Cellular and Molecular Neurobiology

, Volume 25, Issue 6, pp 1051–1066 | Cite as

Protein Aggregation in Retinal Cells and Approaches to Cell Protection

  • Irina Surgucheva
  • Natalia Ninkina
  • Vladimir L. Buchman
  • Kenneth Grasing
  • Andrei SurguchovEmail author
Original Research


  1. 1.

    Retinal dystrophies (RD) comprise a group of clinically and genetically heterogeneous retinal disorders, which typically result in the degeneration of photoreceptors followed by the impairment or loss of vision. Although age-related macular degeneration (AMD) and retinitis pigmentosa (RP) are among the most common forms of RD, currently, there is no effective treatment for either disorder.

  2. 2.

    Recently, abnormal protein accumulation and aggregation due to protein misfolding and proteasome inhibition have been implicated in the pathogenesis of RD. In this paper we describe effects of several factors on protein aggregation and survival of photoreceptor cells.

  3. 3.

    Expression of rhodopsin carrying P23H mutation causes its accumulation in intracellular inclusion bodies in a perinuclear area of photoreceptor cells. β- and γ-synucleins and heat shock protein Hsp-70, but not α-synuclein, protect cultured ocular cells from mutant opsin accumulation. This effect might be explained by their chaperonic activity.

  4. 4.

    Knock-out of α- and γ-synucleins does not affect gross retinal morphology, but induces tyrosine hydroxylase in the inner prexiform layer of the retina. Selegiline—a monoamine oxidase inhibitor used for the treatment of Parkinson's disease, reduces apoptosis and increases viability in cultured retinal pigment epithelium cells (APRE-19).

  5. 5.

    These results suggest that chaperones and selegiline may be considered promising candidates for the protection of ocular cells from the accumulation of misfolded and aggregated proteins.


