Cellular and Molecular Neurobiology

, Volume 27, Issue 4, pp 439–461

Dimerization Between Vasopressin V1b and Corticotropin Releasing Hormone Type 1 Receptors

  • Sharla F. Young
  • Cristiana Griffante
  • Greti Aguilera
Article

1. Increasing evidence indicates that guanyl protein coupled receptors (GPCRs), including members of the vasopressin (VP) receptor family can act as homo- and heterodimers. Regulated expression and interaction of pituitary VP V1b receptor (V1bR) and corticotropin releasing hormone receptor type 1 (CRHR1) are critical for hypothalamic pituitary adrenal (HPA) axis adaptation, but it is unknown whether this involves physical interaction between these receptors.

2. Bioluminescence resonance energy transfer (BRET) experiments using V1bR and CRHR1 fused to either Renilla luciferase (Rluc) or yellow fluorescent protein (YFP) at the N-terminus, but not the carboxyl-terminus, revealed specific interaction (BRET50 = 0.39 ± 0.08, V1bR) that was inhibited by untagged V1b or CRHR1 receptors, suggesting homo- and heterodimerization. The BRET data were confirmed by coimmunoprecipitation experiments using fully bioactive receptors tagged at the aminoterminus with c-myc and Flag epitopes, demonstrating specific homodimerization of the V1b receptor and heterodimerization of the V1b receptor with CRHR1 receptors.

3. Heterodimerization between V1bR and CRHR1 is not ligand dependent since stimulation with CRH and AVP had no effect on coimmunoprecipitation. In membranes obtained from cells cotransfected with CRHR1 and V1bR, incubation with the heterologous nonpeptide antagonist did not alter the binding affinity or capacity of the receptor.

4. The data demonstrate that V1bR and CRHR1 can form constitutive homo- and heterodimers and suggests that the heterodimerization does not influence the binding properties of these receptors.

KEY WORDS

vasopressin V1b receptor corticotropin releasing hormone type 1 receptor dimerization BRET immunoprecipitation receptor binding 

