Cellular and Molecular Neurobiology

, Volume 27, Issue 1, pp 33–48 | Cite as

Homocysteine Thiolactone and Human Cholinesterases


1. The cholinergic system is important in cognition and behavior as well as in the function of the cerebral vasculature.

2. Hyperhomocysteinemia is a risk factor for development of both dementia and cerebrovascular disease.

3. Acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) are serine hydrolase enzymes that catalyze the hydrolysis of the neurotransmitter acetylcholine, a key process in the regulation of the cholinergic system.

4. It has been hypothesized that the deleterious effects of elevated homocysteine may, in part, be due to its actions on cholinesterases.

5. To further test this hypothesis, homocysteine and a number of its metabolites and analogues were examined for effects on the activity of human cholinesterases.

6. Homocysteine itself did not have any measurable effect on the activity of these enzymes.

7. Homocysteine thiolactone, the cyclic metabolite of homocysteine, slowly and irreversibly inhibited the activity of human AChE.

8. Conversely, this metabolite and some of its analogues significantly enhanced the activity of human BuChE.

9. Structure–activity studies indicated that the unprotonated amino group of homocysteine thiolactone and related compounds represents the essential feature for activation of BuChE, whereas the thioester linkage appears to be responsible for the slow AChE inactivation.

10. It is concluded that hyperhomocysteinemia may exert its adverse effects, in part, through the metabolite of homocysteine, homocysteine thiolactone, which is capable of altering the activity of human cholinesterases, the most pronounced effect being BuChE activation.


acetylcholinesterase butyrylcholinesterase acetylcholine homocysteine Alzheimer’s disease vascular dementia 



This study was supported by the Canadian Institutes of Health Research, Nova Scotia Health Research Foundation, Capital District Health Authority Research Fund, Brain Tumour Foundation of Canada, the Natural Sciences Engineering Research Council of Canada, the Committee on Research and Publications of Mount Saint Vincent University, and Alzheimer Society of Nova Scotia for Phyllis Horton Bursary (RW).


