Advertisement

Cellular and Molecular Neurobiology

, Volume 26, Issue 2, pp 109–118 | Cite as

Adrenomedullin Improves the Blood–Brain Barrier Function Through the Expression of Claudin-5

  • Masaru HondaEmail author
  • Shinsuke Nakagawa
  • Kentaro Hayashi
  • Naoki Kitagawa
  • Keisuke Tsutsumi
  • Izumi Nagata
  • Masami Niwa
Article

Summary

1. Aims: Brain vascular endothelial cells secret Adrenomedullin (AM) has multifunctional biological properties. AM affects cerebral blood flow and blood–brain barrier (BBB) function. We studied the role of AM on the permeability and tight junction proteins of brain microvascular endothelial cells (BMEC).

2. Methods: BMEC were isolated from rats and a BBB in vitro model was generated. The barrier functions were studied by measuring the transendothelial electrical resistance (TEER) and the permeability of sodium fluorescein and Evans’ blue albumin. The expressions of tight junction proteins were analyzed using immunocytochemistry and immunoblotting.

3. Results: AM increased TEER of BMEC monolayer dose-dependently. Immunocytochemistry revealed that AM enhanced the claudin-5 expression at a cell–cell contact site in a dose-dependent manner. Immunoblotting also showed an overexpression of claudin-5 in AM exposure.

4.Conclusions: AM therefore inhibits the paracellular transport in a BBB in vitro model through claudin-5 overexpression.