REFERENCES

  1. AbdAlla, S., Lother, H., and Quitterer, U. (2000). AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature 407:94–98.CrossRefGoogle Scholar
  2. Abou-Samra, A. B., Harwood, J. P., Manganiello, V. C., Catt, K. J., and Aguilera, G. (1987). Phorbol 12-myristate 13-acetate and vasopressin potentiate the effect of corticotropin-releasing factor on cyclic AMP production in rat anterior pituitary cells: Mechanisms of action. J. Biol. Chem. 262:1129–1136.Google Scholar
  3. Aguilera, G. (1994). Regulation of pituitary ACTH secretion during chronic stress. Front. Neuroendocrinol. 15:321–350.CrossRefGoogle Scholar
  4. Aguilera, G., Pham, Q., and Rabadan-Diehl, C. (1994). Regulation of pituitary vasopressin receptors during chronic stress: Relationship to corticotroph responsiveness. J. Neuroendocrinol. 6:299–304.CrossRefGoogle Scholar
  5. Ayoub, M. A., Couturier, C., Lucas-Meunier, E., Angers, S., Fossier, P., Bouvier, M., and Jockers, R. (2002). Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J. Biol. Chem. 277:21522–21528.CrossRefGoogle Scholar
  6. Berrada, K., Plesnicher, C. L., Luo, X., and Thibonnier, M. (2000). Dynamic interaction of human vasopressin/oxytocin receptor subtypes with G protein-coupled receptor kinases and protein kinase C after agonist stimulation. J. Biol. Chem. 275:27229–27237.Google Scholar
  7. Bilezikjian, L. M., Blount, A. L., and Vale, W. W. (1987). The cellular actions of vasopressin on corticotrophs of the anterior pituitary: Resistance to glucocorticoid action. Mol. Endocrinol. 1:451–458.Google Scholar
  8. Breit, A., Lagace, M., and Bouvierm, M. (2004). Hetero-oligomerization between beta2- and beta3-adrenergic receptors generates a beta-adrenergic signaling unit with distinct functional properties. J. Biol. Chem. 279:28756–28765.CrossRefGoogle Scholar
  9. Bulenger, S., Marullo, S., and Bouvier, M. (2005). Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol. Sci. 26:131–137.CrossRefGoogle Scholar
  10. Calver, A. R., Robbins, M. J., Cosio, C., Rice, S. Q., Babbs, A. J., Hirst, W. D., Boyfield, I., Wood, M. D., Russell, R. B., Price, G. W., Couve, A., Moss, S. J., and Pangalos, M. N. (2001). The C-terminal domains of the GABA(b) receptor subunits mediate intracellular trafficking but are not required for receptor signaling. J. Neurosci. 21:1203–1210.Google Scholar
  11. Castro, M. G., Morrisonm, E., Perone, M. J., Brown, O. A., Murray, C. A., Ahmed, I., Perkins, A. V., Europe-Finner, G., Lowenstein, P. R., and Linton, E. A. (1996). Corticotrophin-releasing hormone receptor type 1: Generation and characterization of polyclonal antipeptide antibodies and their localization in pituitary cells and cortical neurones in vitro. J. Neuroendocrinol. 8:521–531.CrossRefGoogle Scholar
  12. Childs, G. V., and Unabia, G. (1989). Activation of protein kinase C and L calcium channels enhances binding of biotinylated corticotropin-releasing hormone by anterior pituitary corticotropes. Mol. Endocrinol. 3:117–126.Google Scholar
  13. Childs, G. V., Westlund, K. N., and Unabia, G. (1989). Characterization of anterior pituitary target cells for arginine vasopressin: including cells that store adrenocorticotropin, thyrotropin-beta, and both hormones. Endocrinology 125:554–559.CrossRefGoogle Scholar
  14. Cvejic, S., and Devi, L. (1997). Dimerization of the delta opioid receptor: Implication for a role in receptor internalization. J. Biol. Chem. 272:26959–26964.CrossRefGoogle Scholar
  15. Flores, M., Carvallo, P., and Aguilera, G. (1990). Physicochemical characterization of corticotrophin releasing factor receptor in rat pituitary and brain. Life Sci. 47:2035–2040.CrossRefGoogle Scholar
  16. George, S. R., Fan, T., Xie, Z., Tse, R., Tam, V., Varghese, G., and O’Dowd, B. F. (2000). Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. J. Biol. Chem. 275:26128–26135.CrossRefGoogle Scholar
  17. Gillies, G. E., Linton, E. A., and Lowry, P. J. (1982). Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature 299:355–357.CrossRefGoogle Scholar
  18. Gines, S., Hillion, J., Torvinen, M., Le Crom, S., Casado, V., Canela, E. I., Rondin, S., Lew, J. Y., Watson, S., Zoli, M., Agnati, L. F., Verniera, P., Lluis, C., Ferre, S., Fuxe, K., and Franco, R. (2000). Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc. Natl. Acad. Sci. USA. 97:8606–8611.CrossRefGoogle Scholar
