Cellular and Molecular Neurobiology

, Volume 26, Issue 4–6, pp 899–911

The Onset of Brain Injury and Neurodegeneration Triggers the Synthesis of Docosanoid Neuroprotective Signaling

Article

Bioactive lipid messengers are formed through phospholipase-mediated cleavage of specific phospholipids from membrane reservoirs. Effectors that activate the synthesis of lipid messengers, include ion channels, neurotransmitters, membrane depolarization, cytokines, and neurotrophic factors. In turn, lipid messengers regulate and interact with multiple pathways, participating in the development, differentiation, function (e.g., long-term potentiation and memory), protection, and repair of cells of the nervous system. Overall, bioactive lipids participate in the regulation of synaptic function and dysfunction. Platelet-activating factor (PAF) and COX-2-synthesized PGE2 modulate synaptic plasticity and memory. Oxidative stress disrupts lipid signaling, fosters lipid peroxidation, and initiates and propagates neurodegeneration. Lipid messengers participate in the interactions among neurons, astrocytes, oligodendrocytes, microglia, cells of the microvasculature, and other cells. A conglomerate of interrelated cells comprises the neurovascular unit. Signaling at the neurovascular unit is clearly altered in the early stages of cerebrovascular disease as well as in neurodegenerations. Here we will provide examples of how signaling by lipids regulates critical events essential for neuronal survival. We will highlight a newly identified, DHA-derived messenger, neuroprotectin D1, which attenuates oxidative stress-induced apoptosis. The specificity and potency of this novel docosanoid (neuroprotectin D1) indicate a potentially important target for therapeutic intervention.

KEY WORDS:

docosahexaenoic acid ischemia-reperfusion neuroprotectin D1 neuroprotection oxidative stress 

