Cellular and Molecular Neurobiology

, Volume 26, Issue 7–8, pp 1165–1178

Transplants of Human Mesenchymal Stem Cells Improve Functional Recovery After Spinal Cord Injury in the Rat

  • Daša Čížková
  • Ján Rosocha
  • Ivo Vanický
  • Stanislava Jergová
  • Milan Čížek
Article

 

Human mesenchymal stem cells (hMSCs) derived from adult bone marrow represent a potentially useful source of cells for cell replacement therapy after nervous tissue damage. They can be expanded in culture and reintroduced into patients as autografts or allografts with unique immunologic properties. The aim of the present study was to investigate (i) survival, migration, differentiation properties of hMSCs transplanted into non-immunosuppressed rats after spinal cord injury (SCI) and (ii) impact of hMSC transplantation on functional recovery. Seven days after SCI, rats received i.v. injection of hMSCs (2×106 in 0.5 mL DMEM) isolated from adult healthy donors. Functional recovery was assessed by Basso–Beattie–Bresnahan (BBB) score weekly for 28 days. Our results showed gradual improvement of locomotor function in transplanted rats with statistically significant differences at 21 and 28 days. Immunocytochemical analysis using human nuclei (NUMA) and BrdU antibodies confirmed survival and migration of hMSCs into the injury site. Transplanted cells were found to infiltrate mainly into the ventrolateral white matter tracts, spreading also to adjacent segments located rostro-caudaly to the injury epicenter. In double-stained preparations, hMSCs were found to differentiate into oligodendrocytes (APC), but not into cells expressing neuronal markers (NeuN). Accumulation of GAP-43 regrowing axons within damaged white matter tracts after transplantation was observed. Our findings indicate that hMSCs may facilitate recovery from spinal cord injury by remyelinating spared white matter tracts and/or by enhancing axonal growth. In addition, low immunogenicity of hMSCs was confirmed by survival of donor cells without immunosuppressive treatment.