  1. Bartus, R. T., Dean, R. L., III, Beer, B., and Lippa, A. S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–414.PubMedCrossRefGoogle Scholar
  2. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne P. E. (2000). The protein data bank. Nucleic Acids Res. 28:235–242. Retrieved from (http://www.pdb.org/).Google Scholar
  3. Budge, M. M., de Jager, C., Hogervorst, E., and Smith, A. D. (2002). Oxford Project to Investigate Memory and Ageing (OPTIMA). Total plasma homocysteine, age, systolic blood pressure, and cognitive performance in older people. J. Am. Geriatr. Soc. 50:2014–2018.PubMedCrossRefGoogle Scholar
  4. Carson, N. A., and Neill, D. W. (1962). Metabolic abnormalities detected in a survey of mentally backward individuals in Northern Ireland. Arch. Dis. Child. 37:505–513.PubMedCrossRefGoogle Scholar
  5. Clayden, J., Greeves, N., Warren, S., and Wothers, P. (2001). Organic Chemistry. Oxford University Press, New York.Google Scholar
  6. Cornish-Bowden, A. (1995). Fundamentals of Enzyme Kinetics, 2nd edn. Portland Press, London.Google Scholar
  7. Court, J. A., and Perry, E. K. (2003). Neurotransmitter abnormalities in vascular dementia. Int. Psychogeriatr. 15:81–87.PubMedCrossRefGoogle Scholar
  8. Coyle, J. T., Price, D. L., and DeLong, M. R. (1983). Alzheimer’s disease: A disorder of cortical cholinergic innervation. Science 219:1184–1190.PubMedCrossRefGoogle Scholar
  9. Darvesh, S., Hopkins, D. A., and Geula, C. (2003a). Neurobiology of butyrylcholinesterase. Nat. Rev. Neurosci. 4:131–138.PubMedCrossRefGoogle Scholar
  10. Darvesh, S., Walsh, R., and Martin, E. (2003b). Interaction of homocysteine metabolites with butyrylcholinesterase: A risk for Alzheimer’s disease. Can. J. Neurol. Sci. 30:S48.Google Scholar
  11. Darvesh, S., Walsh, R., Kumar, R., Caines, A., Roberts, S., Magee, D., Rockwood, K., and Martin, E. (2003c). Inhibition of human cholinesterases by drugs used to treat Alzheimer disease. Alz. Dis. Assoc. Disord. 17:117–126.CrossRefGoogle Scholar
  12. DeLano, W. L. (2002). The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA Retrieved from http://www.pymol.org.Google Scholar
  13. Dixon, M., and Webb, E. C. (1979). Enzymes, 3rd edn. Academic Press, New York.Google Scholar
  14. Elias, M. F., Sullivan, L. M., D’Agostino, R. B., Elias, P. K., Jacques, P. F., Selhub, J., Seshadri, S., Au, R., Beiser, A., and Wolf, P. A. (2005). Homocysteine and cognitive performance in the Framingham offspring study: Age is important. Am. J. Epidemiol. 162:644–653.PubMedCrossRefGoogle Scholar
  15. Ellman, G. L., Courtney, K. D., Andres, V., Jr., and Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88–95.PubMedCrossRefGoogle Scholar
  16. Eriksson, H., and Augustinsson, K. B. (1979). A mechanistic model for butyrylcholinesterase. Biochim. Biophys. Acta 567:161–173.PubMedGoogle Scholar
  17. Fontes, R., Ribeiro, J. M., and Sillero, A. (2000). Inhibition and activation of enzymes. The effect of a modifier on the reaction rate and on kinetic parameters. Acta Biochim. Pol. 47:233–257.PubMedGoogle Scholar
  18. Garel, J., and Tawfik, D. S. (2006). Mechanism of hydrolysis and aminolysis of homocysteine thiolactone. Chemistry. 12:4144–4152.PubMedCrossRefGoogle Scholar
  19. Giacobini, E.(2000). Cholinesterases and Cholinesterase Inhibitors. Martin Dunitz, London.Google Scholar
  20. Giacobini, E. (2003). Butyrylcholinesterase: Its Function and Inhibitors. Martin Dunitz, London.Google Scholar
  21. Gibson, J. B., Carson A. J., and Neill, D. W. (1964). Pathological findings in homocystinuria. J. Clin. Pathol. 17: 427–437.Google Scholar
