Cellular and Molecular Neurobiology

, Volume 26, Issue 4–6, pp 657–676

Three Types of Tyrosine Hydroxylase-Positive CNS Neurons Distinguished by Dopa Decarboxylase and VMAT2 Co-Expression

  • Eberhard Weihe
  • Candan Depboylu
  • Burkhard Schütz
  • Martin K.-H. Schäfer
  • Lee E. Eiden
Article

Sumary

1. We investigate here for the first time in primate brain the combinatorial expression of the three major functionally relevant proteins for catecholaminergic neurotransmission tyrosine hydroxylase (TH), aromatic acid acid decarboxylase (AADC), and the brain-specific isoform of the vesicular monoamine transporter, VMAT2, using highly specific antibodies and immunofluorescence with confocal microscopy to visualize combinatorial expression of these proteins.

2. In addition to classical TH, AADC, and VMAT2-copositive catecholaminergic neurons, two unique kinds of TH-positive neurons were identified based on co-expression of AADC and VMAT2.

3. TH and AADC co-positive, but VMAT2-negative neurons, are termed “nonexocytotic catecholaminergic TH neurons.” These were found in striatum, olfactory bulb, cerebral cortex, area postrema, nucleus tractus solitarius, and in the dorsal motor nucleus of the vagus.

4. TH-positive neurons expressing neither AADC nor VMAT2 are termed “dopaergic TH neurons.” We identified these neurons in supraoptic, paraventricular and periventricular hypothalamic nuclei, thalamic paraventicular nucleus, habenula, parabrachial nucleus, cerebral cortex and spinal cord. We were unable to identify any dopaergic (TH-positive, AADC-negative) neurons that expressed VMAT2, suggesting that regulatory mechanisms exist for shutting off VMAT2 expression in neurons that fail to biosynthesize its substrates.

5. In several cases, the corresponding TH phenotypes were identified in the adult rat, suggesting that this rodent is an appropriate experimental model for further investigation of these TH-positive neuronal cell groups in the adult central nervous system. Thus, no examples of TH and VMAT2 co-positive neurons lacking AADC expression were found in rodent adult nervous system.

6. In conclusion, the adult mammalian nervous system contains in addition to classical catecholaminergic neurons, cells that can synthesize dopamine, but cannot transport and store it in synaptic vesicles, and neurons that can synthesize only L-dopa and lack VMAT2 expression. The presence of these additional populations of TH-positive neurons in the adult primate CNS has implications for functional catecholamine neurotransmission, its derangement in disease and drug abuse, and its rescue by gene therapeutic maneuvers in neurodegenerative diseases such as Parkinson's disease.

KEY WORDS:

aromatic amino acid decarboxylase/dopa decarboxylase CNS neuronal phenotypes dopaergic dopaminergic tyrosine hydroxylase vesicular monoamine transporter 

