson GM (1995) Schizophrenia and smoking—an epidemiological survey in a state hospital. Am J Psychiatry 152:453–455Google Scholar
  61. Deutch AY, Duman RS (1996) The effects of antipsychotic drugs on Fos protein expression in the prefrontal cortex: cellular localization and pharmacological characterization. Neuroscience 70:377–389PubMedCrossRefGoogle Scholar
  62. Deutch AY, Ongür D, Duman RS (1995) Antipsychotic drugs induce Fos protein in the thalamic paraventricular nucleus: a novel locus of antipsychotic drug action. Neuroscience 66:337–346PubMedCrossRefGoogle Scholar
  63. Di Chiara G (2000) Role of dopamine in the behavioral actions of nicotine related to addiction. Eur J Phamacol 393:295–314CrossRefGoogle Scholar
  64. Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278PubMedCrossRefGoogle Scholar
  65. Diwan A, Castine M, Pomerleau CS, Meador-Woodruff JH, Dalack GW (1998) Differential prevalence of cigarette smoking in patients with schizophrenic vs mood disorders. Schizophrenia Res 33:113–118CrossRefGoogle Scholar
  66. Downing JE, Role LW (1987) Activators of protein kinase C enhance acetylcholine receptor desensitization in sympathetic ganglion neurons. Proc Natl Acad Sci USA 84:7739–7743PubMedCrossRefGoogle Scholar
  67. El-Bizri H, Clarke PBS (1994) Regulation of nicotinic receptors in rat brain following quasi-irreversible nicotinic blockade by chlorisondamine and chronic treatment with nicotine. Br J Pharmacol 113:917–925PubMedGoogle Scholar
  68. Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S (1994) Alpha-9—an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79:705–715PubMedCrossRefGoogle Scholar
  69. Elvevag B, Goldberg TE (2000) Cognitive impairment in schizophrenia is the core of the disorder. Crit Rev Neurobiol 14:1–21PubMedGoogle Scholar
  70. Fagerstrom K, Balfour DJ (2006) Neuropharmacology and potential efficacy of new treatments for tobacco dependence. Expert Opin Investig Drugs 15:107–116PubMedCrossRefGoogle Scholar
  71. Fenster CP, Beckman ML, Parker JC, Sheffield EB, Whitworth TL, Quick MW, Lester RA (1999a) Regulation of alpha4beta2 nicotinic receptor desensitization by calcium and protein kinase C. Mol Pharmacol 55:432–443PubMedGoogle Scholar
  72. Fenster CP, Rains MF, Noerager B, Quick MW, Lester RA (1997) Influence of subunit composition on desensitization of neuronal acetylcholine receptors at low concentrations of nicotine. J Neurosci 17:5747–5759PubMedGoogle Scholar
  73. Fenster CP, Whitworth TL, Sheffield EB, Quick MW, Lester RA (1999b) Upregulation of surface alpha4beta2 nicotinic receptors is initiated by receptor desensitization after chronic exposure to nicotine. J Neurosci 19:4804–4814PubMedGoogle Scholar
  74. Flores CM, Rogers SW, Pabreza LA, Wolfe BB, Kellar KJ (1992) A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol 41:31–37PubMedGoogle Scholar
  75. Freedman R, Adler LE, Bickford P, Byerley W, Coon H, Cullum CM, Griffith JM, Harris JG, Leonard S, Miller C, Mylesworsley M, Nagamoto HT, Rose G, Waldo M (1994) Schizophrenia and nicotinic receptors. Harv Rev Psychiatry 2:179–192PubMedGoogle Scholar
  76. Freedman R, Adler LE, Myles-Worsley M, Nagamoto HT, Miller C, Kisley M, McRae K, Cawthra E, Waldo M (1996) Inhibitory gating of an evoked response to repeated auditory stimuli in schizophrenic and normal subjects. Human recordings, computer simulation, and an animal model. Arch Gen Psychiatry 53:1114–1121PubMedGoogle Scholar
  77. Freedman R, Coon H, Myles-Worsley M, Orr-Urtreger A, Olincy A, Davis A, Polymeropoulos M, Holik J, Hopkins J, Hoff M, Rosenthal J, Waldo MC, Reimherr F, Wender P, Yaw J, Young DA, Breese CR, Adams C, Patterson D, Adler LE, Kruglyak L, Leonard S, Byerley W (1997) Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci USA 94:587–592PubMedCrossRefGoogle Scholar
  78. Freedman R, Hall M, Adler LE, Leonard S (1995) Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 38:22–33PubMedCrossRefGoogle Scholar
  79. Freedman R, Waldo M, Bickford-Wimer P, Nagamoto H (1991) Elementary neuronal dysfunctions in schizophrenia. Schizophrenia Res 4:233–243CrossRefGoogle Scholar
  80. Friedman JI (2004) Cholinergic targets for cognitive enhancement in schizophrenia: focus on cholinesterase inhibitors and muscarinic agonists. Psychopharmacology (Berl) 174:45–53Google Scholar
  81. Friedman JI, Harvey PD, Coleman T, Moriarty PJ, Bowie C, Parrella M, White L, Adler D, Davis KL (2001) Six-year follow-up study of cognitive and functional status across the lifespan in schizophrenia: a comparison with Alzheimer’s disease and normal aging. Am J Psychiatry 158:1441–1448PubMedCrossRefGoogle Scholar
  82. Friston KJ, Liddle PF, Frith CD, Hirsch SR, Frackowiak RS (1992) The left medial temporal region and schizophrenia. A PET study Brain 115( Pt 2):367–382Google Scholar
  83. Fuchs PA (1996) Synaptic transmission at vertebrate hair cells. Curr Opin Neurobiol 6:514–519PubMedCrossRefGoogle Scholar
  84. Gallhofer B, Bauer U, Lis S, Krieger S, Gruppe H (1996) Cognitive dysfunction in schizophrenia: comparison of treatment with atypical antipsychotic agents and conventional neuroleptic drugs. Eur Neuropsychopharmacol 6 Suppl 2:S13–20PubMedCrossRefGoogle Scholar
  85. Gentry CL, Lukas RJ (2002) Regulation of nicotinic acetylcholine receptor numbers and function by chronic nicotine exposure. Curr Drug Targets CNS Neurol Disord 1:359–385PubMedCrossRefGoogle Scholar
  86. Ghosheh OA, Dwoskin LP, Miller DK, Crooks PA (2001) Accumulation of nicotine and its metabolites in rat brain after intermittent or continuous peripheral administration of [2’-(14)C]nicotine. Drug Metab Dispos 29:645–651PubMedGoogle Scholar
  87. Gilbert AR, Rosenberg DR, Harenski K, Spencer S, Sweeney JA, Keshavan MS (2001) Thalamic volumes in patients with first-episode schizophrenia. Am J Psychiatry 158:618–624PubMedCrossRefGoogle Scholar
  88. Giniatullin R, Nistri A, Yakel JL (2005) Desensitization of nicotinic ACh receptors: shaping cholinergic signaling. Trends Neurosci 28:371–378PubMedCrossRefGoogle Scholar
  89. Girod R, Role LW (2001) Long-lasting enhancement of glutamatergic synaptic transmission by acetylcholine contrasts with response adaptation after exposure to low-level nicotine. J Neurosci 21:5182–5190PubMedGoogle Scholar
  90. Goff DC, Henderson DC, Amico E (1992) Cigarette Smoking In Schizophrenia - Relationship To Psychopathology And Medication Side Effects. Am J Psychiatry 149:1189–1194PubMedGoogle Scholar