  22. Greig, N. H., Lahiri, D. K., and Sambamurti, K. (2002). Butyrylcholinesterase: An important new target in Alzheimer’s disease therapy. Int. Psychogeriatr. 14:77–91.PubMedCrossRefGoogle Scholar
  23. Greig, N. H., Utsuki, T., Ingram, D. K., Wang, Y., Pepeu, G., Scali, C., Yu, Q. S., Mamczarz, J., Holloway, H. W., Giordano, T., Chen, D., Furukawa, K., Sambamurti, K., Brossi, A., and Lahiri, D. K. (2005). Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proc. Natl. Acad. Sci. U.S.A. 102:17213– 17218.PubMedCrossRefGoogle Scholar
  24. Imai, Y., Morita, H., Kurihara, H., Sugiyama, T., Kato, N., Ebihara, A., Hamada, C., Kurihara, Y., Shindo, T., Oh-hashi, Y., and Yazaki, Y. (2000). Evidence for association between paraoxonase gene polymorphisms and atherosclerotic diseases. Atherosclerosis 149:435–442.PubMedCrossRefGoogle Scholar
  25. Jakubowski, H. (1999). Protein homocysteinylation: Possible mechanism underlying pathological consequences of elevated homocysteine levels. FASEB J. 13:2277–2283.PubMedGoogle Scholar
  26. Jakubowski, H. (2000). Calcium-dependent human serum homocysteine thiolactone hydrolase. A protective mechanism against protein N-homocysteinylation. J. Biol. Chem. 275:3957–3962.PubMedCrossRefGoogle Scholar
  27. Jakubowski, H., and Goldman, E. (1993). Synthesis of homocysteine thiolactone by methionyl-tRNA synthetase in cultured mammalian cells. FEBS Lett. 317:237–240.PubMedCrossRefGoogle Scholar
  28. Kronman, C., Velan, B., Marcus, D., Ordentlich, A., Reuveny, S., and Shafferman, A. (1995). Involvement of oligomerization, N-glycosylation and sialylation in the clearance of cholinesterases from the circulation. Biochem. J. 311:959–967.PubMedGoogle Scholar
  29. Kruger-Thiemer, E. (1969). Generalized kinetics of reversible inhibition and activation. Eur. J. Pharmacol. 6:357–360.PubMedCrossRefGoogle Scholar
  30. Kryger, G., Harel, M., Giles, K., Toker, L., Velan, B., Lazar, A., Kronman, C., Barak, D., Ariel, N., Shafferman, A., Silman, I., and Sussman, J. L. (2000). Structures of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II. Acta Crystallogr. D Biol. Crystallogr. 56:1385–1394 (PDB ID: 1B41).PubMedCrossRefGoogle Scholar
  31. Lockridge, O., Eckerson, H. W., and La Du, B. N. (1979). Interchain disulfide bonds and subunit organization in human serum cholinesterase. J. Biol. Chem. 254:8324–8330.PubMedGoogle Scholar
  32. Lockridge, O., Bartels, C. F., Vaughan, T. A., Wong, C. K., Norton, S. E., and Johnson, L. L. (1987). Complete amino acid sequence of human serum cholinesterase. J. Biol. Chem. 262:549–557.PubMedGoogle Scholar
  33. Malin, R., Jarvinen, O., Sisto, T., Koivula, T., and Lehtimaki, T. (2001). Paraoxonase producing PON1 gene M/L55 polymorphism is related to autopsy-verified artery-wall atherosclerosis. Atherosclerosis 157:301–307.PubMedCrossRefGoogle Scholar
  34. Masson, P., Xie, W., Froment, M. T., Levitsky, V., Fortier, P. L., Albaret, C., and Lockridge, O. (1999). Interaction between the peripheral site residues of human butyrylcholinesterase, D70 and Y332, in binding and hydrolysis of substrates. Biochim. Biophys. Acta 1433:281–293.PubMedGoogle Scholar
  35. McCaddon, A., Hudson, P., Davies, G., Hughes, A., Williams, J. H., and Wilkinson, C. (2001). Homocysteine and cognitive decline in healthy elderly. Dement. Geriatr. Cogn. Disord. 12:309–313.PubMedCrossRefGoogle Scholar
  36. McCully, K. S., and Vezeridis, M. P. (1988). Homocysteine thiolactone in arteriosclerosis and cancer. Res. Commun. Chem. Pathol. Pharmacol. 59:107–119.PubMedGoogle Scholar
  37. Nicolet, Y., Lockridge, O., Masson, P., Fontecilla-Camps, J. C., and Nachon, F. (2003). Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J. Biol. Chem. 278:41141–41147 (PDB ID: 1POP).PubMedCrossRefGoogle Scholar
