Advertisement

Cellular and Molecular Neurobiology

, Volume 26, Issue 1, pp 81–86 | Cite as

Glutamate Uptake Is Stimulated by Extracellular S100B in Hippocampal Astrocytes

  • Francine Tramontina
  • Ana Carolina Tramontina
  • Daniela F. Souza
  • Marina C. Leite
  • Carmem Gottfried
  • Diogo O. Souza
  • Susana T. Wofchuk
  • Carlos-Alberto GonçalvesEmail author
Article

Summary

  1. 1.

    S100B is a calcium-binding protein expressed and secreted by astrocytes, which has been implicated in glial-neuronal communication. Extracellular S100B appears to protect hippocampal neurons against toxic concentrations of glutamate. Here we investigated a possible autocrine role of S100B in glutamate uptake activity.

     
  2. 2.

    Astrocyte cultures were prepared of hippocampi from neonate Wistar rats. [3H] Glutamate uptake was measured after addition of S100B protein, antibody anti-S100B or TRTK-12, a peptide that blocks S100B activity mediated by the C-terminal region.

     
  3. 3.

    Antibody anti-S100B addition decreased glutamate uptake measured 30 min after medium replacement, without affecting cell integrity or viability. Moreover, low levels of S100B (less than 0.1 ng/mL) stimulated glutamate uptake measured immediately after medium replacement.

     
  4. 4.

    This finding reinforces the importance of astrocytes in the glutamatergic transmission, particularly the role of S100B neuroprotection against excitotoxic damage.

     

Keywords

astrocyte excitotoxicity glutamate uptake S100B 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlemeyer, B., Beier, H., Semkova, I., Schaper, C., and Krieglstein, J. (2000). S-100beta protects cultured neurons against glutamate- and staurosporine-induced damage and is involved in the antiapoptotic action of the 5 HT(1A)-receptor agonist, Bay x 3702. Brain Res. 858:121–128.CrossRefPubMedGoogle Scholar
  2. Alexanian, A. R., and Bamburg, J. R. (1999). Neuronal survival activity of s100betabeta is enhanced by calcineurin inhibitors and requires activation of NF-kappaB. FASEB J. 13:1611–1620.PubMedGoogle Scholar
  3. Araque, A., and Perea, G. (2004). Glial modulation of synaptic transmission in culture. Glia 47:241–248.CrossRefPubMedGoogle Scholar
  4. Barger, S. W., and Van Eldik, L. J. (1992). S100 beta stimulates calcium fluxes in glial and neuronal cells. J. Biol. Chem. 267:9689–9694.PubMedGoogle Scholar
  5. Chen, Y., and Swanson, R. A. (2003). Astrocytes and brain injury. J. Cer. Blood F. Metab. 23:137–149.Google Scholar
  6. Danbolt, N. C. (2001). Glutamate uptake. Prog. Neurobiol. 65:1–105.CrossRefPubMedGoogle Scholar
  7. Donato, R. (2001). S100: A multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int. J. Biochem. Cell Biol. 33:637–668.CrossRefPubMedGoogle Scholar
  8. Dyck, R. H., Bogoch, I. I., Marks, A., Melvin, N. R., and Teskey, G. C. (2002). Enhanced epileptogenesis in S100B knockout mice. Mol. Brain Res. 106:22–29.CrossRefPubMedGoogle Scholar
  9. Gonçalves, D. S., Lenz, G., Karl, J., Gonçalves, C. A., and Rodnight, R. (2000). Extracellular S100B protein modulates ERK in astrocyte cultures. NeuroReport 11:807–809.Google Scholar
  10. Gottfried, C., Tramontina, F., Gonçalves, D., Gonçalves, C. A., Moriguchi, E., Dias, R. D., Wofchuk, S. T., and Souza, D. O. (2002). Glutamate uptake in cultured astrocytes depends on age: A study about the effect of guanosine and the sensitivity to oxidative stress induced by H(2)O(2). Mech. Ageing Dev. 123:1333–1340.CrossRefPubMedGoogle Scholar
  11. Hansson, E., and Ronnback, L. (2003). Glial neuronal signaling in the central nervous system. FASEB J. 17:341–348.CrossRefPubMedGoogle Scholar
  12. Haydon, P. G. (2001). GLIA: Listening and talking to the synapse. Nat. Rev. Neurosci. 2:185–193.CrossRefPubMedGoogle Scholar
  13. Hyden, H., and Lange, P. W. (1970). S100 brain protein: Correlation with behavior. Proc. Natl. Acad. Sci. 67:1959–1966.PubMedGoogle Scholar
  14. Kogel, D., Peters, M., Konig, H. G., Hashemi, S. M., Bui, N. T., Arolt, V., Rothermundt, M., and Prehn, J. H. (2004). S100B potently activates p65/c-Rel transcriptional complexes in hippocampal neurons: Clinical implications for the role of S100B in excitotoxic brain injury. Neuroscience 127:913–920.CrossRefPubMedGoogle Scholar
  15. Liu, Y., and Schubert, D. (1997). Cytotoxic amyloid peptides inhibit cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction by enhancing MTT formazan exocytosis. J. Neurochem. 69:2285–2293.PubMedGoogle Scholar
  16. O'Dowd, B. S., Zhao, W. Q., Ng, K. T., and Robinson, S. R. (1997). Chicks injected with antisera to either S-100 alpha or S-100 beta protein develop amnesia for a passive avoidance task. Neurobiol. Learn. Mem. 67:197–206.CrossRefPubMedGoogle Scholar
  17. Rebaudo, R., Melani, R., Balestrino, M., Cupello, A., Haglid, K., and Hyden, H. (2000). Antiserum against S-100 protein prevents long-term potentiation through a cAMP-related mechanism. Neurochem. Res. 25:541–545.PubMedGoogle Scholar
  18. Scotto, C., Mely, Y., Ohshima, H., Garin, J., Cochet, C., Chambaz, E., and Baudier, J. (1998). Cysteine oxidation in the mitogenic S100B protein leads to changes in phosphorylation by catalytic CKII-alpha subunit. J. Biol. Chem. 273:3901–3908.CrossRefPubMedGoogle Scholar
  19. Tramontina, F., Karl, J., Gottfried, C., Mendez, A., Gonçalves, D., Portela, L. V., and Gonçalves, C. A. (2000). Digitonin-permeabilization of astrocytes in culture monitored by trypan blue exclusion and loss of S100B by ELISA. Brain Res. Protoc. 6:86–90.CrossRefGoogle Scholar
  20. Tramontina, F., Conte, S., Gonçalves, D., Gottfried, C., Portela, L. V., Vinade, L., Salbego, C., and Gonçalves, C. A. (2002). Developmental changes in S100B content in brain tissue, cerebrospinal fluid, and astrocyte cultures of rats. Cell. Mol. Neurobiol. 22:373–378.CrossRefPubMedGoogle Scholar
  21. Van Eldik, L. J., and Wainwright, M. S. (2003). The Janus face of glial-derived S100B: Beneficial and detrimental functions in the brain. Restor. Neurol. Neurosci. 21:97–108.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Francine Tramontina
    • 1
  • Ana Carolina Tramontina
    • 1
  • Daniela F. Souza
    • 1
  • Marina C. Leite
    • 1
  • Carmem Gottfried
    • 1
  • Diogo O. Souza
    • 1
  • Susana T. Wofchuk
    • 1
  • Carlos-Alberto Gonçalves
    • 1
    • 2
    Email author
  1. 1.Departamento de BioquímicaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Depto Bioquímica, ICBSUFRGSPorto AlegreBrazil

Personalised recommendations