  91. Gonzales D, Rennard SI, Nides M, Oncken C, Azoulay S, Billing CB, Watsky EJ, Gong J, Williams KE, Reeves KR (2006) Varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, vs sustained-release bupropion and placebo for smoking cessation: a randomized controlled trial. JAMA 296:47–55PubMedCrossRefGoogle Scholar
  92. Gopalakrishnan M, Molinari EJ, Sullivan JP (1997) Regulation of human alpha4beta2 neuronal nicotinic acetylcholine receptors by cholinergic channel ligands and second messenger pathways. Mol Pharmacol 52:524–534PubMedGoogle Scholar
  93. Gotti C, Riganti L, Vailati S, Clementi F (2006) Brain neuronal nicotinic receptors as new targets for drug discovery. Curr Pharm Des 12:407–428PubMedCrossRefGoogle Scholar
  94. Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA (1996) Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383:713–716PubMedCrossRefGoogle Scholar
  95. Green MF (2006) Cognitive impairment and functional outcome in schizophrenia and bipolar disorder. J Clin Psychiatry 67:3–8PubMedGoogle Scholar
  96. Green MF, Nuechterlein KH, Gold JM, Barch DM, Cohen J, Essock S, Fenton WS, Frese F, Goldberg TE, Heaton RK, Keefe RS, Kern RS, Kraemer H, Stover E, Weinberger DR, Zalcman S, Marder SR (2004) Approaching a consensus cognitive battery for clinical trials in schizophrenia: the NIMH-MATRICS conference to select cognitive domains and test criteria. Biol Psychiatry 56:301–307PubMedCrossRefGoogle Scholar
  97. Griffith JM, O’Neill JE, Petty F, Garver D, Young D, Freedman R (1998) Nicotinic receptor desensitization and sensory gating deficits in schizophrenia. Biol Psychiatry 44:98–106PubMedCrossRefGoogle Scholar
  98. Grilly DM, Simon BB, Levin ED (2000) Nicotine enhances stimulus detection performance of middle- and old-aged rats: a longitudinal study. Pharmacol Biochem Behav 65:665–670PubMedCrossRefGoogle Scholar
  99. Groot-Kormelink PJ, Luyten WH, Colquhoun D, Sivilotti LG (1998) A reporter mutation approach shows incorporation of the “orphan” subunit beta3 into a functional nicotinic receptor. J Biol Chem 273:15317–15320PubMedCrossRefGoogle Scholar
  100. Guan ZZ, Zhang X, Blennow K, Nordberg A (1999) Decreased protein level of nicotinic receptor alpha7 subunit in the frontal cortex from schizophrenic brain. Neuroreport 10:1779–1782PubMedCrossRefGoogle Scholar
  101. Guo X, Wecker L (2002) Identification of three cAMP-dependent protein kinase (PKA) phosphorylation sites within the major intracellular domain of neuronal nicotinic receptor alpha4 subunits. J Neurochem 82:439–447PubMedCrossRefGoogle Scholar
  102. Harris JG, Kongs S, Allensworth D, Martin L, Tregellas J, Sullivan B, Zerbe G, Freedman R (2004) Effects of nicotine on cognitive deficits in schizophrenia. Neuropsychopharmacology 29:1378–1385PubMedCrossRefGoogle Scholar
  103. Heinrichs RW, Zakzanis KK (1998) Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology 12:426–445PubMedCrossRefGoogle Scholar
  104. Hirsch SR, Weinberger D (2003) Schizophrenia. Blackwell, MassachussettsGoogle Scholar
  105. Hoff AL, Riordan H, O’Donnell DW, Morris L, DeLisi LE (1992) Neuropsychological functioning of first-episode schizophreniform patients. Am J Psychiatry 149:898–903PubMedGoogle Scholar
  106. Hogg RC, Raggenbass M, Bertrand D (2003) Nicotinic acetylcholine receptors: from structure to brain function. Rev Physiol Biochem Pharmacol 147:1–46PubMedCrossRefGoogle Scholar
  107. Holscher C (1999) Consciousness in mind: a correlate for ACh? Trends in Neurosciences 22:541–542PubMedCrossRefGoogle Scholar
  108. Horch HL, Sargent PB (1995) Perisynaptic surface distribution of multiple classes of nicotinic acetylcholine receptors on neurons in the chicken ciliary ganglion. J Neurosci 15:7778–7795PubMedGoogle Scholar
  109. Horger BA, Roth RH (1996) The role of mesoprefrontal dopamine neurons in stress. Crit Rev Neurobiol 10:395–418PubMedGoogle Scholar
  110. Hsu YN, Amin J, Weiss DS, Wecker L (1996) Sustained nicotine exposure differentially affects alpha 3 beta 2 and alpha 4 beta 2 neuronal nicotinic receptors expressed in Xenopus oocytes. J Neurochem 66:667–675PubMedCrossRefGoogle Scholar
  111. Hsu YN, Edwards SC, Wecker L (1997) Nicotine enhances the cyclic AMP-dependent protein kinase-mediated phosphorylation of alpha4 subunits of neuronal nicotinic receptors. J Neurochem 69:2427–2431PubMedCrossRefGoogle Scholar
  112. Huganir RL, Delcour AH, Greengard P, Hess GP (1986) Phosphorylation of the nicotinic acetylcholine receptor regulates its rate of desensitization. Nature 321:774–776PubMedCrossRefGoogle Scholar
  113. Hughes JR, Hatsukami DK, Mitchell JE, Dahlgreen LA (1986) Prevalence of smoking among psychiatric outpatients. Amer J Psych 143:993–997Google Scholar
  114. Hulihangiblin BA, Lumpkin MD, Kellar KJ (1990) Effects of chronic administration of nicotine on prolactin release in the rat—inactivation of prolactin response by repeated injections of nicotine. J Pharmacol Exp Ther 252:21–25Google Scholar
  115. Hurst RS, Hajos M, Raggenbass M, Wall TM, Higdon NR, Lawson JA, Rutherford-Root KL, Berkenpas MB, Hoffmann WE, Piotrowski DW, Groppi VE, Allaman G, Ogier R, Bertrand S, Bertrand D, Arneric SP (2005) A novel positive allosteric modulator of the alpha7 neuronal nicotinic acetylcholine receptor: in vitro and in vivo characterization. J Neurosci 25:4396–4405PubMedCrossRefGoogle Scholar
  116. Insel TR (2006) Translational research in the decade of discovery. Horm Behav 50:504–505PubMedCrossRefGoogle Scholar
  117. Johnstone EC, Crow TJ, Frith CD, Husband J, Kreel L (1976) Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet 2:924–926PubMedCrossRefGoogle Scholar
  118. Jones EG (1997) Cortical development and thalamic pathology in schizophrenia. Schizophr Bull 23:483–501PubMedGoogle Scholar
  119. Jorenby DE, Hays JT, Rigotti NA, Azoulay S, Watsky EJ, Williams KE, Billing CB, Gong J, Reeves KR (2006) Efficacy of varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, vs placebo or sustained-release bupropion for smoking cessation: a randomized controlled trial. JAMA 296:56–63PubMedCrossRefGoogle Scholar
  120. Karlin A, Akabas MH (1995) Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron 15:1231–1244PubMedCrossRefGoogle Scholar
  121. Katz B, Thesleff S (1957) A study of the desensitization produced by acetylcholine at the motor end-plate. J Physiol 138:63–80PubMedGoogle Scholar
  122. Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13:261–276PubMedGoogle Scholar
  123. Ke L, Eisenhour CM, Bencherif M, Lukas RJ (1998) Effects of chronic nicotine treatment on expression of diverse nicotinic acetylcholine receptor subtypes. I. Dose- and time-dependent effects of nicotine treatment. J Pharmacol Exp Ther 286:825–840PubMedGoogle Scholar