REFERENCES

  1. Anderson, R. E., Maude, M. B., and Bok, D. (2001). Low docosahexaenoic acid levels in rod outer segment membranes of mice with rds/peripherin and P216L peripherin mutations. Invest. Ophthalmol. Vis. Sci. 42:1715–1720.PubMedGoogle Scholar
  2. Anderson, R. E., Maude, M. B., McClellan, M., Matthes, M. T., Yasumura, D., and La Vail, M. M. (2002). Low docosahexaenoic acid levels in rod outer segments of rats with P23H and S334ter rhodopsin mutations. Mol. Vis. 8:351–358.PubMedGoogle Scholar
  3. Anthonsen, M. W., Solhaug, A., and Johansen, B. (2001). Functional coupling between secretory and cytosolic phospholipase A2 modulates tumor necrosis factor-alpha- and interleukin-1beta-induced NF-kappa B activation. J. Biol. Chem. 276:30527–30536.PubMedCrossRefGoogle Scholar
  4. Barone, F. C., and Feuerstein, G. Z. (1999). Inflammatory mediators and stroke: new opportunities for novel therapeutics. J. Cereb. Blood Flow Metab. 19:819–834.PubMedCrossRefGoogle Scholar
  5. Basu, A., Krady, J. K., and Levison, S. W. (2004). Interleukin-1: a master regulator of neuroinflammation. J. Neurosci. Res. 78:151–156.PubMedCrossRefGoogle Scholar
  6. Bazan, N. G. (1990). Supply of n-3 polyunsaturated fatty acids and their significance in the central nervous system. In Wurtman R. J., and Wurtman J. J. (eds.), Nutrition and the Brain, Raven, New York, pp. 1–24.Google Scholar
  7. Bazan, N. G. (2003). Synaptic lipid signaling: significance of polyunsaturated fatty acids and platelet-activating factor. J. Lipid Res. 44:2221–2233.PubMedCrossRefGoogle Scholar
  8. Bazan, N. G., Colangelo, V., and Lukiw, W. J. (2002). Prostaglandins and other lipid mediators in Alzheimer's disease. Prostaglandins Other Lipid Mediat. 68–69:197–210.PubMedCrossRefGoogle Scholar
  9. Bazan, N. G., Reddy, T. S., Redmond, T. M., Wiggert, B., and Chader, G. J. (1985). Endogenous fatty acids are covalently and noncovalently bound to interphotoreceptor retinoid-binding protein in the monkey retina. J. Biol. Chem. 260:13677–13680.PubMedGoogle Scholar
  10. Belayev, L., Marcheselli, V. L., Khoutorova, L., Rodriguez de Turco, E. B., Busto, R., Ginsberg, M. D., and Bazan, N. G. (2005). Docosahexaenoic acid complexed to albumin elicits high-grade ischemic neuroprotection. Stroke 36:118–123.PubMedCrossRefGoogle Scholar
  11. Bethea, J. R., and Dietrich, W. D. (2002). Targeting the host inflammatory response in traumatic spinal cord injury. Curr. Opin. Neurol. 15:355–360.PubMedCrossRefGoogle Scholar
  12. Bramlett, H. M., and Dietrich, W. D. (2004). Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J. Cereb. Blood Flow Metab. 24:133–150.PubMedCrossRefGoogle Scholar
  13. Bicknell, I. R., Darrow, R., Barsalou, L., Fliesler, S. J., and Organisciak, D. T. (2002). Alterations in retinal rod outer segment fatty acids and light-damage susceptibility in P23H rats. Mol. Vis. 8:333–340.PubMedGoogle Scholar
  14. Billman, G. E., Kang, J. X., and Leaf, A. (1999). Prevention of sudden cardiac death by dietary pure omega-3 polyunsaturated fatty acids in dogs. Circulation 99:2452–2457.PubMedGoogle Scholar
  15. Bryckaert, M., Guillonneau, X., Hecquet, C., Courtois, Y., and Mascarelli, F. (1999). Both FGF1 and bcl-x synthesis are necessary for the reduction of apoptosis in retinal pigmented epithelial cells by FGF2: role of the extracellular signal-regulated kinase 2. Oncogene 18:7584– 7593.PubMedCrossRefGoogle Scholar
  16. Calder, P. C., and Grimble, R. F. (2002). Polyunsaturated fatty acids, inflammation and immunity. Eur. J. Clin. Nutr. 56(Suppl 3):S14–S19.PubMedCrossRefGoogle Scholar
  17. Capper, E. A., and Marshall, L. A. (2001). Mammalian phospholipases A(2): mediators of inflammation, proliferation and apoptosis. Prog. Lipid Res. 40:167–197.PubMedCrossRefGoogle Scholar
