Elevated Expression of the G-Protein-Activated Inwardly Rectifying Potassium Channel 2 (GIRK2) in Cerebellar Unipolar Brush Cells of a Down Syndrome Mouse Model

  • Chie Harashima
  • David M. Jacobowitz
  • Markus Stoffel
  • Lina Chakrabarti
  • Tarik F. Haydar
  • Richard J. Siarey
  • Zygmunt Galdzicki


1. Down syndrome (DS) arises from the presence of three copies of chromosome (Chr.) 21. Fine motor learning deficits found in DS from childhood to adulthood result from expression of extra genes on Chr. 21, however, it remains unclear which if any of these genes are the specific causes of the cognitive and motor dysfunction. DS cerebellum displays morphological abnormalities that likely contribute to the DS motor phenotype.

2. The G-protein-activated inwardly rectifying potassium channel subunit 2 (GIRK2) is expressed in cerebellum and can shunt dendritic conductance and attenuate postsynaptic potentials. We have used an interbreeding approach to cross a genetic mouse model of DS (Ts65Dn) with Girk2 knockout mice and examined its relative expression level by quantitative real-time RT-PCR, Western blotting and immunohistochemistry.

3. We report here for the first time that GIRK2 is expressed in unipolar brush cells, which are excitatory interneurons of the vestibulocerebellum and dorsal cochlear nucleus. Analysis of disomic-Ts65Dn/Girk2(+/+/−) and heterozygous-Diploid/Girk2(+/−) mice shows that GIRK2 expression in Ts65Dn lobule X follows gene dosage. The lobule X of Ts65Dn mice contain greater numbers of unipolar brush cells co-expressing GIRK2 and calretinin than the control mouse groups.

4. These results demonstrate that gene triplication can impact specific cell types in the cerebellum. We hypothesize that GIRK2 overexpression will adversely affect cerebellar circuitry in Ts65Dn vestibulocerebellum and dorsal cochlear nucleus due to GIRK2 shunting properties and its effects on resting membrane potential.


unipolar brush cells trisomy cerebellum Ts65Dn dorsal cochlear nucleus vestibulocerebellum Girk2 knockout mouse GIRK Down syndrome potassium channel G-protein activated inwardly rectifying potassium channel 



The authors wish to thank Mr. Tyler Best and Mrs. Angelina KlineBurgess for assistance with the care and genotyping of the Ts65Dn mice and Ms. Madelaine Cho for running Western blots. We also want to thank Mr. Tyler Best for his help and critical comments during the preparation of the manuscript. This work was supported by NIH grant HD38417, J. Lejeune Foundation and USUHS (ZG) and in part by the Intramural Research Program of NIMH, NIH (DJ), and the Dana Foundation (TH).