  124. Keefe RS, Young CA, Rock SL, Purdon SE, Gold JM, Breier A (2006) One-year double-blind study of the neurocognitive efficacy of olanzapine, risperidone, and haloperidol in schizophrenia. Schizophr Res 81:1–15PubMedCrossRefGoogle Scholar
  125. Kem WR (2000) The brain alpha7 nicotinic receptor may be an important therapeutic target for the treatment of Alzheimer’s disease: studies with DMXBA (GTS-21) Behav Brain Res 113:169–181PubMedCrossRefGoogle Scholar
  126. Khiroug L, Giniatullin R, Sokolova E, Talantova M, Nistri A (1997) Imaging of intracellular calcium during desensitization of nicotinic acetylcholine receptors of rat chromaffin cells. Br J Pharmacol 122:1323–1332PubMedCrossRefGoogle Scholar
  127. Khiroug L, Sokolova E, Giniatullin R, Afzalov R, Nistri A (1998) Recovery from desensitization of neuronal nicotinic acetylcholine receptors of rat chromaffin cells is modulated by intracellular calcium through distinct second messengers. J Neurosci 18:2458–2466PubMedGoogle Scholar
  128. Kim JS, Levin ED (1996) Nicotinic, muscarinic and dopaminergic actions in the ventral hippocampus and the nucleus accumbens: effects on spatial working memory in rats. Brain Res 725:231–240PubMedGoogle Scholar
  129. Kitagawa H, Takenouchi T, Azuma R, Wesnes KA, Kramer WG, Clody DE, Burnett AL (2003) Safety, pharmacokinetics, and effects on cognitive function of multiple doses of GTS-21 in healthy, male volunteers. Neuropsychopharmacology 28:542–551PubMedCrossRefGoogle Scholar
  130. Kozlovsky N, Belmaker RH, Agam G (2002) GSK-3 and the neurodevelopmental hypothesis of schizophrenia. Eur Neuropsychopharmacol 12:13–25PubMedCrossRefGoogle Scholar
  131. Kume T, Sugimoto M, Takada Y, Yamaguchi T, Yonezawa A, Katsuki H, Sugimoto H, Akaike A (2005) Up-regulation of nicotinic acetylcholine receptors by central-type acetylcholinesterase inhibitors in rat cortical neurons. Eur J Pharmacol 527:77–85PubMedCrossRefGoogle Scholar
  132. Kuperberg G, Heckers S (2000) Schizophrenia and cognitive function. Curr Opin Neurobiol 10:205–210PubMedCrossRefGoogle Scholar
  133. Lapchak PA, Araujo DM, Quirion R, Collier B (1989) Effect of chronic nicotine treatment on nicotinic autoreceptor function and N-[3H] methylcarbamylcholine binding sites in the rat brain. J Neurochem 52:483–491PubMedCrossRefGoogle Scholar
  134. Laruelle M (2003) Dopamine transmission in the schizophrenic brain. In: Hirsch SR, Weinberger D (eds), Schizophrenia, Blackwell, Massachussetts, pp. 365–387Google Scholar
  135. Lee SW, Lee JG, Lee BJ, Kim YH (2007) A 12-week, double-blind, placebo-controlled trial of galantamine adjunctive treatment to conventional antipsychotics for the cognitive impairments in chronic schizophrenia. Int Clin Psychopharmacol 22:63–68PubMedCrossRefGoogle Scholar
  136. Levin ED (1992) Nicotinic systems and cognitive function. Psychopharmacology (Berl) 108:417–431CrossRefGoogle Scholar
  137. Levin ED (2002) Nicotinic receptor subtypes and cognitive function. J Neurobiol 53:633–640PubMedCrossRefGoogle Scholar
  138. Levin ED, Blackwelder WP, Lau E, Brotherton J (2004) Nicotinic alpha4-beta2 and alpha7 nicotinic antagonistic effects in the mediodorsal thalamic nucleus and frontal cortex on memory function. Society for Neuroscience Abstracts San Diego, CAGoogle Scholar
  139. Levin ED, Bradley A, Addy N, Sigurani N (2002) Hippocampal alpha 7 and alpha 4 beta 2 nicotinic receptors and working memory. Neuroscience 109:757–765PubMedCrossRefGoogle Scholar
  140. Levin ED, Briggs SJ, Christopher NC, Auman JT (1994) Working memory performance and cholinergic effects in the ventral tegmental area and substantia nigra. Brain Res 657:165–170PubMedCrossRefGoogle Scholar
  141. Levin ED, McClernon FJ, Rezvani AH (2005) Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology (Berl):1–17Google Scholar
  142. Levin ED, McClernon FJ, Rezvani AH (2006) Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology (Berl) 184:1–17Google Scholar
  143. Levin ED, Rezvani AH (2002) Nicotinic treatment for cognitive dysfunction. Curr Drug Target CNS Neurol Disord 1:423–431CrossRefGoogle Scholar
  144. Levin ED, Simon BB (1998) Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology 138:217–230PubMedCrossRefGoogle Scholar
  145. Liberman RP (1998) International perspectives on skill training for the mentally disabled. Int Rev Psychiatry 10:5–8CrossRefGoogle Scholar
  146. Liddle PF, Barnes TR, Morris D, Haque S (1989) Three syndromes in chronic schizophrenia. Br J Psychiatry Suppl:119–122Google Scholar
  147. Lieberman J, Bogerts B, Degreef G, Ashtari M, Lantos G, Alvir J (1992) Qualitative assessment of brain morphology in acute and chronic schizophrenia. Am J Psychiatry 149:784–794PubMedGoogle Scholar
  148. Lindstrom J (1997) Nicotinic acetylcholine receptors in health and disease. Mol Neurobiol 15:193–222PubMedGoogle Scholar
  149. Lopez-Hernandez GY, Sanchez-Padilla J, Ortiz-Acevedo A, Lizardi-Ortiz J, Salas-Vincenty J, Rojas LV, Lasalde-Dominicci JA (2004) Nicotine-induced up-regulation and desensitization of alpha4beta2 neuronal nicotinic receptors depend on subunit ratio. J Biol Chem 279:38007–38015PubMedCrossRefGoogle Scholar
  150. Loring DW, Martin RC, Meador KJ, Lee GP (1990) Psychometric construction of the Rey-Osterrieth Complex Figure: methodological considerations and interrater reliability. Arch Clin Neuropsychol 5:1–14PubMedCrossRefGoogle Scholar
  151. Lukas RJ (1991) Effects of chronic nicotinic ligand exposure on functional activity of nicotinic acetylcholine receptors expressed by cells of the PC12 rat pheochromocytoma or the TE671/RD human clonal line. J Neurochem 56:1134–1145PubMedCrossRefGoogle Scholar
  152. Luntz-Leybman V, Bickford PC, Freedman R (1992) Cholinergic gating of response to auditory stimuli in rat hippocampus. Brain Res 587:130–136PubMedCrossRefGoogle Scholar
  153. Luo S, Kulak JM, Cartier GE, Jacobsen RB, Yoshikami D, Olivera BM, McIntosh JM (1998) alpha-conotoxin AuIB selectively blocks alpha3 beta4 nicotinic acetylcholine receptors and nicotine-evoked norepinephrine release. J Neurosci 18:8571–8579PubMedGoogle Scholar
  154. Lysaker PH, Davis LW, Lightfoot J, Hunter N, Stasburger A (2005) Association of neurocognition, anxiety, positive and negative symptoms with coping preference in schizophrenia spectrum disorders. Schizophr Res 80:163–171PubMedCrossRefGoogle Scholar