KEY WORDS

mesenchymal stem cells spinal cord trauma cell therapy regeneration 

REFERENCES

  1. Aggarwal, S., and Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822.CrossRefPubMedGoogle Scholar
  2. Akiyama, Y., Radtke, C., Honmou, O., and Kocsis, J. D. (2002). Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia 39:229–236.CrossRefPubMedGoogle Scholar
  3. Ankeny, D. P., McTigue, D. M., and Jakeman, L. B. (2004). Bone marrow transplants provide tissue protection and directional guidance for axons after contusive spinal cord injury in rats. Exp. Neurol. 190:17–31.CrossRefPubMedGoogle Scholar
  4. Askari, A. T., Unzek, S., Popovic, Z. B., Goldman, C. K., Forudi, F., Kiedrowski, M., Rovner, A., Ellis, S. G., Thomas, J. D., DiCorleto, P. E., Topol, E. J., and Penn, M. S. (2003). Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362:697–703.CrossRefPubMedGoogle Scholar
  5. Cizkova, D., Racekova, E., and Vanicky, I. (1997). The expression of B-50/GAP-43 and GFAP after bilateral olfactory bulbectomy in rats. Physiol. Res. 46:487–495.PubMedGoogle Scholar
  6. Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., Grisanti, S., and Gianni, A. M. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843.CrossRefPubMedGoogle Scholar
  7. Gussoni, E., Soneoka, Y., Strickland, C. D., Buzney, E. A., Khan, M. K., Flint, A. F., Kunkel, L. M., and Mulligan, R. C. (1999). Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394.PubMedGoogle Scholar
  8. Hamano, K., Li, T. S., Kobayashi, T., Kobayashi, S., Matsuzaki, M., and Esato, K. (2000). Angiogenesis induced by the implantation of self-bone marrow cells: A new material for therapeutic angiogenesis. Cell Transplant. 9:439–443.PubMedGoogle Scholar
  9. Hofstetter, C. P., Schwarz, E. J., Hess, D., Widenfalk, J., El Manira, A., Prockop, D. J., and Olson, L. (2002). Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc. Natl. Acad. Sci. U.S.A. 99:2199–2204.CrossRefPubMedGoogle Scholar
  10. Chen, J., Zhang, Z. G., Li, Y., Wang, L., Xu, Y. X., Gautam, S. C., Lu, M., Zhu, Z., and Chopp, M. (2003). Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ. Res. 92:692–699.CrossRefPubMedGoogle Scholar
  11. Chen, X., Li, Y., Wang, L., Katakowski, M., Zhang, L., Chen, J., Xu, Y., Gautam, S. C., and Chopp, M. (2002). Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology 22:275–279.CrossRefPubMedGoogle Scholar
  12. Chopp, M., and Li, Y. (2002). Treatment of neural injury with marrow stromal cells. Lancet Neurol. 1:92–100.CrossRefPubMedGoogle Scholar
  13. Chopp, M., Zhang, X. H., Li, Y., Wang, L., Chen, J., Lu, D., Lu, M., and Rosenblum, M. (2000). Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation. Neuroreport 11:3001–3005.PubMedGoogle Scholar
  14. Irons, H., Lind, J. G., Wakade, C. G., Yu, G., Hadman, M., Carroll, J., Hess, D. C., and Borlongan, C. V. (2004). Intracerebral xenotransplantation of GFP mouse bone marrow stromal cells in intact and stroke rat brain: Graft survival and immunologic response. Cell Transplant. 13:283–294.PubMedGoogle Scholar
  15. Jackson, K. A., Majka, S. M., Wang, H., Pocius, J., Hartley, C. J., Majesky, M. W., Entman, M. L., Michael, L. H., Hirschi, K. K., and Goodell, M. A. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107:1395–1402.PubMedCrossRefGoogle Scholar
  16. Jendelova, P., Herynek, V., Urdzikova, L., Glogarova, K., Kroupova, J., Andersson, B., Bryja, V., Burian, M., Hajek, M., and Sykova, E. (2004). Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J. Neurosci. Res. 76:232–243.CrossRefPubMedGoogle Scholar
  17. Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J., Aldrich, S., Lisberg, A., Low, W. C., Largaespada, D. A., and Verfaillie, C. M. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49.CrossRefPubMedGoogle Scholar
  18. Kim, B. J., Seo, J. H., Bubien, J. K., and Oh, Y. S. (2002). Differentiation of adult bone marrow stem cells into neuroprogenitor cells in vitro. Neuroreport 13:1185–1188.CrossRefPubMedGoogle Scholar
  19. Kim, S., Yoon, Y. S., Kim, J. W., Jung, M., Kim, S. U., Lee, Y. D., and Suh-Kim, H. (2004). Neurogenin1 is sufficient to induce neuronal differentiation of embryonal carcinoma P19 cells in the absence of retinoic acid. Cell Mol Neurobiol. 24:343–356.CrossRefPubMedGoogle Scholar
  20. Krause, D. S., Theise, N. D., Collector, M. I., Henegariu, O., Hwang, S., Gardner, R., Neutzel, S., and Sharkis, S. J. (2001). Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377.CrossRefPubMedGoogle Scholar
  21. Le Blanc, K., and Ringden, O. (2005). Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 11:321–334.CrossRefPubMedGoogle Scholar
  22. Li, Y., Chen, J., Chen, X. G., Wang, L., Gautam, S. C., Xu, Y. X., Katakowski, M., Zhang, L. J., Lu, M., Janakiraman, N., and Chopp, M. (2002). Human marrow stromal cell therapy for stroke in rat: Neurotrophins and functional recovery. Neurology 59:514–523.PubMedGoogle Scholar
  23. Liechty, K. W., MacKenzie, T. C., Shaaban, A. F., Radu, A., Moseley, A. M., Deans, R., Marshak, D. R., and Flake, A. W. (2000). Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat. Med. 6:1282–1286.CrossRefPubMedGoogle Scholar
  24. Liu, S. Q., Ma, Y. G., Peng, H., and Fan, L. (2005). Monocyte chemoattractant protein-1 level in serum of patients with acute spinal cord injury. Chin. J. Traumatol. 8:216–219.PubMedGoogle Scholar
  25. Mansilla, E., Marin, G. H., Sturla, F., Drago, H. E., Gil, M. A., Salas, E., Gardiner, M. C., Piccinelli, G., Bossi, S., Petrelli, L., Iorio, G., Ramos, C. A., and Soratti, C. (2005). Human mesenchymal stem cells are tolerized by mice and improve skin and spinal cord injuries. Transplant. Proc. 37:292– 294.CrossRefPubMedGoogle Scholar