  1. Abbott, L. C., and Jacobowitz, D. M. (1995). Development of calretinin-immunoreactive unipolar brush-like cells and an afferent pathway to the embryonic and early postnatal mouse cerebellum. Anat Embryol (Berl) 191:541–559.Google Scholar
  2. Arai, R., Winsky, L., Arai, M., and Jacobowitz, D. M. (1991). Immunohistochemical localization of calretinin in the rat hindbrain. J. Comp. Neurol. 310:21–44.PubMedCrossRefGoogle Scholar
  3. Aylward, E. H., Burt, D. B., Thorpe, L. U., Lai, F., and Dalton, A. (1997). Diagnosis of dementia in individuals with intellectual disability. J. Intellect. Disabil. Res. 41:152–164.PubMedGoogle Scholar
  4. Aylward, E. H., Li, Q., Honeycutt, N. A., Warren, A. C., Pulsifer, M. B., Barta, P. E., Chan, M. D., Smith, P. D., Jerram, M., and Pearlson, G. D. (1999). MRI volumes of the hippocampus and amygdala in adults with Down’s syndrome with and without dementia. Am. J. Psychiatry. 156:564–568.PubMedGoogle Scholar
  5. Balkany, T. J., Downs, M. P., Jafek, B. W., and Krajicek, M. J. (1979). Hearing loss in Down’s syndrome. A treatable handicap more common than generally recognized. Clin. Pediatr. (Phila) 18:116–118.CrossRefGoogle Scholar
  6. Baxter, L. L., Moran, T. H., Richtsmeier, J. T., Troncoso, J., and Reeves, R. H. (2000). Discovery and genetic localization of Down syndrome cerebellar phenotypes using the Ts65Dn mouse. Hum. Mol. Genet. 9:195–202.PubMedCrossRefGoogle Scholar
  7. Billups, D., Liu, Y. B., Birnstiel, S., and Slater, N. T. (2002). NMDA receptor-mediated currents in rat cerebellar granule and unipolar brush cells. J. Neurophysiol. 87:1948–1959.PubMedGoogle Scholar
  8. Braak, E., and Braak, H. (1993). The new monodendritic neuronal type within the adult human cerebellar granule cell layer shows calretinin-immunoreactivity. Neurosci. Lett. 154:199–202.PubMedCrossRefGoogle Scholar
  9. Costa, A. C., Walsh, K., and Davisson, M. T. (1999). Motor dysfunction in a mouse model for Down syndrome. Physiol. Behav. 68:211–220.PubMedCrossRefGoogle Scholar
  10. Dascal, N. (1997). Signalling via the G protein-activated K+ channels. Cell Signal. 9:551–573.PubMedCrossRefGoogle Scholar
  11. Daum, I., and Ackermann, H. (1995). Cerebellar contributions to cognition. Behav. Brain. Res. 67:201–210.PubMedCrossRefGoogle Scholar
  12. Dino, M. R., Nunzi, M. G., Anelli, R., and Mugnaini, E. (2000). Unipolar brush cells of the vestibulocerebellum: afferents and targets. Prog. Brain Res. 124:123–137.PubMedGoogle Scholar
  13. Dolan, R. J. (1998). A cognitive affective role for the cerebellum. Brain 121(Pt 4):545–546.Google Scholar
  14. Floris, A., Dino, M., Jacobowitz, D. M., and Mugnaini, E. (1994). The unipolar brush cells of the rat cerebellar cortex and cochlear nucleus are calretinin-positive: a study by light and electron microscopic immunocytochemistry. Anat. Embryol. (Berl.) 189:495–520.CrossRefGoogle Scholar
  15. Frangou, S., Aylward, E., Warren, A., Sharma, T., Barta, P., and Pearlson, G. (1997). Small planum temporale volume in Down’s syndrome: a volumetric MRI study. Am. J. Psychiatry 154:1424–1429.PubMedGoogle Scholar
  16. Frith, U. (1974). Scanning for reversed and rotated targets. Acta Psychol. (Amst.) 38:343–349.CrossRefGoogle Scholar
  17. Gitton, Y., Dahmane, N., Baik, S., Altaba, A., Neidhardt, L., Scholze, M., Herrmann, B. G., Kahlem, P., Benkahla, A., Schrinner, S., Yildirimman, R., Herwig, R., Lehrach, H., and Yaspo, M. L. (2002). A gene expression map of human chromosome 21 orthologues in the mouse. Nature 420:586–590.PubMedCrossRefGoogle Scholar
  18. Harashima, C., Jacobowitz, D. M., Jassir, W., Borke, R. C., Best, T., Siarey, R. J., and Galdzicki, Z. (2006). Abnormal expression of the GIRK2 potassium channel in hippocampus, frontal cortex and substantia nigra of Ts65Dn mouse: a model of Down syndrome. J. Comparat. Neurol. 494:815–833.CrossRefGoogle Scholar
  19. Harkins, A. B., and Fox, A. P. (2002). Cell death in weaver mouse cerebellum. Cerebellum 1:201–206.PubMedCrossRefGoogle Scholar
  20. Hassmann, E., Skotnicka, B., Midro, A. T., and Musiatowicz, M. (1998). Distortion products otoacoustic emissions in diagnosis of hearing loss in Down syndrome. Int. J. Pediatr. Otorhinolaryngol. 45:199–206.PubMedCrossRefGoogle Scholar