  155. Maelicke A, Albuquerque EX (2000) Allosteric modulation of nicotinic acetylcholine receptors as a treatment strategy for Alzheimer’s disease. Eur J Pharmacol 393:165–170PubMedCrossRefGoogle Scholar
  156. Maelicke A, Samochocki M, Jostock R, Fehrenbacher A, Ludwig J, Albuquerque EX, Zerlin M (2001) Allosteric sensitization of nicotinic receptors by galantamine, a new treatment strategy for Alzheimer’s disease. Biol Psychiatry 49:279–288PubMedCrossRefGoogle Scholar
  157. Marks MJ, Burchs JB, Collins AC (1983) Effects of chronic nicotine infusion on tolerance development and cholinergic receptors. J Pharmacol Exp Ther 226:817–825PubMedGoogle Scholar
  158. Marks MJ, Collins AC (1985) Tolerance, cross tolerance, and receptors after chronic nicotine or oxotremorine. Pharmacol Biochem Behav 22:283–291PubMedCrossRefGoogle Scholar
  159. Marks MJ, Collins AC (1993) Desensitization of nicotine-induced 86Rb+ efflux. Soc Neurosci Abstr 19:289Google Scholar
  160. Marks MJ, Grady SR, Collins AC (1993) Downregulation of nicotinic receptor function after chronic nicotine infusion. J Pharmacol Exp Ther 266:1268–1276PubMedGoogle Scholar
  161. Marks MJ, Pauly JR, Gross SD, Deneris ES, Hermans-Borgmeyer I, Heinemann SF, Collins AC (1992) Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment. J Neurosci 12:2765–2784PubMedGoogle Scholar
  162. Marks MJ, Stitzel JA, Collins AC (1985) Time course study of the effects of chronic nicotine infusion on drug response and brain receptors. J Pharmacol Exp Ther 235:619–628PubMedGoogle Scholar
  163. Maskos U, Molles BE, Pons S, Besson M, Guiard BP, Guilloux JP, Evrard A, Cazala P, Cormier A, Mameli-Engvall M, Dufour N, Cloez-Tayarani I, Bemelmans AP, Mallet J, Gardier AM, David V, Faure P, Granon S, Changeux JP (2005) Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature 436:103–107PubMedCrossRefGoogle Scholar
  164. Masterson E, O’Shea B (1984) Smoking and malignancy in schizophrenia. Br J Psychiatry 145:429–432PubMedGoogle Scholar
  165. Mathie A, Colquhoun D, Cull-Candy SG (1990) Rectification of currents activated by nicotinic acetylcholine receptors in rat sympathetic ganglion neurones. J Physiol 427:625–655PubMedGoogle Scholar
  166. McCallum SE, Caggiula AR, Booth S, Breese CR, Lee MJ, Donny EC, Leonard S, Sved AF (2000) Mecamylamine prevents tolerance but enhances whole brain [3H]epibatidine binding in response to repeated nicotine administration in rats. Psychopharmacology (Berl) 150:1–8CrossRefGoogle Scholar
  167. McCallum SE, Caggiula AR, Epstein LH, Saylor S, Ploskina T, Sved AF (1999) Mecamylamine blocks the development of tolerance to nicotine in rats: implications for the mechanisms of tolerance. Psychopharmacology (Berl) 141:332–338CrossRefGoogle Scholar
  168. McCarley RW, Wible CG, Frumin M, Hirayasu Y, Levitt JJ, Fischer IA, Shenton ME (1999) MRI anatomy of schizophrenia. Biol Psychiatry 45:1099–1119PubMedCrossRefGoogle Scholar
  169. McEvoy J, Freudenreich O, Mcgee M, Vanderzwaag C, Levin E, Rose J (1995a) Clozapine Decreases Smoking In Patients With Chronic Schizophrenia. Biol Psychiatry 37:550–552PubMedCrossRefGoogle Scholar
  170. McEvoy JP, Freudenreich O, Levin ED, Rose JE (1995b) Haloperidol Increases Smoking In Patients With Schizophrenia. Psychopharmacology 119:124–126PubMedCrossRefGoogle Scholar
  171. McEvoy JP, Freudenreich O, Wilson WH (1999) Smoking and therapeutic response to clozapine in patients with schizophrenia. Biol Psych 46:125–129CrossRefGoogle Scholar
  172. McGehee DS, Heath MJS, Gelber S, Devay P, Role LW (1995) Nicotine Enhancement Of Fast Excitatory Synaptic Transmission In Cns By Presynaptic Receptors. Science 269:1692–1696PubMedCrossRefGoogle Scholar
  173. McGehee DS, Role LW (1995) Physiological Diversity Of Nicotinic Acetylcholine Receptors Expressed By Vertebrate Neurons. Annu Rev Physiol 57:521–546PubMedCrossRefGoogle Scholar
  174. Meyer EM, Tay ET, Papke RL, Meyers C, Huang GL, de Fiebre CM (1997) 3-[2,4-Dimethoxybenzylidene]anabaseine (DMXB) selectively activates rat alpha7 receptors and improves memory-related behaviors in a mecamylamine-sensitive manner. Brain Res 768:49–56PubMedCrossRefGoogle Scholar
  175. Mihalak KB, Carroll FI, Luetje CW (2006) Varenicline is a partial agonist at alpha4beta2 and a full agonist at alpha7 neuronal nicotinic receptors. Mol Pharmacol 70:801–805PubMedCrossRefGoogle Scholar
  176. Miledi R (1980) Intracellular Calcium and Desensitization of Acetylcholine Receptors. Proc R Soc London (Biol) 209:447–452Google Scholar
  177. Mitchell AS, Dalrymple-Alford JC, Christie MA (2002) Spatial working memory and the brainstem cholinergic innervation to the anterior thalamus. J Neurosci 22:1922–1928PubMedGoogle Scholar
  178. Mohamed S, Paulsen JS, O’Leary D, Arndt S, Andreasen N (1999) Generalized cognitive deficits in schizophrenia: a study of first-episode patients. Arch Gen Psychiatry 56:749–754PubMedCrossRefGoogle Scholar
  179. Molinari EJ, Delbono O, Messi ML, Renganathan M, Arneric SP, Sullivan JP, Gopalakrishnan M (1998) Up-regulation of human alpha7 nicotinic receptors by chronic treatment with activator and antagonist ligands. Eur J Pharmacol 347:131–139PubMedCrossRefGoogle Scholar
  180. Moss SJ, McDonald BJ, Rudhard Y, Schoepfer R (1996) Phosphorylation of the predicted major intracellular domains of the rat and chick neuronal nicotinic acetylcholine receptor alpha 7 subunit by cAMP-dependent protein kinase. Neuropharmacology 35:1023–1028PubMedCrossRefGoogle Scholar
  181. Mulle C, Choquet D, Korn H, Changeux JP (1992) Calcium influx through nicotinic receptor in rat central neurons: its relevance to cellular regulation. Neuron 8:135–143PubMedCrossRefGoogle Scholar
  182. Nagamoto HT, Adler LE, Hea RA, Griffith JM, McRae KA, Freedman R (1996) Gating of auditory P50 in schizophrenics: unique effects of clozapine. Biological Psychiatry 40:181–188PubMedCrossRefGoogle Scholar
  183. Nakayama H, Okuda H, Nakashima T (1993) Phosphorylation of rat brain nicotinic acetylcholine receptor by camp-dependent protein kinase invitro. Mol Brain Res 20:171–177PubMedCrossRefGoogle Scholar
  184. Nanri M, Miyake H, Murakami Y, Matsumoto K, Watanabe H (1998) GTS-21, a nicotinic agonist, attenuates multiple infarctions and cognitive deficit caused by permanent occlusion of bilateral common carotid arteries in rats. Jpn J Pharmacol 78:463–469PubMedCrossRefGoogle Scholar
  185. Nelson ME, Kuryatov A, Choi CH, Zhou Y, Lindstrom J (2003) Alternate stoichiometries of alpha4beta2 nicotinic acetylcholine receptors. Mol Pharmacol 63:332–341PubMedCrossRefGoogle Scholar