References

  1. Andresen, M. C., Doyle, M. W., Jin, Y. H., and Bailey, T. W. (2001). Cellular mechanisms of baroreceptor integration at the nucleus tractus solitarius. Ann. N.Y. Acad. Sci. 940:132–141.PubMedCrossRefGoogle Scholar
  2. Anlauf, M., Schäfer, M. K.-H., Eiden, L. E., and Weihe, E. (2003). Chemical coding of the human gastrointestinal nervous system: Cholinergic, VIPergic and catecholaminergic phenotypes. J. Comp. Neurol. 459:90–111.PubMedCrossRefGoogle Scholar
  3. Asmus, S. E., Parsons, S., and Landis, S. C. (2000). Developmental changes in the transmitter properties of sympathetic neurons that innervate the periosteum. J. Neurosci. 20:1495–1504.PubMedGoogle Scholar
  4. Axelrod, J. (1986). Doing research in the Intramural Program of the National Institutes of Health. Perspect. Biol. Med. 29:S131–S137.PubMedGoogle Scholar
  5. Balan, I. S., Ugrumov, M. V., Calas, A., Mailly, P., Kreiger, M., and Thibault, J. (2000). Tyrosine hydroxylase-expressing and/or aromatic L-amino acid decarboxylase-expressing neurons in the mediobasal hypothalamus of perinatal rats: differentiation and sexual dimorphism. J. Comp. Neurol. 425:167–176.PubMedCrossRefGoogle Scholar
  6. Betarbet, R., Turner, R., Chockkan, V., DeLong, M. R., Allers, K. A., Walters, J., Levey, A. I., and Greenamyre, J. T. (1997). Dopaminergic neurons intrinsic to the primate striatum. J. Neurosci. 17:6761–6768.PubMedGoogle Scholar
  7. Carlsson, A. (2001). A paradigm shift in brain research. Science 294:1021–1024.PubMedCrossRefGoogle Scholar
  8. Cases, O., Lebrand, C., Giros, B., Vitalis, T., De Maeyer, E., Caron, M. G., Price, D. J., Gaspar, P., and Seif, I. (1998). Plasma membrane transporters of serotonin, dopamine, and norepinephrine mediate serotonin accumulation in atypical locations in the developing brain of monoamine oxidase. A knock-outs. J. Neurosci. 18:6914–6927.PubMedGoogle Scholar
  9. Cochard, P., Goldstein, M., and Black, I. B. (1978). Ontogenetic appearance and disappearance of tyrosine hydroxylase and catecholamines in the rat embryo. Proc. Natl. Acad. Sci. U.S.A. 75:2986–2990.PubMedCrossRefGoogle Scholar
  10. Del Tredici, K., Rub, U., De Vos, R. A., Bohl, J. R., and Braak, H. (2002). Where does parkinson disease pathology begin in the brain? J. Neuropathol. Exp. Neurol. 61:413–426.PubMedGoogle Scholar
  11. Erickson, J. D., Schäfer, M. K.-H., Bonner, T. I., Eiden, L. E., and Weihe, E. (1996). Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc. Natl. Acad. Sci. U.S.A. 93:5166–5171.PubMedCrossRefGoogle Scholar
  12. Ershov, P. V., Ugrumov, M. V., Calas, A., Krieger, M., and Thibault, J. (2002a). Differentiation of tyrosine hydroxylase-synthesizing and/or aromatic L-amino acid decarboxylase-synthesizing neurons in the rat mediobasal hypothalamus: Quantitative double-immunofluorescence study. J. Comp. Neurol. 446:114–22.PubMedCrossRefGoogle Scholar
  13. Ershov, P. V., Ugrumov, M. V., Calas, A., Krieger, M., and Thibault, J. (2005). Degeneration of dopaminergic neurons triggers an expression of individual enzymes of dopamine synthesis in non-dopaminergic neurons of the arcuate nucleus in adult rats. J. Chem. Neuroanat. 30:27–33.PubMedCrossRefGoogle Scholar
  14. Ershov, P. V., Ugrumov, M. V., Calas, A., Makarenko, I. G., Krieger, M., and Thibault, J. (2002b). Neurons possessing enzymes of dopamine synthesis in the mediobasal hypothalamus of rats. Topographic relations and axonal projections to the median eminence in ontogenesis. J. Chem. Neuroanat. 24:95–107.PubMedCrossRefGoogle Scholar