Key Words

retinal dystrophies chaperones age-related macular degeneration neuroprotection selegiline synuclein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarwal, N., Crawford, M. J., Krishnamoorthy, R., Sheedlo, H. J., Roque, R. S., Organisciak, D. T., and Al-Ubaidi, M. (1998). Characterization of a SV-40 T-antigene transformed 661W mouse photoreceptor cell line. Invest. Ophthalmol. Vis. Sci. 4874:189.Google Scholar
  2. Albani, D., Peverelli, E., Rametta, R., Batelli, S., Veschini, L., Negro, A., and Forloni, G. (2004). Protective effect of TAT-delivered alpha-synuclein: Relevance of the C-terminal domain and involvement of HSP70. FASEB J. 18:1713 –1715.PubMedGoogle Scholar
  3. Al-Ubaidi, M. R., Font, R. L., Quiambao, A. B., Keener, M. J., Liou, G. I., Overbeek, P. A., and Baehr, W. (1992). Bilateral retinal and brain tumors in transgenic mice expressing simian virus 40 large T antigen under control of the human interphotoreceptor retinoid-binding protein promoter. J. Cell Biol. 119:1681 –1687.PubMedCrossRefGoogle Scholar
  4. Auluck, P. K., Meulener, M. C., and Bonini, N. M. (2005). Mechanisms of suppression of alpha-synuclein neurotoxicity by geldanamycin in drosophila. J. Biol. Chem. 280:2873 –2878.PubMedGoogle Scholar
  5. Bathory, G., Szuts, T., and Magyar, K. (1987). Studies on the melanin affinity of selegiline (deprenyl) and other amphetamine derivatives. Pol. J. Pharmacol. Pharm. 39:195 –201.PubMedGoogle Scholar
  6. Beere, H. M. (2004). “The stress of dying”: The role of heat shock proteins in the regulation of apoptosis. J. Cell Sci. 117:2641 –2651.PubMedCrossRefGoogle Scholar
  7. Bence, N. F., Sampat, R. M., and Kopito, R. R. (2001). Impairment of the Ubiquitin-Proteasome system by protein aggregation. Science 292:1552 –1555.PubMedCrossRefGoogle Scholar
  8. Bhanuprakash, R. G., Das, K. P., Petrash, M., and Surewicz, W. K. (2000). Temperature-dependent chaperone activity and structural properties of human αA- and αB-crystallins. J. Biol. Chem. 275:4565 –4570.Google Scholar
  9. Bressler, N. M., Bressler, S. B., and Fine, S. L. (1988). Age-related macular degeneration. Surv. Ophthalmol. 32:375 –413.PubMedGoogle Scholar
  10. Bucciantini, M., Giannoni, E., Chiti, F., Baroni, F., Formigli, L., Zurdo, J., Taddei, N., Ramponi, G., Dobson, C. M., and Stefani, M. (2002). Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507 –511.PubMedCrossRefGoogle Scholar
  11. Buys, Y. M., Trope, G. E., and Tatton, W. G. (1995). (−)-Deprenyl increases the survival of rat retinal ganglion cells after optic nerve crush. Curr. Eye Res. 4:119 –126.Google Scholar
  12. Chapple, J. P., and Cheetham, M. E. (2003). The chaperone environment at the cytoplasmic face of the endoplasmic reticulum can modulate rhodopsin processing and inclusion formation. J. Biol. Chem. 278:19087 –19094.PubMedCrossRefGoogle Scholar
  13. Chapple, J. P., Grayson, C., Hardcastle, A. J., Saliba, R. S., vanderSpuy, J., and Cheesam, M. E. (2001). Unfolding retinal dystrophies:A role for molecular chaperones? Trends Mol. Med. 7:414 –421.PubMedCrossRefGoogle Scholar
  14. da Costa, C. A., Masliah, E., and Checler, F. (2003). Beta-synuclein displays an antiapoptotic p53-dependent phenotype and protects neurons from 6-hydroxydopamine-induced caspase 3 activation: Cross-talk with alpha-synuclein and implication for Parkinson's disease. J. Biol. Chem. 278:37330 –37335.PubMedCrossRefGoogle Scholar
  15. Dobson, C. M. (2001). The structural basis of protein folding and its links with human disease. Phil. Trans. R. Soc. Lond. 356:133 –145.Google Scholar
  16. El-Agnaf, O. M., and Irvine, G. B. (2002). Aggregation and neurotoxicity of alpha-synuclein and related peptides. Biochem. Soc. Trans. 30:559 –565.PubMedGoogle Scholar
  17. Fink, A. L. (1998). Protein aggregation: Folding aggregates, inclusion bodies, and amyloid. Fold. Des. 3:R9 –R23.PubMedCrossRefGoogle Scholar
  18. Gabai, V. L., Meriin, A. B., Yaglom, J. A., Volloch, V. Z., and Sherman, M. Y. (1998). Role of Hsp70 in regulation of stress-kinase JNK: Implications in apoptosis and aging. FEBS Lett. 438:1 –4.PubMedCrossRefGoogle Scholar
  19. George, J. (2001). The synucleins. Genome Biol. 3:1 –6.CrossRefGoogle Scholar
  20. Goedert, M. (2001). Alpha synuclein and neurodegenerative diseases. Nat. Rev. Neurosci. 2:492 –501.PubMedCrossRefGoogle Scholar
  21. Haas, A. L., and Siepman, T. J. (1997). Pathways of ubiquitin conjugation. FASEB J. 11:1257 –1268.PubMedGoogle Scholar
  22. Hashimoto, M., Bar-On, P., Ho, G., Takenouchi, T., Rockenstein, E., Crews, L., and Masliah, E. (2004). Beta-synuclein regulates Akt activity in neuronal cells. A possible mechanism for neuroprotection in Parkinson's disease. J. Biol. Chem. 279:23622 –23629.PubMedGoogle Scholar
  23. Hashimoto, M., Rockenstein, E., Mante, M., Mallory, M., and Masliah, E. (2001). Beta-Synuclein inhibits alpha-synuclein aggregation: A possible role as an anti-parkinsonian factor. Neuron 32:213 –223.PubMedCrossRefGoogle Scholar