  186. Neuhaus R, Cachelin AB (1990) Changes in the conductance of the neuronal nicotinic acetylcholine receptor channel induced by magnesium. Proc Biol Sci 241:78–84PubMedCrossRefGoogle Scholar
  187. Nguyen QT, Yang J, Miledi R (2002) Effects of atypical antipsychotics on vertebrate neuromuscular transmission. Neuropharmacology 42:670–676PubMedGoogle Scholar
  188. Nisell M, Nomikos GG, Svensson TH (1994) Systemic nicotine-induced dopamine dopamine release in the rat nucleus accumbens is regulated by nicotinic receptors in the ventral tegmental area. Synapse 16:36–44PubMedCrossRefGoogle Scholar
  189. Nisell M, Nomikos GG, Svensson TH (1995) Nicotine Dependence, Midbrain Dopamine Systems And Psychiatric Disorder. Pharm Tox 76:157–162Google Scholar
  190. Nordberg A (1994) Human nicotinic receptors: their role in aging and dementia. Neurochem Int 25:93–97PubMedCrossRefGoogle Scholar
  191. Nordberg A, Nilsson-Hakanson L, Adem A, Hardy S, Alafuzoff I, Lai Z, Herrera-Marschitz M, Winblad B (1989) The role of nicotinic receptors in the pathophysiology of Alzheimer’s disease. Prog Brain Res 79:353–362PubMedGoogle Scholar
  192. Nuechterlein KH, Barch DM, Gold JM, Goldberg TE, Green MF, Heaton RK (2004) Identification of separable cognitive factors in schizophrenia. Schizophr Res 72:29–39PubMedCrossRefGoogle Scholar
  193. Obach RS, Reed-Hagen AE, Krueger SS, Obach BJ, O’Connell TN, Zandi KS, Miller S, Coe JW (2006) Metabolism and disposition of varenicline, a selective alpha4beta2 acetylcholine receptor partial agonist, in vivo and in vitro. Drug Metab Dispos 34:121–130PubMedCrossRefGoogle Scholar
  194. Ochoa EL, Li L, McNamee MG (1990) Desensitization of central cholinergic mechanisms and neuroadaptation to nicotine. Mol Neurobiol 4:251–287PubMedGoogle Scholar
  195. Ochoa ELM (1994) Nicotine-related brain disorders: the neurobiological basis of nicotine dependence. Cell Mol Neurobiol 14:195–225PubMedCrossRefGoogle Scholar
  196. Ochoa ELM, Chattopadhyay A, McNamee MG (1989) Desensitization of the nicotinic acetylcholine receptor: molecular mechanisms and effect of modulators. Cell Mol Neurobiol 9:141–178PubMedCrossRefGoogle Scholar
  197. Ochoa ELM, Clark E (2006) Galantamine may improve Attention and Speech in Schizophrenia. Human Psycopharmacol 21:127–128CrossRefGoogle Scholar
  198. Ochoa ELM, Clark E (2004) Online (2004) Galantamine as an adjuvant treatment for negative symptoms in schizophrenia: a pilot study. Program No. 351.8. 2004 Abstract Viewer/Itinerary Planner Society for Neuroscience, Washington, DCGoogle Scholar
  199. Ochoa ELM, O’Shea SM (1994) Concomitant protein phosphorylation and endogenous acetylcholine release induced by nicotine: dependency on neuronal nicotinic receptors and desensitization. Cell Mol Neurobiol 14:315–340PubMedCrossRefGoogle Scholar
  200. O’Farrell TJ, Connors GJ, Upper D (1983) Addictive behaviors among hospitalized psychiatric patients. Addict Behav 18:329–333CrossRefGoogle Scholar
  201. Ohno M, Yamamoto T, Watanabe S (1993) Blockade of hippocampal nicotinic receptors impairs working memory but not reference memory in rats. Pharmacol Biochem Behav 45:89–93PubMedCrossRefGoogle Scholar
  202. Olale F, Gerzanich V, Kuryatov A, Wang F, Lindstrom J (1997) Chronic nicotine exposure differentially affects the function of human alpha3, alpha4, and alpha7 neuronal nicotinic receptor subtypes. J Pharmacol Exp Ther 283:675–683PubMedGoogle Scholar
  203. O’Leary DS, Flaum M, Kesler ML, Flashman LA, Arndt S, Andreasen NC (2000) Cognitive correlates of the negative, disorganized, and psychotic symptom dimensions of schizophrenia. J Neuropsychiatry Clin Neurosci 12:4–15PubMedGoogle Scholar
  204. Olincy A, Harris JG, Johnson LL, Pender V, Kongs S, Allensworth D, Ellis J, Zerbe GO, Leonard S, Stevens KE, Stevens JO, Martin L, Adler LE, Soti F, Kem WR, Freedman R (2006) Proof-of-concept trial of an alpha7 nicotinic agonist in schizophrenia. Arch Gen Psychiatry 63:630–638PubMedCrossRefGoogle Scholar
  205. Olincy A, Ross RG, Young DA, Roath M, Freedman R (1998) Improvement in smooth pursuit eye movements after cigarette smoking in schizophrenic patients. Neuropsychopharmacology 18:175–185PubMedCrossRefGoogle Scholar
  206. Olincy A, Young DA, Freedman R (1997) Increased levels of the nicotine metabolite cotinine in schizophrenic smokers compared to other smokers. Biol Psychiatry 42:1–5PubMedCrossRefGoogle Scholar
  207. O’Neill HC, Rieger K, Kem WR, Stevens KE (2003) DMXB, an alpha7 nicotinic agonist, normalizes auditory gating in isolation-reared rats. Psychopharmacology (Berl) 169:332–339CrossRefGoogle Scholar
  208. O’Shea SM, Ochoa ELM (1993) Nicotine-induced synapsin I phosphorylation and endogenous acetylcholine release in cholinergic nerve endings. Soc Neurosci Abstr 19:902Google Scholar
  209. Papke RL, Boulter J, Patrick J, Heinemann S (1989) Single-channel currents of rat neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes. Neuron 3:589–596PubMedCrossRefGoogle Scholar
  210. Papke RL, Duvoisin RM, Heinemann SF (1993) The amino terminal half of the nicotinic beta-subunit extracellular domain regulates the kinetics of inhibition by neuronal bungarotoxin. Proc Biol Sci 252:141–148PubMedCrossRefGoogle Scholar
  211. Papke RL, Heinemann SF (1991) The role of the beta 4-subunit in determining the kinetic properties of rat neuronal nicotinic acetylcholine alpha 3-receptors. J Physiol 440:95–112PubMedGoogle Scholar
  212. Paterson D, Nordberg A (2000) Neuronal nicotinic receptors in the human brain. Prog Neurobiol 61:75–111PubMedCrossRefGoogle Scholar
  213. Peng X, Gerzanich V, Anand R, Wang F, Lindstrom J (1997) Chronic nicotine treatment up-regulates alpha3 and alpha7 acetylcholine receptor subtypes expressed by the human neuroblastoma cell line SH-SY5Y. Mol Pharmacol 51:776–784PubMedGoogle Scholar
  214. Peng X, Gerzanich V, Anand R, Whiting PJ, Lindstrom J (1994a) Nicotine-induced increase in neuronal nicotinic receptors results from a decrease in the rate of receptor turnover. Mol Pharmacol 46:523–530PubMedGoogle Scholar
  215. Peng X, Katz M, Gerzanich V, Anand R, Lindstrom J (1994b) Human Alpha-7-Acetylcholine Receptor—Cloning of the Alpha-7-Subunit From The Sh-Sy5Y cell line and determination of pharmacological properties of native receptors and functional Alpha-7-homomers expressed in Xenopus-oocytes. Molecular Pharmacology 45:546–554PubMedGoogle Scholar
  216. Pereira EF, Hilmas C, Santos MD, Alkondon M, Maelicke A, Albuquerque EX (2002) Unconventional ligands and modulators of nicotinic receptors. J Neurobiol 53:479–500PubMedCrossRefGoogle Scholar