  18. Catz, S. D., and Johnson, J. L. (2001). Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene 20:7342–7351.PubMedCrossRefGoogle Scholar
  19. Chen, Y., Houghton, L. A., Brenna, J. T., and Noy, N. (1996). Docosahexaenoic acid modulates the interactions of the interphotoreceptor retinoid-binding protein with 11-cis-retinal. J. Biol. Chem. 271:20507–20515.PubMedCrossRefGoogle Scholar
  20. Choi, D. W., and Rothman, S. M. (1990). The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu. Rev. Neurosci. 13:171–182.PubMedCrossRefGoogle Scholar
  21. Compton, M. M. (1992). A biochemical hallmark of apoptosis: internucleosomal degradation of the genome. Cancer Metastasis Rev. 11:105–119.PubMedCrossRefGoogle Scholar
  22. Consilvio, C., Vincent, A. M., and Feldman, E. L. (2004). Neuroinflammation, COX-2, and ALS–a dual role? Exp. Neurol. 187:1–10.Google Scholar
  23. Creagh, E. M., Conroy, H., and Martin, S. J. (2003). Caspase-activation pathways in apoptosis and immunity. Immunol. Rev. 193:10–21.PubMedCrossRefGoogle Scholar
  24. Danton, G. H. and Dietrich, W. D. (2003). Inflammatory mechanisms after ischemia and stroke. J. Neuropathol. Exp. Neurol. 62:127–136.PubMedGoogle Scholar
  25. de Caldironi, M. I., and Bazan, N. G. (1977). Acyl groups, molecular species, and labeling by 14C-glycerol and 3H-arachidonic acid of vertebrate retina glycerolipids. Adv. Exp. Med. Biol. 83:397–404.PubMedGoogle Scholar
  26. Dirnagl, U., Simon, R. P., and Hallenbeck, J. M. (2003). Ischemic tolerance and endogenous neuroprotection. Trends Neurosci. 26:248–254.PubMedCrossRefGoogle Scholar
  27. Dixon, E. P., Stephenson, D. T., Clemens, J. A., and Little, S. P. (1997). Bcl-Xshort is elevated following severe global ischemia in rat brains. Brain Res. 776:222–229.PubMedCrossRefGoogle Scholar
  28. Dykens, J. A. (1994). Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2+ and Na+: implications for neurodegeneration. J. Neurochem. 63:584–591.PubMedCrossRefGoogle Scholar
  29. Ginsberg, M. D. (2003). Adventures in the pathophysiology of brain ischemia: penumbra, gene expression, neuroprotection: the 2002 Thomas Willis Lecture. Stroke 34:214–223.PubMedCrossRefGoogle Scholar
  30. Glasgow, J. N., Qiu, J., and Rassin, D. (2001). Transcriptional regulation of the BCL-X gene by NF-kappaB is an element of hypoxic responses in the rat brain. Neurochem. Res. 26:647–659.PubMedCrossRefGoogle Scholar
  31. Gordon, W. C., Rodriguez de Turco, E. B., and Bazan, N. G. (1992). Retinal pigment epithelial cells play a central role in the conservation of docosahexaenoic acid by photoreceptor cells after shedding and phagocytosis. Curr. Eye Res. 11:73–83.PubMedGoogle Scholar
  32. Grimminger, F., Grimm, H., Fuhrer, D., Papavassilis, C., Lindemann, G., Blecher, C., Mayer, K., Tabesch, F., Kramer, H. J., Stevens, J., and Seeger, W. (1996). Omega-3 lipid infusion in a heart allotransplant model. Shift in fatty acid and lipid mediator profiles and prolongation of transplant survival. Circulation 93:365–371.PubMedGoogle Scholar
  33. Halliwell, B. (1991). Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am. J. Med. 91:14S–22S.PubMedCrossRefGoogle Scholar
  34. Halterman, M. W., Miller, C. C., and Federoff, H. J. (1999). Hypoxia-inducible factor-1alpha mediates hypoxia-induced delayed neuronal death that involves p53. J. Neurosci. 19:6818–6824.PubMedGoogle Scholar
  35. Hibbeln, J. R. (1998). Fish consumption and major depression. Lancet 351:1213.PubMedCrossRefGoogle Scholar
  36. Hong, S., Gronert, K., Devchand, P. R., Moussignac, R. L., and Serhan, C. N. (2003). Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J. Biol. Chem. 278:14677–14687.PubMedCrossRefGoogle Scholar