  38. Paragh, G., Balla, P., Katona, E., Seres, I., Egerhazi, A., and Degrell, I. (2002). Serum paraoxonase activity changes in patients with Alzheimer’s disease and vascular dementia. Eur. Arch. Psychiatry Clin. Neurosci. 252:63–67.PubMedCrossRefGoogle Scholar
  39. Reiner, E., and Radić, Z. (2000). Mechanism of action of cholinesterase inhibitors. In Giacobini, E. (ed.), Cholinesterases and Cholinesterase Inhibitors. Martin Dunitz, London, pp. 103–119.Google Scholar
  40. Reis, E. A., Zugno, A. I., Franzon, R., Tagliari, B., Matté, C., Lamers, M. L., Netto, C. A., and Wyse, A. T. S. (2002). Pretreatment with vitamins E and C prevent the impairment of memory caused by homocysteine administration in rats. Metab. Brain Dis. 17:211–217.PubMedCrossRefGoogle Scholar
  41. Román, G. C., and Kalaria, R. N. (in press). Vascular determinants of cholinergic deficits in Alzheimer disease and vascular dementia. Neurobiol. Aging.Google Scholar
  42. Sauls, D. L., Lockhart, E., Warren, M. E., Lenkowski, A., Wilhelm, S. E., and Hoffman, M. (2006). Modification of fibrinogen by homocysteine thiolactone increases resistance to fibrinolysis: A potential mechanism of the thrombotic tendency in hyperhomocysteinemia. Biochemistry 45:2480–2487.PubMedCrossRefGoogle Scholar
  43. Seshadri, S., Beiser, A., Selhub, J., Jacques, P. F., Rosenberg, I. H., D’Agostino, R. B., Wilson, P. W., and Wolf, P. A. (2002). Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N. Engl. J. Med. 346:476–483.PubMedCrossRefGoogle Scholar
  44. Shi, J., Zhang, S., Tang, M., Liu, X., Li, T., Han, H., Wang, Y., Guo, Y., Zhao, J., Li, H., and Ma, C. (2004). Possible association between Cys311Ser polymorphism of paraoxonase 2 gene and late-onset Alzheimer’s disease in Chinese. Brain Res. Mol. Brain Res. 120:201–204.PubMedCrossRefGoogle Scholar
  45. Sussman, J. L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L., and Silman, I. (1991). Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein. Science 253:872–879.PubMedCrossRefGoogle Scholar
  46. Stefanello, F. M., Franzon, R., Tagliari, B., Wannmacher, C., Wajner, M., and Wyse, A. T. (2005). Reduction of butyrylcholinesterase activity in rat serum subjected to hyperhomocysteinemia. Metab. Brain Dis. 20:97–103.PubMedCrossRefGoogle Scholar
  47. Stefanello, F. M., Franzon, R., Wannmacher, C. M., Wajner, M., and Wyse, A. T. (2003b). In vitro homocysteine inhibits platelet Na+, K+-ATPase and serum butyrylcholinesterase activities of young rats. Metab. Brain Dis. 18:273–280.PubMedCrossRefGoogle Scholar
  48. Stefanello, F. M., Zugno, A. I., Wannmacher, C. M., Wajner, M., and Wyse, A. T. (2003a). Homocysteine inhibits butyrylcholinesterase activity in rat serum. Metab. Brain Dis. 18:187–194.PubMedCrossRefGoogle Scholar
  49. Stojan, J., Golicnik, M., Froment, M. T., Estour, F., and Masson, P. (2002). Concentration-dependent reversible activation–inhibition of human butyrylcholinesterase by tetraethylammonium ion. Eur. J. Biochem. 269:1154–1161.PubMedCrossRefGoogle Scholar
  50. Webb, J. L. (1963). Enzyme and Metabolic Inhibitors, Vol. I. Academic Press, New York, pp. 535–603.Google Scholar
  51. Whitehouse, P. J., Price, D. L., Clark, A. W., Coyle, J. T., and DeLong, M. R. (1981). Alzheimer disease: Evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann. Neurol. 10:122–126.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Medicine (Neurology and Geriatric Medicine)Dalhousie UniversityHalifaxCanada
  2. 2.Department of Anatomy and NeurobiologyDalhousie UniversityHalifaxCanada
  3. 3.Department of ChemistryMount Saint Vincent UniversityHalifaxCanada
  4. 4.QEII Health Sciences CentreCamp Hill Veterans’ MemorialHalifaxCanada

Personalised recommendations