  217. Perry E, Martin-Ruiz C, Lee M, Griffiths M, Johnson M, Piggott M, Haroutunian V, Buxbaum JD, Nãsland J, Davis K, Gotti C, Clementi F, Tzartos S, Cohen O, Soreq H, Jaros E, Perry R, Ballard C, McKeith I, Court J (2000) Nicotinic receptor subtypes in human brain ageing, Alzheimer and Lewy body diseases. Eur J Pharmacol 393:215–222PubMedCrossRefGoogle Scholar
  218. Perry E, Walker M, Grace J, Perry R (1999) Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci 22:273–280PubMedCrossRefGoogle Scholar
  219. Piasecki M, Newhouse P (2000) Nicotine in psychiatry: psychopathology and emerging therapeutics. American Psychiatric Press, Washington, DCGoogle Scholar
  220. Picciotto MR, Zoli M, Changeux JP (1999) Use of knock-out mice to determine the molecular basis for the actions of nicotine. Nicotine Tob Res 1(Suppl 2):S121–125; discussion S139–140PubMedGoogle Scholar
  221. Pitschel-Walz G, Bauml J, Bender W, Engel RR, Wagner M, Kissling W (2006) Psychoeducation and compliance in the treatment of schizophrenia: results of the Munich Psychosis Information Project Study. J Clin Psychiatry 67:443–452PubMedCrossRefGoogle Scholar
  222. Pollio DE, North CS, Reid DL, Miletic MM, McClendon JR (2006) Living with severe mental illness–what families and friends must know: evaluation of a one-day psychoeducation workshop. Soc Work 51:31–38PubMedGoogle Scholar
  223. Pontieri FE, Tanda G, Orzi F, Di Chiara G (1996) Effects of nicotine on the nucleus accumbens and similarity to those of the addictive drugs. Nature 382:255–257PubMedCrossRefGoogle Scholar
  224. Purdon SE, Jones BD, Stip E, Labelle A, Addington D, David SR, Breier A, Tollefson GD (2000) Neuropsychological change in early phase schizophrenia during 12 months of treatment with olanzapine, risperidone, or haloperidol. The Canadian Collaborative Group for research in schizophrenia. Arch Gen Psychiatry 57:249–258PubMedCrossRefGoogle Scholar
  225. Quick MW, Lester RA (2002) Desensitization of neuronal nicotinic receptors. J Neurobiol 53:457–478PubMedCrossRefGoogle Scholar
  226. Radant AD, Hommer D W (1992) A quantitative analysis of saccades and smooth pursuit during visual pursuit tracking. A comparison of schizophrenics with normals and substance abusing controls. Schizophrenia Res 6:225–235CrossRefGoogle Scholar
  227. Rahman S, Zhang J, Corrigall W A (2003) Effects of acute and chronic nicotine on somatodendritic dopamine release of the rat ventral tegmental area: in vivo microdialysis study. Neurosci Lett 348:61–64PubMedCrossRefGoogle Scholar
  228. Ramirez-Latorre J, Yu C R, Qu X, Perin F, Karlin A, Role L (1996) Functional contributions of alpha5 subunit to neuronal acetylcholine receptor channels. Nature 380:347–351PubMedCrossRefGoogle Scholar
  229. Randolph C, Tierney M C, Mohr E, Chase T N (1998) The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): preliminary clinical validity. J Clin Exp Neuropsychol 20:310–319PubMedCrossRefGoogle Scholar
  230. Rhoades HM, Overall J E (1988) The semistructured BPRS interview and rating guide. Psychopharmacol Bull 24:101–104PubMedGoogle Scholar
  231. Role LW (1992) Diversity in primary structure and function of neuronal nicotinic acetylcholine receptor channels. Curr Opin Neurobiol 2:254–262PubMedCrossRefGoogle Scholar
  232. Role LW, Berg DK (1996) Nicotinic receptors in the development and modulation of CNS synapses. Neuron 16:1077–1085PubMedCrossRefGoogle Scholar
  233. Ross AF, Green WN, Hartman DS, Claudio T (1991) Efficiency of acetylcholine receptor subunit assembly and its regulation by cAMP. J Cell Biol 113:623–636PubMedCrossRefGoogle Scholar
  234. Rosse RB, Deutsch SI (2002) Adjuvant galantamine administration improves negative symptoms in a patient with treatment-refractory schizophrenia. Clin Neuropharmacol 25:272–275PubMedCrossRefGoogle Scholar
  235. Rowell PP, Winkler DL (1984) Nicotinic stimulation of [3H]acetylcholine release from mouse cerebral cortical synaptosomes. J Neurochem 43:1593–1598PubMedCrossRefGoogle Scholar
  236. Rowell PP, Wonnacott S (1990) Evidence for functional activity of up-regulated nicotine binding sites in rat striatal synaptosomes. J Neurochem 55:2105–2110PubMedCrossRefGoogle Scholar
  237. Rubboli F, Court JA, Sala C, Morris C, Perry E, Clementi F (1994) Distribution of neuronal nicotinic receptor subunits in human brain. Neurochem Int 25:69–71PubMedCrossRefGoogle Scholar
  238. Sallette J, Pons S, Devillers-Thiery A, Soudant M, Prado de Carvalho L, Changeux JP, Corringer PJ (2005) Nicotine upregulates its own receptors through enhanced intracellular maturation. Neuron 46:595–607PubMedCrossRefGoogle Scholar
  239. Samochocki M, Hoffle A, Fehrenbacher A, Jostock R, Ludwig J, Christner C, Radina M, Zerlin M, Ullmer C, Pereira EF, Lubbert H, Albuquerque EX, Maelicke A (2003) Galantamine is an allosterically potentiating ligand of neuronal nicotinic but not of muscarinic acetylcholine receptors. J Pharmacol Exp Ther 20:20Google Scholar
  240. Sanderson EM, Drasdo AL, McCrea K, Wonnacott S (1993) Upregulation of nicotinic receptors following continuous infusion of nicotine is brain-region-specific. Brain Res 617:349–352PubMedCrossRefGoogle Scholar
  241. Sands SB, Barish ME (1991) Calcium permeability of neuronal nicotinic acetylcholine receptor channels in PC12 cells. Brain Res 560:38–42PubMedCrossRefGoogle Scholar
  242. Sands SB, Barish ME (1992) Neuronal nicotinic acetylcholine receptor currents in phaeochromocytoma (PC12) cells: dual mechanisms of rectification. J Physiol (Lond) 447:467–487Google Scholar
  243. Santos MD, Alkondon M, Pereira EF, Aracava Y, Eisenberg HM, Maelicke A, Albuquerque EX (2002) The nicotinic allosteric potentiating ligand galantamine facilitates synaptic transmission in the mammalian central nervous system. Mol Pharmacol 61:1222–1234PubMedCrossRefGoogle Scholar
  244. Sargent PB (1993) The diversity of neuronal nicotinic acetylcholine receptors. Annu Rev Neurosci 16:403–443PubMedCrossRefGoogle Scholar
  245. Saykin AJ, Gur RC, Gur RE, Mozley PD, Mozley LH, Resnick SM, Kester DB, Stafiniak P (1991) Neuropsychological function in schizophrenia. Selective impairment in memory and learning. Arch Gen Psychiatry 48:618–624PubMedGoogle Scholar
  246. Saykin AJ, Shtasel DL, Gur RE, Kester DB, Mozley LH, Stafiniak P, Gur RC (1994) Neuropsychological deficits in neuroleptic naive patients with first-episode schizophrenia. Arch Gen Psychiatry 51:124–131PubMedGoogle Scholar