  15. Fon, E. A., Pothos, E. N., Sun, B.-C., Killeen, N., Sulzer, D., and Edwards, R. H. (1997). Vesicular transport regulates monoamine storage and release but is not essential for amphetamine action. Neuron 19:1271–1283.PubMedCrossRefGoogle Scholar
  16. Gaspar, P., Berger, B., Febvret, A., Vigny, A., Krieger-Poulet, M., and Borri-Volta Horni, C. (1987). Tyrosine hydroxylase-immunoreactive neurons in the human cerebral cortex: a novel catechol aminergic group? Neurosci. Lett. 80:257–262.Google Scholar
  17. Guillemot, F., Lo, L.-C., Hohnson, J. E., Auerbach, A., Anderson, D. J., and Joyner, A. L. (1993). Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75:463–476.PubMedCrossRefGoogle Scholar
  18. Habecker, B. A., Klein, M. G., Sundgren, N. C., Li, W., and Woodward, W. R. (2002). Developmental regulation of neurotransmitter phenotype through tetrahydrobiopterin. J. Neurosci. 22:9445–9452.PubMedGoogle Scholar
  19. Halasz, N., Ljungdahl, A., Hokfelt, T., Johansson, O., Goldstein, M., Park, D., and Biberfeld, P. (1977). Transmitter histochemistry of the rat olfactory bulb. I. Immunohistochemical localization of monoamine synthesizing enzymes. Support for intrabulbar, periglomerular dopamine neurons. Brain Res. 126:455–474.PubMedCrossRefGoogle Scholar
  20. Hansson, S., Mezey, E., and Hoffman, B. J. (1998a). Ontogeny of vesicular monoamine transporter mRNAs VMAT1 and VMAT2. II. Expression in neural crest derivatives and their target sites in the rat. Dev. Brain Res. 110:159–174.CrossRefGoogle Scholar
  21. Hansson, S. R., Hoffman, B. J., and Mezey, E. (1998b). Ontogeny of vesicular monoamine transporter mRNAs VMAT1 and VMAT2. I. The developing rat central nervous system. Dev. Brain Res. 110:135–158.CrossRefGoogle Scholar
  22. Hirayama, K., and Kapatos, G. (1998). Nigrostriatal dopamine neurons express low levels of GTP cyclohydrolase I protein. J. Neurochem. 70:164–170.PubMedCrossRefGoogle Scholar
  23. Hirsch, M.-R., Tiveron, M.-C., Guillemot, F., Brunet, J.-F., and Goridis, C. (1998). Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system. Development 125:599–608.PubMedGoogle Scholar
  24. Hoffman, B. J., Palkovits, M., Pacak, K., Hansson, S. R., and Mezey, E. (1998). Regulation of dopamine transporter mRNA levels in the central nervous system. Adv. Pharmacol. 42:202–206.PubMedGoogle Scholar
  25. Huang, M. H., Bahl, J. J., Wu, Y., Hu, F., Larson, D. F., Roeske, W. R., and Ewy, G. A. (2005). Neuroendocrine properties of intrinsic cardiac adrenergic cells in fetal rat heart. Am. J. Physiol. Heart Circ. Physiol. 288:H497–H503.PubMedCrossRefGoogle Scholar
  26. Ikemoto, K., Nagatsu, I., Kitahama, K., Jouvet, A., Nishimura, A., Nishi, K., Maeda, T., and Arai, R. (1998a). A dopamine-synthesizing cell group demonstrated in the human basal forebrain by dual labeling immunohistochemical technique of tyrosine hydroxlase and aromatic l-amino acid decarboxylase. Neurosci. Lett. 243:129–132.PubMedCrossRefGoogle Scholar
  27. Ikemoto, K., Nagatsu, I., Nishimura, A., Nishi, K., and Arai, R. (1998b). Do all of human midbrain tyrosine hydroxylase neurons synthesize dopamine? Brain Res. 805:255–258.PubMedCrossRefGoogle Scholar
  28. Jonakait, G. M., Markey, K. A., Goldstein, M., Dreyfus, C. F., and Black, I. B. (1985). Selective expression of high-affinity uptake of catecholamines by transiently catecholaminergic cells of the rat embryo: studies in vivo and in vitro. Dev. Biol. 108:6–17.PubMedCrossRefGoogle Scholar