  19. Gomes, I., Jordan, B. A., Gupta, A., Rios, C., Trapaidze, N., and Devi, L. A. (2001). G protein coupled receptor dimerization: implications in modulating receptor function. J. Mol. Med. 79:226–242.CrossRefGoogle Scholar
  20. Green, J. L., Figueroa, J. P., Massman, G. A., Schwartz, J., and Rose, J. C. (2000). Corticotropin-releasing hormone type I receptor messenger ribonucleic acid and protein levels in the ovine fetal pituitary: Ontogeny and effect of chronic cortisol administration. Endocrinology 141:2870–2876.CrossRefGoogle Scholar
  21. Grigoriadis, D. E., and De Souza, E. B. (1988). The brain corticotropin-releasing factor (CRF) receptor is of lower apparent molecular weight than the CRF receptor in anterior pituitary. Evidence from chemical cross-linking studies. J. Biol. Chem. 263:10927–10931.Google Scholar
  22. Hague, C., Uberti, M. A., Chen, Z., Hall, R. A., and Minneman, K. P. (2004). Cell surface expression of alpha1D-adrenergic receptors is controlled by heterodimerization with alpha1B-adrenergic receptors. J. Biol. Chem. 279:15541–15549.CrossRefGoogle Scholar
  23. Hanyaloglu, A. C., Seeber, R. M., Kohout, T. A., Lefkowitz, R. J., and Eidne, K. A. (2002). Homo- and hetero-oligomerization of thyrotropin-releasing hormone (TRH) receptor subtypes. Differential regulation of beta-arrestins 1 and 2. J. Biol. Chem. 277:50422–50430.CrossRefGoogle Scholar
  24. Hebert, T. E., Moffett, S., Morello, J. P., Loisel, T. P., Bichet, D. G., Barret, C., and Bouvier, M. (1996). A peptide derived from a beta2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J. Biol. Chem. 271:16384–16392.PubMedCrossRefGoogle Scholar
  25. Jia, L. G., Canny, B. J., Orth, D. N., and Leong, D. A. (1991). Distinct classes of corticotropes mediate corticotropin-releasing hormone- and arginine vasopressin-stimulated adrenocorticotropin release. Endocrinology 128:197–203.CrossRefGoogle Scholar
  26. Jordan, B. A., Cvejic, S., and Devi, L. (2000). Opioids and their complicated receptor complexes. Neuropsychopharmacology 23:S5–S18.CrossRefGoogle Scholar
  27. Kaupmann, K., Malitschek, B., Schuler, V., Heid, J., Froestl, W., Beck, P., Mosbacher, J., Bischoff, S., Kulik, A., Shigemoto, R., Karschin, A., and Bettler, B. (1998). GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 396:683–687.CrossRefGoogle Scholar
  28. Konig, M., Mahan, L. C., Marsg, J. W., Fink, J. S., and Brownstein, M. J. (1991). Method for identifying ligands that bind to cloned Gs- or Gi-coupled receptors. Mol. Cell. Neurosci. 2:331–337.CrossRefGoogle Scholar
  29. Kraetke, O., Wiesner, B., Eichhorst, J., Furkert, J., Bienert, M., and Beyermann, M. (2005). Dimerization of corticotropin-releasing factor receptor type 1 is not coupled to ligand binding. J. Recept. Signal Transduct. Res. 25:251–276.CrossRefGoogle Scholar
  30. Kroeger, K. M., Hanyaloglu, A. C., Seeber, R. M., Miles, L. E., and Eidne, K. A. (2001). Constitutive and agonist-dependent homo-oligomerization of the thyrotropin-releasing hormone receptor. Detection in living cells using bioluminescence resonance energy transfer. J. Biol. Chem. 276:12736–12743.CrossRefGoogle Scholar
  31. Kroeger, K. M., Pfleger, K. D., and Eidne, K. A. (2003). G-protein receptor oligomerization in neuroendocrine pathways. Front. Neuroendocrinol. 24:254–278.CrossRefGoogle Scholar
  32. Liu, J. P., Engler, D., Funder, J. W., and Robinson, P. J. (1992). Evidence that the stimulation by arginine vasopressin of the release of adrenocorticotropin from the ovine anterior pituitary involves the activation of protein kinase C. Mol. Cell. Endocrinol. 87:35–47.CrossRefGoogle Scholar
  33. Lolait, S. J., O’Carroll, A. M., Mahan, L. C., Felder, C. C., Button, D. C., Young, W. S., 3rd, Mezey, E., and Brownstein, M. J. (1995). Extrapituitary expression of the rat V1b vasopressin receptor gene. Proc. Natl. Acad. Sci. USA. 92:6783–6787.CrossRefGoogle Scholar
  34. Nelson, G., Chandrashekar, J., Hoon, M. A., Feng, L., Zhao, G., Ryba, N. J., and Zuker, C. S. (2002). An amino-acid taste receptor. Nature 416:199–202.CrossRefGoogle Scholar
  35. North, W. G., Fay, M. J., and Du, J. (1999). MCF-7 breast cancer cells express normal forms of all vasopressin receptors plus an abnormal V2R. Peptides 20:837–842.CrossRefGoogle Scholar