  247. Schilstrom B, Ivanov VB, Wiker C, Svensson TH (2006) Galantamine enhances dopaminergic neurotransmission in vivo via allosteric potentiation of nicotinic acetylcholine receptors. NeuropsychopharmacologyGoogle Scholar
  248. Schreiber R, Dalmus M, De Vry J (2002) Effects of alpha 4/beta 2- and alpha 7-nicotine acetylcholine receptor agonists on prepulse inhibition of the acoustic startle response in rats and mice. Psychopharmacology (Berl) 159:248–257CrossRefGoogle Scholar
  249. Schubert MH, Young KA, Hicks PB (2006) Galantamine improves cognition in schizophrenic patients stabilized on risperidone. Biol Psychiatry (Jun 23 On Line Publication)Google Scholar
  250. Schwartz RD, Kellar KJ (1983) Nicotinic cholinergic receptor binding sites in the brain: regulation in vivo. Science 220:214–216PubMedCrossRefGoogle Scholar
  251. Schwartz RD, Kellar KJ (1985) In vivo regulation of [3H] acetylcholine recognition sites in brain by nicotinic cholinergic drugs. J Neurochem 45:427–433PubMedCrossRefGoogle Scholar
  252. Seguela P, Wadiche J, Dineley MK, Dani JA, Patrick JW (1993) Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci 13:596–604PubMedGoogle Scholar
  253. Selemon LD, Goldman-Rakic PS (1999) The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 45:17–25PubMedCrossRefGoogle Scholar
  254. Seppala NH, Leinonen EV, Lehtonen ML, Kivisto KT (1999) Clozapine serum concentrations are lower in smoking than in non-smoking schizophrenic patients. Pharmacol Toxicol 85:244–246PubMedCrossRefGoogle Scholar
  255. Sharma T, Reed C, Aasen I, Kumari V (2006) Cognitive effects of adjunctive 24-weeks Rivastigmine treatment to antipsychotics in schizophrenia: a randomized, placebo-controlled, double-blind investigation. Schizophr Res 85:73–83PubMedCrossRefGoogle Scholar
  256. Sharp BM, Beyer HS (1986) Rapid desensitization of the acute stimulatory effects of nicotine on rat plasma adrenocorticotropin and prolactin. J Pharmacol Exp Ther 238:486–491PubMedGoogle Scholar
  257. Sharples CG, Kaiser S, Soliakov L, Marks MJ, Collins AC, Washburn M, Wright E, Spencer JA, Gallagher T, Whiteaker P, Wonnacott S (2000) UB-165: a novel nicotinic agonist with subtype selectivity implicates the alpha4beta2* subtype in the modulation of dopamine release from rat striatal synaptosomes. J Neurosci 20:2783–2791PubMedGoogle Scholar
  258. Shimoda K, Someya T, Morita S, Hirokane G, Noguchi T, Yokono A, Shibasaki M, Takahashi S (1999) Lower plasma levels of haloperidol in smoking than in nonsmoking schizophrenic patients. Ther Drug Monit 21:293–296PubMedCrossRefGoogle Scholar
  259. Shioda S, Nakajo S, Hirabayashi T, Nakayama H, Nakaya K, Matsuda K, Nakai Y (1997) Neuronal nicotinic acetylcholine receptor in the hypothalamus: morphological diversity and neuroendocrine regulations. Brain Res Mol Brain Res 49:45–54PubMedCrossRefGoogle Scholar
  260. Silbersweig DA, Stern E, Frith C, Cahill C, Holmes A, Grootoonk S, Seaward J, McKenna P, Chua SE, Schnorr L, et, a. l (1995) A functional neuroanatomy of hallucinations in schizophrenia. Nature 378:176–179PubMedCrossRefGoogle Scholar
  261. Simosky JK, Stevens KE, Kem WR, Freedman R (2001) Intragastric DMXB-A, an alpha7 nicotinic agonist, improves deficient sensory inhibition in DBA/2 mice. Biol Psychiatry 50:493–500PubMedCrossRefGoogle Scholar
  262. Soliakov L, Wonnacott S (1996) Voltage-sensitive Ca2+ channels involved in nicotinic receptor-mediated [3H]dopamine release from rat striatal synaptosomes. J Neurochem 67:163–170PubMedCrossRefGoogle Scholar
  263. Stassen HH, Bridler R, Hägele S, Hergersberg M, Mehmann B, Schinzel A, Weisbrod M, Scharfetter C (2000) Schizophrenia and smoking: evidence for a common neurobiological basis? Am. J Med Genet 96:173–177CrossRefGoogle Scholar
  264. Stevens KE, Freedman R, Collins AC, Hall M, Leonard S, Marks JM, Rose GM (1996) Genetic Correlation Of Inhibitory Gating Of Hippocampal Auditory Evoked Response And Alpha-Bungarotoxin-Binding Nicotinic Cholinergic Receptors In Inbred Mouse Strains. Neuropsychopharmacology 15:152–162PubMedCrossRefGoogle Scholar
  265. Stevens KE, Kem WR, Mahnir VM, Freedman R (1998) Selective alpha7-nicotinic agonists normalize inhibition of auditory response in DBA mice. Psychopharmacology (Berl) 136:320–327CrossRefGoogle Scholar
  266. Swope SL, Moss SJ, Blackstone CD, Huganir RL (1992) Phosphorylation of ligand-gated ion channels: a possible mode of synaptic plasticity. Faseb J 6:2514–2523PubMedGoogle Scholar
  267. Tandon T, Ochoa ELM (1992) Calcium and nicotine induced desensitization of endogenous acetylcholine release from mammalian brain cholinergic nerve endings. Soc Neurosci Abs 18:634Google Scholar
  268. Tapper AR, McKinney SL, Nashmi R, Schwarz J, Deshpande P, Labarca C, Whiteaker P, Marks MJ, Collins AC, Lester HA (2004) Nicotine activation of alpha4* receptors: sufficient for reward, tolerance, and sensitization. Science 306:1029–1032PubMedCrossRefGoogle Scholar
  269. Tariot PN, Solomon PR, Morris JC, Kershaw P, Lilienfeld S, Ding C (2000) A 5-month, randomized, placebo-controlled trial of galantamine in AD. The Galantamine USA-10 Study Group. Neurology 54:2269–2276PubMedGoogle Scholar
  270. Tonstad S, Tonnesen P, Hajek P, Williams KE, Billing CB, Reeves KR (2006) Effect of maintenance therapy with varenicline on smoking cessation: a randomized controlled trial. JAMA 296:64–71PubMedCrossRefGoogle Scholar
  271. Torrey EF (2002) Studies of individuals with schizophrenia never treated with antipsychotic medications: a review. Schizophr Res 58:101–115PubMedCrossRefGoogle Scholar
  272. Tune LE (2001) Anticholinergic effects of medication in elderly patients. J Clin Psychiatry 62:(Suppl 21):11–14PubMedGoogle Scholar
  273. Tune LE, Egeli S (1999) Acetylcholine and delirium. Dement Geriatr Cogn Disord 10:342–344PubMedCrossRefGoogle Scholar
  274. Ullian EM, McIntosh JM, Sargent PB (1997) Rapid synaptic transmission in the avian ciliary ganglion is mediated by two distinct classes of nicotinic receptors. J Neurosci 17:7210–7219PubMedGoogle Scholar
  275. Vallejo YF, Buisson B, Bertrand D, Green WN (2005) Chronic nicotine exposure upregulates nicotinic receptors by a novel mechanism. J Neurosci 25:5563–5572PubMedCrossRefGoogle Scholar
  276. Vernallis AB, Conroy WG, Berg DK (1993) Neurons assemble acetylcholine receptors with as many as three kinds of subunits while maintaining subunit segregation among receptor subtypes. Neuron 10:451–464PubMedCrossRefGoogle Scholar
  277. Vernino S, Amador M, Luetje CW, Patrick J, Dani JA (1992) Calcium modulation and high calcium permeability of neuronal nicotinic acetylcholine receptors. Neuron 8:127–134PubMedCrossRefGoogle Scholar