Key Words

adrenomedullin blood–brain barrier claudin-5 

REFERENCES

  1. Andras, I. E., Pu, H., Tian, J., Deli, M. A., Nath, A., Hennig, B., and Toborek, M. (2005). Signaling mechanisms of HIV-1 Tat-induced alterations of claudin-5 expression in brain endothelial cells. J. Cereb. Blood Flow Metab. 25:1159–1170.PubMedCrossRefGoogle Scholar
  2. Balabanov, R., and Dore-Duffy, P. (1998). Role of the CNS microvascular pericyte in the blood brain barrier. J. Neurosci. Res. 53:637–644.PubMedCrossRefGoogle Scholar
  3. Beltowski, J., and Jamroz, A. (2004). Adrenomedullin-what do we know 10 years since its discovery? Pol. J. Pharmacol. 56:5–27.PubMedGoogle Scholar
  4. Chen, S. P., Zhou, B., Willis, B. C., Sandoval, A. J., Liebler, J. M., Kim, K. J., Ann, D. K., Crandall E. D., and Borok, Z. (2005). Effects of transdifferentiation and EGF on claudin isoform expression in alveolar epithelial cells. J. Appl. Physiol. 98:322–328.PubMedCrossRefGoogle Scholar
  5. Coyne, C. B., Vanhook, M. K., Gambling, T. M., Carson, J. L., Boucher, R. C., and Johnson, L. G. (2002). Regulation of airway tight junctions by proinflammatory cytokines. Mol. Biol. Cell 13:3218–3234.PubMedCrossRefGoogle Scholar
  6. Dehouck, M. P., Jolliet-Riant, P., Bree, F., Fruchart, J. C., Cecchelli, R., and Tillement, J. P. (1992). Drug transfer across the blood–brain barrier: correlation between in vitro and in vivo models. J. Neurochem. 58:1790–1807.PubMedCrossRefGoogle Scholar
  7. Deli, M. A., Abraham, C. S., Takahata, H., Katamine, S., and Niwa, M. (2000). Pentosan polysulfate regulates scavenger receptor-mediated, but not fluid-phase, endocytosis in immortalized cerebral endothelial cells. Cell. Mol. Neurobiol. 20:731–745.PubMedCrossRefGoogle Scholar
  8. Dohgu, S., Yamauchi, A., Takata, F., Naito, M., Tsuruo, T., Higuchi, S., Sawada, Y., and Kataoka, Y. (2004). Transforming growth factor-beta1 upregulates the tight junction and P-glycoprotein of brain microvascular endothelial cells. Cell. Mol. Neurobiol. 24:491–507.PubMedCrossRefGoogle Scholar
  9. Fernandez-Sauze, S., Delfino, C., Mabrouk, K., Dussert, C., Chinot, O., Martin, P. M., Grisoli, F., Ouafik, L., and Boudouresque, F. (2004). Effects of Adrenomedullin on endothelial cells in the multistep process of angiogenesis: Involvement of CRLR/RAMP2 and CRLR/RAMP3 receptors. Int. J. Cancer 108:797–804.PubMedCrossRefGoogle Scholar
  10. Florin, A., Maire, M., Bozec, A., Hellani, A., Chater, S., Bars, R., Chuzel, F., and Benahmed, M. (2005). Androgens and postmeiotic germ cells regulate claudin-11 expression in rat Sertoli cells. Endocrinology 146:1532–1540.PubMedCrossRefGoogle Scholar
  11. Fujioka, M., Nishio, K., Sakaki, T., Minamino, N., and Kitamura, K. (2000). Adrenomedullin in patients with cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Stroke 31:3079–3083.PubMedGoogle Scholar
  12. Furuse, M., Fujita, K., Hiiragi, T., Fujimoto, K., and Tsukita, S. (1998). Claudin-1 and -2: Novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J. Cell Biol. 141:1539–1550.PubMedCrossRefGoogle Scholar
  13. Furuse, M., Sasaki, A., and Tsukita, S. (1999). Manner of interaction of heterogeneous claudin species within and between tight junction strands. J. Cell Biol. 147:891–903.PubMedCrossRefGoogle Scholar
  14. Han, X., Fink, M. P., and Delude, R. L. (2003). Proinflammatory cytokines cause NO*-dependent and -independent changes in expression and localization of tight junction proteins in intestinal epithelial cells. Shock 19:229–237.PubMedCrossRefGoogle Scholar
  15. Hayashi, K., Nakao, S., Nakaoke, R., Nakagawa, S., Kitagawa, N., and Niwa, M. (2004). Effects of hypoxia on endothelial/pericytic co-culture model of the blood–brain barrier. Regul. Pept. 123:77–83.PubMedCrossRefGoogle Scholar
  16. Huber, J. D., Egleton, R. D., and Davis, T. P. (2001). Molecular physiology and pathophysiology of tight junctions in the blood–brain barrier. Trends Neurosci. 24:719–725.PubMedCrossRefGoogle Scholar
  17. Ishizaki, T., Chiba, H., Kojima, T., Fujibe, M., Soma, T., Miyajima, H., Nagasawa, K., Wada, I., and Sawada, N. (2003). Cyclic AMP induces phosphorylation of claudin-5 immunoprecipitates and expression of claudin-5 gene in blood–brain-barrier endothelial cells via protein kinase A-dependent and -independent pathways. Exp. Cell Res. 290:275–288.PubMedCrossRefGoogle Scholar
  18. Kastin, A. J., Akerstrom, V., Hackler, L., and Pan, W. (2001). Adrenomedullin and the blood–brain barrier. Horm. Metab. Res. 33:19–25.PubMedCrossRefGoogle Scholar
  19. Kato, K., Yin, H., Agata, J., Yoshida, H., Chao, L., and Chao, J. (2003). Adrenomedullin gene delivery attenuates myocardial infarction and apoptosis after ischemia and reperfusion. Am. J. Physiol. Heart Circ. Physiol. 285:H1506–1514.PubMedGoogle Scholar
  20. Kis, B., Abraham, C. S., Deli, M. A., Kobayashi, H., Wada, A., Niwa, M., Yamashita, H., and Ueta, Y. (2001a). Adrenomedullin in the cerebral circulation. Peptides 22:1825–1834 Review.PubMedCrossRefGoogle Scholar
  21. Kis, B., Deli, M. A., Kobayashi, H., Abraham, C. S., Yanagita, T., Kaiya, H., Isse, T., Nishi, R., Gotoh, S., Kangawa, K., Wada, A., Greenwood, J., Niwa, M., Yamashita, H., and Ueta, Y. (2001b). Adrenomedullin regulates blood–brain barrier functions in vitro. Neuroreport 12:4139–4142.PubMedCrossRefGoogle Scholar