  37. Horrocks, L. A., and Farooqui, A. A. (1994). NMDA receptor-stimulated release of arachidonic acid: Mechanisms for the Bazan effect. In Municio, A. M., and Miras-Portugal, M. T. (eds.), Cell Signal Transduction, Second Messengers, and Protein Phosphorylation in Health and Disease, Plenum Press, New York, pp. 113–128.Google Scholar
  38. Hoy, A., Leininger-Muller, B., Poirier, O., Siest, G., Gautier, M., Elbaz, A., Amarenco, P., and Visvikis, S. (2003). Myeloperoxidase polymorphisms in brain infarction. Association with infarct size and functional outcome. Atherosclerosis 167:223–230.PubMedCrossRefGoogle Scholar
  39. Hu, J., and Bok, D. (2001). A cell culture medium that supports the differentiation of human retinal pigment epithelium into functionally polarized monolayers. Mol. Vis. 7:14–19.PubMedGoogle Scholar
  40. Iadecola, C. (2004). Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat. Rev. Neurosci. 5:347–360.PubMedCrossRefGoogle Scholar
  41. Iigo, M., Nakagawa, T., Ishikawa, C., Iwahori, Y., Asamoto, M., Yazawa, K., Araki, E., and Tsuda, H. (1997). Inhibitory effects of docosahexaenoic acid on colon carcinoma 26 metastasis to the lung. Br. J. Cancer 75:650–655.PubMedGoogle Scholar
  42. James, M. J., Gibson, R. A., and Cleland, L. G. (2000). Dietary polyunsaturated fatty acids and inflammatory mediator production. Am. J. Clin. Nutr. 71:343S–348S.PubMedGoogle Scholar
  43. Jesberger, J. A., and Richardson, J. S. (1991). Oxygen free radicals and brain dysfunction. Int. J. Neurosci. 57:1–17.PubMedCrossRefGoogle Scholar
  44. Kerschensteiner, M., Gallmeier, E., Behrens, L., Leal, V. V., Misgeld, T., Klinkert, W. E., Kolbeck, R., Hoppe, E., Oropeza-Wekerle, R. L., Bartke, I., Stadelmann, C., Lassmann, H., Wekerle, H., and Hohlfeld, R. (1999). Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J. Exp. Med. 189:865–870.CrossRefGoogle Scholar
  45. Kim, H. Y., Akbar, M., Lau, A., and Edsall, L. (2000). Inhibition of neuronal apoptosis by docosahexaenoic acid (22:6n-3). Role of phosphatidylserine in antiapoptotic effect. J. Biol. Chem. 275:35215–35223.PubMedCrossRefGoogle Scholar
  46. Kowaltowski, A. J., Castilho, R. F., and Vercesi, A. E. (1995). Ca(2+)-induced mitochondrial membrane permeabilization: role of coenzyme Q redox state. Am. J. Physiol. 269:C141–C147.PubMedGoogle Scholar
  47. Litman, B. J., Niu, S. L., Polozova, A., and Mitchell, D. C. (2001). The role of docosahexaenoic acid containing phospholipids in modulating G protein-coupled signaling pathways: visual transduction. J. Mol. Neurosci. 16:237–242.PubMedCrossRefGoogle Scholar
  48. Lo, E. H., Dalkara, T., and Moskowitz, M. A. (2003). Mechanisms, challenges and opportunities in stroke. Nat. Rev. Neurosci. 4:399–415.PubMedCrossRefGoogle Scholar
  49. McLennan, P., Howe, P., Abeywardena, M., Muggli, R., Raederstorff, D., Mano, M., Rayner, T., and Head, R. (1996). The cardiovascular protective role of docosahexaenoic acid. Eur. J. Pharmacol. 300:83–89.PubMedCrossRefGoogle Scholar
  50. Marcheselli, V. L., Hong, S., Lukiw, W. J., Tian, X. H., Gronert, K., Musto, A., Hardy, M., Gimenez, J. M., Chiang, N., Serhan, C. N., and Bazan, N. G. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J. Biol. Chem. 278:43807–43817.PubMedCrossRefGoogle Scholar
  51. Marchioli, R. (1999). Results of GISSI Prevenzione: diet, drugs, and cardiovascular risk. Researchers of GISSI Prevenzione. Cardiologia 44(Suppl 1):745–746.PubMedGoogle Scholar
  52. Mattson, M. P. (1998). Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity. Trends Neurosci. 21:53–57.PubMedCrossRefGoogle Scholar