  26. Mechirova, E., and Domorakova, I. (2002). NADPH-diaphorase activity in the spinal cord after ischemic injury and the effects of pretreatment with Ginkgo biloba extract (EGb 761). Acta Histochem. 104:427–430.CrossRefPubMedGoogle Scholar
  27. Mezey, E., Key, S., Vogelsang, G., Szalayova, I., Lange, G. D., and Crain, B. (2003). Transplanted bone marrow generates new neurons in human brains. Proc. Natl. Acad. Sci. U.S.A. 100:1364–1369.CrossRefPubMedGoogle Scholar
  28. Munoz-Elias, G., Marcus, A. J., Coyne, T. M., Woodbury, D., and Black, I. B. (2004). Adult bone marrow stromal cells in the embryonic brain: engraftment, migration, differentiation, and long-term survival. J. Neurosci. 24:4585–4595.CrossRefPubMedGoogle Scholar
  29. Neuhuber, B., Timothy Himes, B., Shumsky, J. S., Gallo, G., and Fischer, I. (2005). Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations. Brain Res. 1035:73–85.CrossRefPubMedGoogle Scholar
  30. Orlic, D. (2003). Adult bone marrow stem cells regenerate myocardium in ischemic heart disease. Ann. N. Y. Acad. Sci. 996:152–157.PubMedCrossRefGoogle Scholar
  31. Perrin, F. E., Lacroix, S., Aviles-Trigueros, M., and David, S. (2005). Involvement of monocyte chemoattractant protein-1, macrophage inflammatory protein-1alpha and interleukin-1beta in Wallerian degeneration. Brain 128:854–866.CrossRefPubMedGoogle Scholar
  32. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., and Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147.CrossRefPubMedGoogle Scholar
  33. Racekova, E., Fercakova, A., and Orendacova, J. (2000). Neural stem cells: Possibilities of regeneration in the adult CNS. Bratisl. Lek. Listy. 101:450–454.PubMedGoogle Scholar
  34. Racekova, E., Orendacova, J., Martoncikova, M., and Vanicky, I. (2003). NADPH-diaphorase positivity in the rostral migratory stream of the developing rat. Brain Res. Dev. Brain Res. 146:131–134.CrossRefPubMedGoogle Scholar
  35. Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., Hazzi, C., Stedeford, T., Willing, A., Freeman, T. B., Saporta, S., Janssen, W., Patel, N., Cooper, D. R., and Sanberg, P. R. (2000). Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol. 164:247–256.CrossRefPubMedGoogle Scholar
  36. Schwartz, R. E., Reyes, M., Koodie, L., Jiang, Y., Blackstad, M., Lund, T., Lenvik, T., Johnson, S., Hu, W. S., and Verfaillie, C. M. (2002). Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J. Clin. Invest. 109:1291–1302.CrossRefPubMedGoogle Scholar
  37. Shake, J. G., Gruber, P. J., Baumgartner, W. A., Senechal, G., Meyers, J., Redmond, J. M., Pittenger, M. F., and Martin, B. J. (2002). Mesenchymal stem cell implantation in a swine myocardial infarct model: Engraftment and functional effects. Ann. Thorac. Surg. 73:1919–1926.CrossRefPubMedGoogle Scholar
  38. Song, S., Kamath, S., Mosquera, D., Zigova, T., Sanberg, P., Vesely, D. L., and Sanchez-Ramos, J. (2004). Expression of brain natriuretic peptide by human bone marrow stromal cells. Exp. Neurol. 185:191–197.CrossRefPubMedGoogle Scholar
  39. Tse, W. T., Pendleton, J. D., Beyer, W. M., Egalka, M. C., and Guinan, E. C. (2003). Suppression of allogeneic T-cell proliferation by human marrow stromal cells: Implications in transplantation. Transplantation 75:389–397.CrossRefPubMedGoogle Scholar
  40. Vanicky, I., Urdzikova, L., Saganova, K., Cizkova, D., and Galik, J. (2001). A simple and reproducible model of spinal cord injury induced by epidural balloon inflation in the rat. J. Neurotrauma 18:1399–1407.CrossRefPubMedGoogle Scholar
  41. Wang, L., Li, Y., Chen, X., Chen, J., Gautam, S. C., Xu, Y., and Chopp, M. (2002). MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology 7:113–117.CrossRefPubMedGoogle Scholar
  42. Willing, A. E., Vendrame, M., Mallery, J., Cassady, C. J., Davis, C. D., Sanchez-Ramos, J., and Sanberg, P. R. (2003). Mobilized peripheral blood cells administered intravenously produce functional recovery in stroke. Cell Transplant. 12:449–454.PubMedGoogle Scholar
  43. Wu, S., Suzuki, Y., Ejiri, Y., Noda, T., Bai, H., Kitada, M., Kataoka, K., Ohta, M., Chou, H., and Ide, C. (2003). Bone marrow stromal cells enhance differentiation of cocultured neurosphere cells and promote regeneration of injured spinal cord. J. Neurosci. Res. 72:343–351.CrossRefPubMedGoogle Scholar
  44. Yang, M., Donaldson, A. E., Jiang, Y., and Iacovitti, L. (2003). Factors influencing the differentiation of dopaminergic traits in transplanted neural stem cells. Cell. Mol. Neurobiol. 23:851–864.CrossRefPubMedGoogle Scholar
  45. Zhong, C., Qin, Z., Zhong, C. J., Wang, Y., and Shen, X. Y. (2003). Neuroprotective effects of bone marrow stromal cells on rat organotypic hippocampal slice culture model of cerebral ischemia. Neurosci. Lett. 342:93–96.CrossRefPubMedGoogle Scholar
  46. Zurita, M., and Vaquero, J. (2004). Functional recovery in chronic paraplegia after bone marrow stromal cells transplantation. Neuroreport 15:1105–1108.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Daša Čížková
    • 1
    • 4
  • Ján Rosocha
    • 2
  • Ivo Vanický
    • 1
  • Stanislava Jergová
    • 1
  • Milan Čížek
    • 3
  1. 1.Institute of NeurobiologyCenter of Excellence, SASKošiceSlovakia
  2. 2.Associated Tissue BankFaculty of Medicine and University Hospital, P.J. Šafárik UniversityKošiceSlovakia
  3. 3.UVMKošiceSlovakia
  4. 4.Institute of NeurobiologyCenter of Excellence, SASKošiceSlovakia

Personalised recommendations