  21. Ieshima, A., Kisa, T., Yoshino, K., Takashima, S., and Takeshita, K. (1984). A morphometric CT study of Down’s syndrome showing small posterior fossa and calcification of basal ganglia. Neuroradiology 26:493–498.PubMedCrossRefGoogle Scholar
  22. Isomoto, S., Kondo, C., and Kurachi, Y. (1997). Inwardly rectifying potassium channels: their molecular heterogeneity and function. Jpn. J. Physiol. 47:11–39.PubMedCrossRefGoogle Scholar
  23. Isomoto, S., and Kurachi, Y. (1996). [Molecular and biophysical aspects of potassium channels]. Nippon Rinsho. 54:660–666.PubMedGoogle Scholar
  24. Jaarsma, D., Dino, M. R., Ohishi, H., Shigemoto, R., and Mugnaini, E. (1998). Metabotropic glutamate receptors are associated with non-synaptic appendages of unipolar brush cells in rat cerebellar cortex and cochlear nuclear complex. J. Neurocytol. 27:303–327.PubMedCrossRefGoogle Scholar
  25. Kalinichenko, S. G., and Okhotin, V. E. (2005). Unipolar brush cells–a new type of excitatory interneuron in the cerebellar cortex and cochlear nuclei of the brainstem. Neurosci. Behav. Physiol. 35:21–36.PubMedCrossRefGoogle Scholar
  26. Kanold, P. O., and Young, E. D. (2001). Proprioceptive information from the pinna provides somatosensory input to cat dorsal cochlear nucleus. J. Neurosci. 21:7848–7858.PubMedGoogle Scholar
  27. Karschin, C., Dissmann, E., Stuhmer, W., and Karschin, A. (1996). IRK(1-3) and GIRK(1-4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain. J. Neurosci. 16:3559–3570.PubMedGoogle Scholar
  28. Kinney, G. A., Overstreet, L. S., and Slater, N. T. (1997). Prolonged physiological entrapment of glutamate in the synaptic cleft of cerebellar unipolar brush cells. J. Neurophysiol. 78:1320–1333.PubMedGoogle Scholar
  29. Latash, M. L., and Corcos, D. M. (1991). Kinematic and electromyographic characteristics of single-joint movements of individuals with Down syndrome. Am. J. Ment. Retard. 96:189–201.PubMedGoogle Scholar
  30. Lesage, F., Duprat, F., Fink, M., Guillemare, E., Coppola, T., Lazdunski, M., and Hugnot, J. P. (1994). Cloning provides evidence for a family of inward rectifier and G-protein coupled K+ channels in the brain. FEBS Lett. 353:37–42.PubMedCrossRefGoogle Scholar
  31. Lesage, F., Guillemare, E., Fink, M., Duprat, F., Heurteaux, C., Fosset, M., Romey, G., Barhanin, J., and Lazdunski, M. (1995). Molecular properties of neuronal G-protein-activated inwardly rectifying K+ channels. J. Biol. Chem. 270:28660–28667.PubMedCrossRefGoogle Scholar
  32. Levine, R. A. (1999). Somatic (craniocervical) tinnitus and the dorsal cochlear nucleus hypothesis. Am. J. Otolaryngol. 20:351–362.PubMedCrossRefGoogle Scholar
  33. Lomholt, J. F., Keeling, J. W., Hansen, B. F., Ono, T., Stoltze, K., and Kjaer, I. (2003). The prenatal development of the human cerebellar field in Down syndrome. Orthod. Craniofac. Res. 6:220–226.PubMedCrossRefGoogle Scholar
  34. Marini, A. M., Strauss, K. I., and Jacobowitz, D. M. (1997). Calretinin-containing neurons in rat cerebellar granule cell cultures. Brain Res. Bull. 42:279–288.PubMedCrossRefGoogle Scholar
  35. Mazzoni, D. S., Ackley, R. S., and Nash, D. J. (1994). Abnormal pinna type and hearing loss correlations in Down’s syndrome. J. Intellect. Disabil. Res. 38(Pt 6):549–560.PubMedGoogle Scholar
  36. Mugnaini, E., Dino, M. R., and Jaarsma, D. (1997). The unipolar brush cells of the mammalian cerebellum and cochlear nucleus: cytology and microcircuitry. Prog. Brain Res. 114:131–150.PubMedCrossRefGoogle Scholar
  37. Mugnaini, E., and Floris, A. (1994). The unipolar brush cell: a neglected neuron of the mammalian cerebellar cortex. J. Comp. Neurol. 339:174–180.PubMedCrossRefGoogle Scholar
  38. Nunzi, M. G., and Mugnaini, E. (2000). Unipolar brush cell axons form a large system of intrinsic mossy fibers in the postnatal vestibulocerebellum. J. Comp. Neurol. 422:55–65.PubMedCrossRefGoogle Scholar
  39. Nunzi, M. G., Shigemoto, R., and Mugnaini, E. (2002). Differential expression of calretinin and metabotropic glutamate receptor mGluR1alpha defines subsets of unipolar brush cells in mouse cerebellum. J. Comp. Neurol. 451:189–199.PubMedCrossRefGoogle Scholar