  53. Mattson, M. P. (2000). Apoptotic and anti-apoptotic synaptic signaling mechanisms. Brain Pathol. 10:300–312.PubMedCrossRefGoogle Scholar
  54. Minghetti, L. (2004). Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J. Neuropathol. Exp. Neurol. 63:901–910.PubMedGoogle Scholar
  55. Mukherjee, P. K., Marcheselli, V. L., and Serhan, C. N. (2004). Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc. Natl. Acad. Sci. USA 101:8491–8496.PubMedCrossRefGoogle Scholar
  56. Organisciak, D. T., Darrow, R. M., Jiang, Y. L., and Blanks, J. C. (1996). Retinal light damage in rats with altered levels of rod outer segment docosahexaenoate. Invest. Ophthalmol. Vis. Sci. 37:2243–2257.PubMedGoogle Scholar
  57. Rapp, J. H., Connor, W. E., Lin, D. S., and Porter, J. M. (1991). Dietary eicosapentaenoic acid and docosahexaenoic acid from fish oil. Their incorporation into advanced human atherosclerotic plaques. Arterioscler. Thromb. 11:903–911.PubMedGoogle Scholar
  58. Remmers, M., Schmidt-Kastner, R., Belayev, L., Lin, B., Busto, R., and Ginsberg, M. D. (1999). Protein extravasation and cellular uptake after high-dose human-albumin treatment of transient focal cerebral ischemia in rats. Brain Res. 827:237–242.PubMedCrossRefGoogle Scholar
  59. Roberts, L. J., Montine, T. J., Markesbery, T. R., et al. (1998). Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J. Biol. Chem. 273:13605–13612.PubMedCrossRefGoogle Scholar
  60. Salem, N., Jr., Kim, H. Y., and Yergey, J. A. (1986). The Health Effects of Polyunsaturated Fatty Acids in Seafoods, Academic, New York, pp. 263–317.Google Scholar
  61. Seeberg, E., Eide, L., and Bjoras, M. (1995). The base excision repair pathway. Trends Biochem. Sci. 20:391–397.PubMedCrossRefGoogle Scholar
  62. Sieving, P. A., Chaudhry, P., Kondo, M., Provenzano, M., Wu, D., Carlson, T. J., Bush, R. A., and Thompson, D. A. (2001). Inhibition of the visual cycle in vivo by 13-cis retinoic acid protects from light damage and provides a mechanism for night blindness in isotretinoin therapy. Proc. Natl. Acad. Sci. USA 98:1835–1840.PubMedCrossRefGoogle Scholar
  63. Sparrow, J. R., Vollmer-Snarr, H. R., Zhou, J., Jang, Y. P., Jockusch, S., Itagaki, Y., and Nakanishi, K. (2003). A2E-epoxides damage DNA in retinal pigment epithelial cells. Vitamin E and other antioxidants inhibit A2E-epoxide formation. J. Biol. Chem. 278:18207–18213.PubMedCrossRefGoogle Scholar
  64. Stephensen, C. B. (2004). Fish oil and inflammatory disease: is asthma the next target for n-3 fatty acid supplements? Nutr. Rev. 62:486–489.PubMedCrossRefGoogle Scholar
  65. Stinson, A. M., Wiegand, R. D., and Anderson, R. E. (1991). Recycling of docosahexaenoic acid in rat retinas during n-3 fatty acid deficiency. J. Lipid Res. 32:2009–2017.PubMedGoogle Scholar
  66. Sugawara, T., Fujimura, M., Noshita, N., Kim, G. W., Saito, A., Hayashi, T., Narasimhan, P., Maier, C. M., and Chan, P. H. (2004). Neuronal Death/Survival Signaling Pathways in Cerebral Ischemia. Neurorx 1:17–25.PubMedCrossRefGoogle Scholar
  67. Sun, G. Y., Xu, J., Jensen, M. D., and Simonyi, A. (2004). Phospholipase A2 in the central nervous: Implications for neurodegenerative diseases. J. Lipid Res. 45:205–213.PubMedCrossRefGoogle Scholar
  68. Wheeler, T. G., Benolken, R. M., and Anderson, R. E. (1975). Visual membranes: specificity of fatty acid precursors for the electrical response to illumination. Science 188:1312–1314.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.LSU Neuroscience Center and Department of OphthalmologyLouisiana State University Health Sciences Center School of Medicine in New OrleansNew OrleansUSA
  2. 2.LSU Neuroscience CenterNew OrleansUSA

Personalised recommendations