  29. Kariya, S., Takahaski, N., Hirano., M., and Ueno, S. (2005). Increased vulnerability to L-Dopa toxicity in dopaminergic neurons from VMAT2 heterozygote Knockout mice. J. Mol. Neurosci. 27:277–279.Google Scholar
  30. Kitahama, K., Ikemoto, K., Jouvet, A., Nagatsu, I., Geffard, M., Okamura, H., and Pearson, J. (1998). Dopamine synthesizing enzymes in paraventricular hypothalamic neurons of the human and monkey (Macaca fuscata). Neurosci. Lett. 243:1–4.PubMedCrossRefGoogle Scholar
  31. Kitahama, K., Sakamoto, N., Jouvet, A., Nagatsu, I., and Pearson, J. (1996). Dopamine-beta-hydroxylase and tyrosine hydroxylase immunoreactive neurons in the human brainstem. J. Chem. Neuroanat. 10:137–146.PubMedCrossRefGoogle Scholar
  32. Komori, K., Fujii, T., and Nagatsu, I. (1991). Do some tyrosine hydroxylase-immunoreactive neurons in the human ventrolateral arcuate nucleus and globus pallidus produce only L-dopa? Neurosci. Lett. 133:203–206.PubMedCrossRefGoogle Scholar
  33. Landis, S. C., Jackson, P. C., Fredieu, J. R., and Thibault, J. (1987). Catecholaminergic properties of cholinergic neurons and synapses in adult rat ciliary ganglion. J. Neurosci. 7:3574–3587.PubMedGoogle Scholar
  34. Landis, S. C., Siegel, R. E., and Schwab, M. (1988). Evidence for neurotransmitter plasticity in vivo. II. Immunocytochemical studies of rat sweat gland innervation during development. Dev. Biol. 126:129–140.PubMedCrossRefGoogle Scholar
  35. Lebrand, C., Cases, O., Adelbrecht, C., Doye, A., Alvarez, C., El Mestikawy, S., Seif, I., and Gaspar, P. (1996). Transient uptake and storage of serotonin in developing thalamic neurons. Neuron 17:823–835.PubMedCrossRefGoogle Scholar
  36. Lebrand, C., Cases, O., Wehrlé, R., Blakely, R. D., Edwards, R. H., and Gaspar, P. (1998). Transient developmental expression of monoamine transporters in the rodent forebrain. J. Comp. Neurol. 401:506–524.PubMedCrossRefGoogle Scholar
  37. Liang, N. Y., and Rutledge, C. O. (1982). Evidence for carrier-mediated efflux of dopamine from corpus striatum. Biochem. Pharmacol. 31:2479–2484.PubMedCrossRefGoogle Scholar
  38. Mack, G. W., Shannon, L. M., and Nadel, E. R. (1986). Influence of beta-adrenergic blockade on the control of sweating in humans. J. Appl. Physiol. 61:1701–1705.PubMedGoogle Scholar
  39. Misu, Y., Goshima, Y., and Miyamae, T. (2002). Is DOPA a neurotransmitter? Trends Pharmacol. Sci. 23:262–268.PubMedCrossRefGoogle Scholar
  40. Misu, Y., Kitahama, K., and Goshima, Y. (2003). l-3,4-Dihydroxyphenylalanine as a neurotransmitter candidate in the central nervous system. Pharmacol. Ther. 97:117–137.PubMedCrossRefGoogle Scholar
  41. Palfi, S., Leventhal, L., Chu, Y., Ma, S. Y., Emborg, M., Bakay, R., Deglon, N., Hantraye, P., Aebischer, P., and Kordower, J. H. (2002). Lentivirally delivered glial cell line-derived neurotrophic factor increases the number of striatal dopaminergic neurons in primate models of nigrostriatal degeneration. J. Neurosci. 22:4942–4954.PubMedGoogle Scholar
  42. Rao, M. S., Jaszczak, E., and Landis, S. C. (1994). Innervation of footpads of normal and mutant mice lacking sweat glands. J. Comp. Neurol. 346:613–625.PubMedCrossRefGoogle Scholar