  40. Oertel, D., and Young, E. D. (2004). What’s a cerebellar circuit doing in the auditory system? Trends Neurosci. 27:104–110.PubMedCrossRefGoogle Scholar
  41. Pinter, J. D., Eliez, S., Schmitt, J. E., Capone, G. T., and Reiss, A. L. (2001). Neuroanatomy of Down’s syndrome: A high-resolution MRI study. Am. J. Psychiatry 158:1659–1665.PubMedCrossRefGoogle Scholar
  42. Rogers, J. H. (1989). Immunoreactivity for calretinin and other calcium-binding proteins in cerebellum. Neuroscience 31:711–721.PubMedCrossRefGoogle Scholar
  43. Roper, R. J., Baxter, L. L., Saran, N. G., Klinedinst, D. K., Beachy, P. A., and Reeves, R. H. (2006) Defective cerebellar response to mitogenic Hedgehog signaling in Down’s syndrome mice. Proc. Natl. Acad. Sci. USA 103(5):1452–6.PubMedCrossRefGoogle Scholar
  44. Rossi, D. J., Alford, S., Mugnaini, E., and Slater, N. T. (1995). Properties of transmission at a giant glutamatergic synapse in cerebellum: the mossy fiber-unipolar brush cell synapse. J. Neurophysiol. 74:24–42.PubMedGoogle Scholar
  45. Saran, N. G., Pletcher, M. T., Natale, J. E., Cheng, Y., and Reeves, R. H. (2003). Global disruption of the cerebellar transcriptome in a Down syndrome mouse model. Hum. Mol. Genet. 12:2013–2019.PubMedCrossRefGoogle Scholar
  46. Schmahmann, J. D., and Sherman, J. C. (1998). The cerebellar cognitive affective syndrome. Brain 121(Pt 4):561–579.PubMedCrossRefGoogle Scholar
  47. Shumway-Cook, A., Woollacott, M. H. (1985). Dynamics of postural control in the child with Down syndrome. Phys. Ther. 65:1315–1322.PubMedGoogle Scholar
  48. Siarey, R. J., Carlson, E. J., Epstein, C. J., Balbo, A., Rapoport, S. I., and Galdzicki, Z. (1999). Increased synaptic depression in the Ts65Dn mouse, a model for mental retardation in Down syndrome. Neuropharmacology 38:1917–1920.PubMedCrossRefGoogle Scholar
  49. Siarey, R. J., Stoll, J., Rapoport, S. I., and Galdzicki, Z. (1997). Altered long-term potentiation in the young and old Ts65Dn mouse, a model for Down syndrome. Neuropharmacology 36:1549–1554.Google Scholar
  50. Signorini, S., Liao, Y. J., Duncan, S. A., Jan, L. Y., and Stoffel, M. (1997). Normal cerebellar development but susceptibility to seizures in mice lacking G protein-coupled, inwardly rectifying K+ channel GIRK2. Proc. Natl. Acad. Sci. USA 94:923–927.PubMedCrossRefGoogle Scholar
  51. Spano, M., Mercuri, E., Rando, T., Panto, T., Gagliano, A., Henderson, S., and Guzzetta, F. (1999). Motor and perceptual-motor competence in children with Down syndrome: variation in performance with age. Eur. J. Paediatr. Neurol. 3:7–13.PubMedCrossRefGoogle Scholar
  52. Strovel, J., Stamberg, J., and Yarowsky, P. J. (1999). Interphase FISH for rapid identification of a down syndrome animal model. Cytogenet. Cell Genet. 86:285–287.PubMedCrossRefGoogle Scholar
  53. Takacs, J., Borostyankoi, Z. A., Veisenberger, E., Vastagh, C., Vig, J., Gorcs, T. J., and Hamori, J. (2000). Postnatal development of unipolar brush cells in the cerebellar cortex of cat. J. Neurosci. Res. 61:107–115.PubMedCrossRefGoogle Scholar
  54. Wickman, K., Nemec, J., Gendler, S. J., and Clapham, D. E. (1998). Abnormal heart rate regulation in GIRK4 knockout mice. Neuron 20:103–114.PubMedCrossRefGoogle Scholar
  55. Winsky, L., Nakata, H., Martin, B. M., and Jacobowitz, D. M. (1989). Isolation, partial amino acid sequence, and immunohistochemical localization of a brain-specific calcium-binding protein. Proc. Natl. Acad Sci. USA 86:10139–10143.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Chie Harashima
    • 1
  • David M. Jacobowitz
    • 1
    • 2
  • Markus Stoffel
    • 3
  • Lina Chakrabarti
    • 4
  • Tarik F. Haydar
    • 4
  • Richard J. Siarey
    • 1
  • Zygmunt Galdzicki
    • 1
  1. 1.Department of Anatomy, Physiology and GeneticsUniformed Services University of the Health Sciences, School of MedicineBethesdaUSA
  2. 2.Laboratory of Clinical ScienceNational Institute of Mental Health, National Institutes of HealthBethesdaUSA
  3. 3.Laboratory of Metabolic Diseases and Molecular Cell BiologyRockefeller UniversityNew YorkUSA
  4. 4.Center for Neuroscience Research, Children’s Research InstituteChildren’s National Medical CenterWashingtonUSA

Personalised recommendations