  22. Kis, B., Kaiya, H., Nishi, R., Deli, M. A., Abraham, C. S., Yanagita, T., Isse, T., Gotoh, S., Kobayashi, H., Wada, A., Niwa, M., Kangawa, K., Greenwood, J., Yamashita, H., and Ueta, Y. (2002). Cerebral endothelial cells are a major source of adrenomedullin. J. Neuroendocrinol. 14:283–293.PubMedCrossRefGoogle Scholar
  23. Kis, B., Abraham, C. S., Deli, M. A., Kobayashi, H., Niwa, M., Yamashita, H., Busija, D. W., and Ueta, Y. (2003a). Adrenomedullin, an autocrine mediator of blood–brain barrier function. Hypertens. Res. 26 (Suppl.):S61–70 Review.PubMedCrossRefGoogle Scholar
  24. Kis, B., Snipes, J. A., Deli, M. A., Abraham, C. S., Yamashita, H., Ueta, Y., and Busija, D. W. (2003b). Chronic adrenomedullin treatment improves blood–brain barrier function but has no effects on expression of tight junction proteins. Acta Neurochir. Suppl. 86:565–568.PubMedGoogle Scholar
  25. Kuribayashi, M., Wang, J., Fujiwara, O., Doi, Y., Nabae, K., Tamano, S., Ogiso, T., Asamoto, M., and Shirai, T. (2005). Lack of effects of 1439 MHz electromagnetic near field exposure on the blood–brain barrier in immature and young rats. Bioelectromagnetics 26:578–588.PubMedCrossRefGoogle Scholar
  26. Liebner, S., Fischmann, A., Rascher, G., Duffner, F., Grote, E. H., Kalbacher, H., and Wolburg, H. (2000). Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol. (Berl.) 100:323–331.CrossRefGoogle Scholar
  27. Lippoldt, A., Liebner, S., Andbjer, B., Kalbacher, H., Wolburg, H., Haller, H., and Fuxe, K. (2000). Organization of choroid plexus epithelial and endothelial cell tight junctions and regulation of claudin-1, -2 and -5 expression by protein kinase, C. Neuroreport 11:1427–1431.PubMedCrossRefGoogle Scholar
  28. Miyashita, K., Itoh, H., Sawada, N., Fukunaga, Y., Sone, M., Yamahara, K., Yurugi-Kobayashi, T., Park, K., and Nakao, K. (2003a). Adrenomedullin provokes endothelial Akt activation and promotes vascular regeneration both in vitro and in vivo. FEBS Lett. 544:86–92.PubMedCrossRefGoogle Scholar
  29. Miyashita, K., Itoh, H., Sawada, N., Fukunaga, Y., Sone, M., Yamahara, K., Yurugi, T., and Nakao, K. (2003b). Adrenomedullin promotes proliferation and migration of cultured endothelial cells. Hypertens. Res. 26(Suppl.):S93–98.PubMedCrossRefGoogle Scholar
  30. Morita, K., Furuse, M., Fujimoto, K., and Tsukita, S. (1999a). Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc. Natl. Acad. Sci. U.S.A. 96:511–516.PubMedCrossRefGoogle Scholar
  31. Morita, K., Sasaki, H., Furuse, M., and Tsukita, S. (1999b). Endothelial claudin: claudin-5/ TMVCF constitutes tight junction strands in endothelial cells. J. Cell Biol. 147:185–194.PubMedCrossRefGoogle Scholar
  32. Nagoshi, Y., Kuwasako, K., Cao, Y. N., Imamura, T., Kitamura, K., and Eto, T. (2004). Tumor necrosis factor-α downregulates adrenomedullin receptors in human coronary artery smooth muscle cells. Peptides 25:1115–1121.PubMedCrossRefGoogle Scholar
  33. Serrano, J., Alonso, D., Encinas, J. M., Lopez, J. C., Fernandez, A. P., Castro-Blanco, S., Fernandez- Vizarra, P., Richart, A., Bentura, M. L., Santacana, M., Uttenthal, L. O., Cuttitta, F., Rodrigo, J., and Martinez, A. (2002). Adrenomedullin expression is up-regulated by ischemia-reperfusion in the cerebral cortex of the adult rat. Neuroscience 109:717–731.PubMedCrossRefGoogle Scholar
  34. Suzuki, Y., Horio, T., Nonogi, H., Hayashi, T., Kitamura, K., Eto, T., Kangawa, K., and Kawano, Y. (2004). Adrenomedullin as a sensitive marker for coronary and peripheral arterial complications in patients with atherosclerotic risks. Peptides 25:1321–1326.PubMedCrossRefGoogle Scholar
  35. Tahan, V., Avsar, E., Karaca, C., Uslu, E., Eren, F., Aydin, S., Uzun, H., Hamazaoglu, H. O., Besisik, F., Kalayci, C., Okten, A., and Tozun, N. (2003). Adrenomedullin in cirrhotic and non-cirrhotic portal hypertension. World J. Gastroenterol. 9:2325–2327.PubMedGoogle Scholar
  36. Terata, K., Miura, H., Liu, Y., Loberiza, F., and Gutterman, D. D. (2000). Human coronary arteriolar dilation to adrenomedullin: role of nitric oxide and K(+). channels. Am. J. Physiol. Heart Circ. Physiol. 279:H2620–2626.PubMedGoogle Scholar
  37. Tsukita, S., and Furuse, M. (1999). Occludin and claudins in tight-junction strands: leading or supporting players? Trends Cell Biol. 9:268–273 Review.PubMedCrossRefGoogle Scholar
  38. Wijdicks, E. F. M., Heublein, D. M., and Burnett Jr., J. C. (2001). Increase and uncoupling of adrenomedullin from the natriuretic peptide system in aneurysmal subarachnoid hemorrhage. J. Neurosurg. 94:252–256.PubMedCrossRefGoogle Scholar
  39. Wolburg, H., and Lippoldt, A. (2002). Tight junctions of the blood–brain barrier: development, composition and regulation. Vasc. Pharmacol. 38:323–337 Review.CrossRefGoogle Scholar
  40. Yi, X., Wang, Y., and Yu, F. S. (2000). Corneal epithelial tight junctions and their response to lipopolysaccharide challenge. Invest Ophthalmol. Vis. Sci. 41:4093–4100.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Masaru Honda
    • 1
    • 3
    Email author
  • Shinsuke Nakagawa
    • 2
  • Kentaro Hayashi
    • 1
  • Naoki Kitagawa
    • 1
  • Keisuke Tsutsumi
    • 1
  • Izumi Nagata
    • 1
  • Masami Niwa
    • 2
  1. 1.Department of NeurosurgeryNagasaki University School of MedicineNagasakiJapan
  2. 2.Department of Pharmacology 1Nagasaki University School of MedicineNagasakiJapan
  3. 3.NagasakiJapan

Personalised recommendations