  43. Saavedra, J. M., Brownstein, M., Palkovits, M., Kizer, S., and Axelrod, J. (1974). Tyrosine hydroxylase and dopamine-beta-hydroxylase: distribution in the individual rat hypothalamic nuclei. J. Neurochem. 23:869–871.PubMedCrossRefGoogle Scholar
  44. Sanchez-Gonzalez, M. A., Garcia-Cabezas, M. A., Rico, B., and Cavada, C. (2005). The primate thalamus is a key target for brain dopamine. J. Neurosci. 25:6076–6083.PubMedCrossRefGoogle Scholar
  45. Saper, C. B., and Sawchenko, P. E. (2003). Magic peptides, magic antibodies: guidelines for appropriate controls for immunohistochemistry. J. Comp. Neurol. 465:161–163.PubMedCrossRefGoogle Scholar
  46. Schütz, B., Schäfer, M. K.-H., Eiden, L. E., and Weihe, E. (1998a). Ontogeny of vesicular amine transporter expression in the rat: new perspectives on aminergic neuronal and neuroendocrine differentiation. Adv. Pharmacol. 42:903–908.PubMedCrossRefGoogle Scholar
  47. Schütz, B., Schäfer, M. K.-H., Eiden, L. E., and Weihe, E. (1998b). Vesicular amine transporter expression and isoform selection in developing brain, peripheral nervous system and gut. Dev. Brain Res. 106:181–204.CrossRefGoogle Scholar
  48. Ugrumov, M., Melnikova, V., Ershov, P., Balan, I., and Calas, A. (2002). Tyrosine hydroxylase- and/or aromatic L-amino acid decarboxylase-expressing neurons in the rat arcuate nucleus: ontogenesis and functional significance. Psychoneuroendocrinology 27:533–548.PubMedCrossRefGoogle Scholar
  49. Ugrumov, M. V. (1997). Hypothalamic monoaminergic systems in ontogenesis: Development and functional significance. Int. J. Dev. Biol. 41:809–816.PubMedGoogle Scholar
  50. Ugrumov, M. V., Melnikova, V. I., Lavrentyeva, A. V., Kudrin, V. S., and Rayevsky, K. S. (2004). Dopamine synthesis by non-dopaminergic neurons expressing individual complementary enzymes of the dopamine synthetic pathway in the arcuate nucleus of fetal rats. Neuroscience 124:629–635.PubMedCrossRefGoogle Scholar
  51. Weihe, E., Anlauf, M., Schäfer, M.-K. H., Hartschuh, W., and Eiden, L. E. (1998). VMAT2 is the transporter mediating sequestration of monoamines in rat and human platelets, mast cells, and cutaneous dendritic cells. (abstract). Soc. Neurosci. Abstr. Nov. 7–12: No. 301.1.Google Scholar
  52. Weihe, E., and Eiden, L. E. (2000). Chemical neuroanatomy of the vesicular amine transporters. FASEB J. 14:2435–2449.PubMedCrossRefGoogle Scholar
  53. Weihe, E., Schäfer, M. K.-H., Erickson, J. D., and Eiden, L. E. (1994). Localization of vesicular monoamine transporter isoforms (VMAT1 and VMAT2) to endocrine cells and neurons in rat. J. Mol. Neurosci. 5:149–164.PubMedGoogle Scholar
  54. Weihe, E., Schutz, B., Hartschuh, W., Anlauf, M., Schafer, M. K., and Eiden, L. E. (2005). Co-expression of cholinergic and noradrenergic phenotypes in human and non-human autonomic nervous system. J. Comp. Neurol. 492:370–379.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Eberhard Weihe
    • 1
  • Candan Depboylu
    • 1
  • Burkhard Schütz
    • 1
  • Martin K.-H. Schäfer
    • 1
  • Lee E. Eiden
    • 2
    • 3
  1. 1.Department of Molecular Neuroscience, Institute of Anatomy and Cell BiologyPhilipps-University MarburgMarburgGermany
  2. 2.Section on Molecular Neuroscience, Laboratory of Cellular and Molecular RegulationNational Institute of Mental Health, National Institutes of HealthBethesdaUSA
  3. 3.Section on Molecular Neuroscience, Laboratory of Cellular and Molecular RegulationNational Institute of Mental Health, National Institutes of HealthBethesdaUSA

Personalised recommendations