  36. Patel, R. C., Kumar, U., Lamb, D. C., Eid, J. S., Rocheville, M., Grant, M., Rani, A., Hazlett, T., Patel, S. C., Gratton, E., and Patel, Y. C. (2002). Ligand binding to somatostatin receptors induces receptor-specific oligomer formation in live cells. Proc. Natl. Acad. Sci. USA. 99:3294–3299.CrossRefGoogle Scholar
  37. Pfeiffer, M., Koch, T., Schroder, H., Laugsch, M., Hollt, V., and Schulz, S. (2002). Heterodimerization of somatostatin and opioid receptors cross-modulates phosphorylation, internalization, and desensitization. J. Biol. Chem. 277:19762–19772.CrossRefGoogle Scholar
  38. Robert, J., Auzan, C., Ventura, M. A., and Clauser, E. (2005). Mechanisms of cell-surface rerouting of an ER-retained mutant of the vasopressin V1b/V3 receptor by a pharmacological chaperone. J. Biol. Chem. 280:2300–2308.CrossRefGoogle Scholar
  39. Rocheville, M., Lange, D. C., Kumar, U., Patel, S. C., Patel, R. C., and Patel, Y. C. (2000a). Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288:154–157.CrossRefGoogle Scholar
  40. Rocheville, M., Lange, D. C., Kumar, U., Sasi, R., Patel, R. C., and Patel, Y. C. (2000b). Subtypes of the somatostatin receptor assemble as functional homo- and heterodimers. J. Biol. Chem. 275:7862–7869.CrossRefGoogle Scholar
  41. Salahpour, A., Angers, S., and Bouvier, M. (2000). Functional significance of oligomerization of G-protein-coupled receptors. Trends Endocrinol. Metab. 11:163–168.CrossRefGoogle Scholar
  42. Sydow, S., Radulovic, J., Dautzenberg, F. M., and Spiess, J. (1997). Structure–function relationship of different domains of the rat corticotropin-releasing factor receptor. Mol. Brain Res. 52:182–193.CrossRefGoogle Scholar
  43. Terrillon, S., Barberis, C., and Bouvier, M. (2004). Heterodimerization of V1a and V2 vasopressin receptors determines the interaction with beta-arrestin and their trafficking patterns. Proc. Natl. Acad. Sci. USA. 101:1548–1553.CrossRefGoogle Scholar
  44. Terrillon, S., Durroux, T., Mouillac B., Breit, A., Ayoub, M. A., Taulan, M., Jockers, R., Barberis, C., and Bouvier, M. (2003). Oxytocin and vasopressin V1a and V2 receptors form constitutive homo- and heterodimers during biosynthesis. Mol. Endocrinol. 17:677–691.CrossRefGoogle Scholar
  45. van de Pavert, S. A., Clarke, I. J., Rao, A., Vrana, K. E., and Schwartz, J. (1997). Effects of vasopressin and elimination of corticotropin-releasing hormone-target cells on pro-opiomelanocortin mRNA levels and adrenocorticotropin secretion in ovine anterior pituitary cells. J. Endocrinol. 154:139–147.CrossRefGoogle Scholar
  46. White, J. H., Wise, A., Main, M. J., Green, A., Fraser, N. J., Disney, G. H., Barnes, A. A., Emson, P., Foord, S. M., and Marshall, F. H. (1998). Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature 396:679–682.CrossRefGoogle Scholar
  47. Xu, G., Rabadan-Diehl, C., Nikodemova, M., Wynn, P., Spiess, J., and Aguilera, G. (2001). Inhibition of corticotropin releasing hormone type-1 receptor translation by an upstream AUG triplet in the 5′ untranslated region. Mol. Pharmacol. 59:485–492.Google Scholar
  48. Young, S. F., Smith, J. L., Figueroa, J. P., and Rose, J. C. (2003). Ontogeny and effect of cortisol on vasopressin-1b receptor expression in anterior pituitaries of fetal sheep. AJP—Regul. Integr. Comp. Physiol. 284:R51–R56.Google Scholar
  49. Zeng, F., and Wess, J. (2000). Molecular aspects of muscarinic receptor dimerization. Neuropsychopharmacology 23:S19–S31.CrossRefGoogle Scholar
  50. Zhu, C., Cook, L. B., and Hinkle, P. M. (2002). Dimerization and phosphorylation of thyrotropin-releasing hormone receptors are modulated by agonist stimulation. J. Biol. Chem. 277:28228–28237.CrossRefGoogle Scholar
  51. Zhu, W., Zeng, X., Zheng, M., and Xiao, R. P. (2005). Heterodimerization of beta1- and beta2-adrenergic receptor subtypes optimizes beta-adrenergic modulation of cardiac contractility. Circ. Res. 97:244–251.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Sharla F. Young
    • 1
  • Cristiana Griffante
    • 1
    • 2
  • Greti Aguilera
    • 1
  1. 1.Section on Endocrine PhysiologyDevelopmental Endocrinology Branch, NICHD/NIH, CRC/1-3330BethesdaUSA
  2. 2.Psychiatry Centre of Excellence for Drug Discovery, Medicines Research CentreGlaxoSmithKline GroupVeronaItaly

Personalised recommendations