  278. Vernino S, Rogers M, Radcliffe KA, Dani JA (1994) Quantitative Measurement Of Calcium Flux Through Muscle And Neuronal Nicotinic Acetylcholine Receptors. J Neurosci 14:5514–5524PubMedGoogle Scholar
  279. Vibat CR, Lasalde JA, McNamee MG, Ochoa EL (1995) Differential desensitization properties of rat neuronal nicotinic acetylcholine receptor subunit combinations expressed in Xenopus laevis oocytes. Cell Mol Neurobiol 15:411–425PubMedCrossRefGoogle Scholar
  280. Vijayaraghavan S, Schmid HA, Halvorsen SW, Berg DK (1990) Cyclic AMP-dependent phosphorylation of a neuronal acetylcholine receptor alpha-type subunit. J Neurosci 10:3255–3262PubMedGoogle Scholar
  281. Vovin R, Fakturovich A, Golenkov AV, Lukin VO (1991) Correction of apathetic-abulic manifestations of schizophrenia with cholinotropic drugs. Zh. Nevropatol. Psikhiatr Im S S Korsakova 91:111–115Google Scholar
  282. Vovin R, Fakturovich A, Golenkov AV, Lukin VO (1992) Correction of apathic-abulic manifestations of the processual defect by cholinotropic preparations. Neurosci Behav Physiol 22:241–245PubMedCrossRefGoogle Scholar
  283. Waldo MC, Carey G, Myles-Worsley M, Cawthra E, Adler LE, Nagamoto HT, Wender P, Byerley W, Plaetke R, Freedman R (1991) Codistribution of a sensory gating deficit and schizophrenia in multi-affected families. Psychiatry Res 39:257–268PubMedCrossRefGoogle Scholar
  284. Wang F, Gerzanich V, Wells GB, Anand R, Peng X, Keyser K, Lindstrom J (1996) Assembly of human neuronal nicotinic receptor alpha5 subunits with alpha3, beta2, and beta4 subunits. J Biol Chem 271:17656–17665PubMedCrossRefGoogle Scholar
  285. Wang JM, Zhang L, Yao Y, Viroonchatapan N, Rothe E, Wang ZZ (2002) A transmembrane motif governs the surface trafficking of nicotinic acetylcholine receptors. Nat Neurosci 5:963–970PubMedCrossRefGoogle Scholar
  286. Warburton DM (1992) Nicotine as a cognitive enhancer. Prog Neuropsychopharmacol Biol Psychiatry 16:181–191PubMedCrossRefGoogle Scholar
  287. Wecker L, Guo X, Rycerz AM, Edwards SC (2001) Cyclic AMP-dependent protein kinase (PKA) and protein kinase C phosphorylate sites in the amino acid sequence corresponding to the M3/M4 cytoplasmic domain of alpha4 neuronal nicotinic receptor subunits. J Neurochem 76:711–720PubMedCrossRefGoogle Scholar
  288. Wecker L, Rogers CQ (2003) Phosphorylation sites within alpha4 subunits of alpha4beta2 neuronal nicotinic receptors: a comparison of substrate specificities for cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) Neurochem Res 28:431–436PubMedCrossRefGoogle Scholar
  289. Weiland S, Bertrand D, Leonard S (2000) Neuronal nicotinic acetylcholine receptors: from the gene to the disease. Behav Brain Res 113:43–56PubMedCrossRefGoogle Scholar
  290. Whiteaker P, Sharples CG, Wonnacott S (1998) Agonist-induced up-regulation of alpha4beta2 nicotinic acetylcholine receptors in M10 cells: pharmacological and spatial definition. Mol Pharmacol 53:950–962PubMedGoogle Scholar
  291. Whitehouse PJ, Kellar KJ (1987) Nicotinic and muscarinic cholinergic receptors in Alzheimers’s disease and related disorders. J Neural Transm (suppl) 24:175–182Google Scholar
  292. Whiting PJ, Lindstrom JM (1988) Characterization of bovine and human neuronal nicotinic acetylcholine receptors using monoclonal antibodies. J Neurosci 8:3395–3404PubMedGoogle Scholar
  293. Wilcock GK, Lilienfeld S, Gaens E (2000) Efficacy and safety of galantamine in patients with mild to moderate Alzheimer’s disease: multicentre randomised controlled trial. Galantamine International-1 Study Group. Brit Med J 321:1445–1449PubMedCrossRefGoogle Scholar
  294. Wonnacott S (1990) The paradox of nicotinic acetylcholine receptor upregulation by nicotine. Trends Pharm Sci 11:216–219PubMedCrossRefGoogle Scholar
  295. Wonnacott S (1997) Presynaptic nicotinic ACh receptors. Trends Neurosci 20:92–98PubMedCrossRefGoogle Scholar
  296. Wonnacott S, Kaiser S, Mogg A, Soliakov L, Jones IW (2000) Presynaptic nicotinic receptors modulating dopamine release in the rat striatum. Eur J Pharmacol 393:51–58PubMedCrossRefGoogle Scholar
  297. Wonnacott S, Thorne B (1990) Separation of pre- and post-synaptic receptors on Percoll gradients. Biochem Soc Trans 18:885–886PubMedGoogle Scholar
  298. Woodruff-Pak DS (2003) Mecamylamine reversal by nicotine and by a partial alpha7 nicotinic acetylcholine receptor agonist (GTS-21) in rabbits tested with delay eyeblink classical conditioning. Behav Brain Res 143:159–167PubMedCrossRefGoogle Scholar
  299. Woodruff-Pak DS, Green JT, Coleman-Valencia C, Pak JT (2000) A nicotinic cholinergic agonist (GTS-21) and eyeblink classical conditioning: acquisition, retention, and relearning in older rabbits. Exp Aging Res 26:323–336PubMedCrossRefGoogle Scholar
  300. Woodruff-Pak DS, Li YT, Kem WR (1994) A nicotinic agonist (GTS-21), eyeblink classical conditioning, and nicotinic receptor binding in rabbit brain. Brain Res 645:309–317PubMedCrossRefGoogle Scholar
  301. Woolf NJ (1999) Cholinergic correlates of consciousness: from mind to molecules. Trend Neurosci 22:540–541PubMedCrossRefGoogle Scholar
  302. Xiao Y, Kellar KJ (2004) The comparative pharmacology and up-regulation of rat neuronal nicotinic receptor subtype binding sites stably expressed in transfected mammalian cells. J Pharmacol Exp Ther 310:98–107PubMedCrossRefGoogle Scholar
  303. Yang XH, Buccafusco JJ (1994) Effect of chronic central treatment with the acetylcholine analog methylcarbamylcholine on cortical nicotinic receptors—correlation between receptor changes and behavioral function. J Pharmacol Exp Ther 271:651–659PubMedGoogle Scholar
  304. Zhang L, Zhou FM, Dani JA (2004) Cholinergic drugs for Alzheimer’s disease enhance in vitro dopamine release. Mol Pharmacol 66:538–544PubMedCrossRefGoogle Scholar
  305. Zhang ZW, Coggan JS, Berg DK (1996) Synaptic currents generated by neuronal acetylcholine receptors sensitive to alpha-bungarotoxin. Neuron 17:1231–1240PubMedCrossRefGoogle Scholar
  306. Ziedonis DM, Kosten TR, Glazer WM, Frances RJ (1994) Nicotine dependence and schizophrenia. Hosp Community Psychiatry 45:204–206PubMedGoogle Scholar
  307. Zwart R, Vijverberg HP (1998) Four pharmacologically distinct subtypes of alpha4beta2 nicotinic acetylcholine receptor expressed in Xenopus laevis oocytes. Mol Pharmacol 54:1124–1131PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of PsychiatryUniversity of California at DavisSacramentoUSA
  2. 2.Department of BiologyUniversity of Puerto RicoSan JuanPuerto Rico

Personalised recommendations