  24. Illing, M. E., Rajan, R. S, Bence, N. F., and Kopito, R. R. (2002). A rhodopsin mutant linked to autosomal dominant RP is prone to aggregate and interacts with the ubiquitin proteasome system. J. Biol. Chem. 277:34150 –34160.PubMedCrossRefGoogle Scholar
  25. Jensen, P. J., Alter, B. J., and O'Malley, K. L. (2003). Alpha-synuclein protects naive but not dbcAMP-treated dopaminergic cell types from 1-methyl-4-phenylpyridinium toxicity. J. Neurochem. 86:196 –209.PubMedCrossRefGoogle Scholar
  26. Jeon, Y. K., Kim, S. Y., and Jeon, C. J. (2001). Morphology of calretinin and tyrosine hydroxylase-immunoreactive neurons in the pig retina. Mol. Cells 11:250 –256.PubMedGoogle Scholar
  27. Johnston, J. A., Illing, M. E., and Kopito, R. R. (2002). Cytoplasmic dynein/dynactin mediates the assembly of aggresomes. Cell Motil. Cytoskeleton 53:26 –38.PubMedCrossRefGoogle Scholar
  28. Johnston, J. A., Ward, C. L., and Kopito, R. R. (1998). Aggresomes: A cellular response to misfolded proteins. J. Cell Biol. 143:1883 –1898.PubMedCrossRefGoogle Scholar
  29. Klenotic, P. A., Munier, F. L., Marmorstein, L. Y., and Anand-Apte, B. (2004). Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a binding partner of EGF-containing fibulin-like extracellular matrix protein 1 (EFEMP1): Implications for macular degenerations. J. Biol. Chem. 16(279):30469 –30473.Google Scholar
  30. Kolb, H., Netzer, E., and Ammermuller, J. (1997). Neural circuitry and light responses of the dopamine amacrine cell of the turtle retina. Mol. Vis. 3:6.PubMedGoogle Scholar
  31. Kopito, R. R. (2000). Aggresomes, inclusion bodies, and protein aggregation. Trends Cell. Biol. 10:524 –530.PubMedCrossRefGoogle Scholar
  32. Kumar, Y., and Tatu, U. (2003). Stress protein flux during recovery from simulated ischemia: Induced heat shock protein 70 confers cytoprotection by suppressing JNK activation and inhibiting apoptotic cell death. Proteomics 3:513 –526.PubMedCrossRefGoogle Scholar
  33. Lomas, D. A., and Carell, R. W. Z. (2002). Serpinopathies and the conformational dementias. Nat. Rev. Genet. 3:759 –768.PubMedCrossRefGoogle Scholar
  34. Manning-Bog, A. B., McCormack, A. L., Purisai, M. G., Bolin, L. M., and Di Monte, D. A. (2003). Alpha-synuclein overexpression protects against paraquat-induced neurodegeneration. J. Neurosci. 23:3095 –3099.PubMedGoogle Scholar
  35. Marmorstein, L. Y., Munier, F. L., Arsenijevic, Y., Schorderet, D. F., McLaughlin, P. J., Chung, D., Traboulsi, E., and Marmorstein, A. D. (2002). Aberrant accumulation of EFEMP1 underlies drusen formation in Malattia Leventinese and age-related macular degeneration. Proc. Natl. Acad. Sci. U.S.A. 99:13067 –13072.PubMedCrossRefGoogle Scholar
  36. Michaelides, M., Hunt, D. M., and Moore, A. T. (2003). The genetics of inherited macular dystrophies. J. Med. Genet. 40:641 –650.PubMedCrossRefGoogle Scholar
  37. Ninkina, N., Papachroni, K., Robertson, D. C., Schmidt, O., Delaney, L., O'Neil, F., Court, F., Rosenthal, A., Fleetwood-Walker, S. M., Davies, A. M., and Buchman, V. L. (2003) Neurons expressing the highest levels of γ-synuclein are unaffected by targeted inactivation of the gene. Mol. Cell. Biol. 23:8233 –8245.PubMedCrossRefGoogle Scholar
  38. Noorwez, S. M., Malhotra, R., McDowell, J. H., Smith, K. A., Krebs, M. P., and Kaushal, S. (2004). Retinoids assist the cellular folding of the autosomal dominant retinitis pigmentosa opsin mutant P23H. J. Biol. Chem. 279:16278 –16284.PubMedCrossRefGoogle Scholar
  39. Papp, E., Nardai, G., Soti, C., and Csermely, P. (2003). Molecular chaperones, stress proteins, and redox homeostasis. Biofactors 17:249 –257.PubMedGoogle Scholar
  40. Perez, R. G., and Hastings, T. G. (2004). Could a loss of alpha-synuclein function put dopaminergic neurons at risk? J. Neurochem. 89:1318 –1324.PubMedCrossRefGoogle Scholar
  41. Perez, R. G., Waymire, J. C., Lin, E., Liu, J. J., Guo, F., and Zigmond, M. J. (2002) A role for alpha-synuclein in the regulation of dopamine biosynthesis. J. Neurosci. 22:3090 –3099.PubMedGoogle Scholar
  42. Ragaiey, T., Ma, J. X., Jiang, W. J., Greene, W., Seigel, G. M., and Stewart, W. C. (1997). L-deprenyl protects injured retinal precursor cells in vitro. J. Ocul. Pharmacol. Ther. 13:479 –488.PubMedCrossRefGoogle Scholar
  43. Robertson, D. C., Schmidt, O., Ninkina, N., Jones, P. A., Sharkey, J., and Buchman, V. L. (2004). Developmental loss and resistance to MPTP toxicity of dopaminergic neurones in substantia nigra pars compacta of gamma-synuclein, alpha-synuclein, and double alpha/gamma-synuclein null mutant mice. J. Neurochem. 89:1126 –1136.PubMedCrossRefGoogle Scholar
  44. Saliba, R. S., Munro, P. M., Luthert, P. J., and Cheetham, M. E. (2002). The cellular fate of mutant rhodopsin: Quality control, degradation, and aggresome formation. J. Cell Sci. 115:2907 –2918.PubMedGoogle Scholar
  45. Sherman, M. Y., and Goldberg, A. L. (2001). Cellular defenses against unfolded proteins: A cell biologist thinks about neurodegenerative diseases. Neuron 29:15 –32.PubMedCrossRefGoogle Scholar
  46. Sladowski, D., Steer, S. J., Clothier, R. H., and Balls, M. (1993). An improved MTT assay. J. Immunol. Methods 4:203 –207.Google Scholar
  47. Snyder, H. M., Mensah, K., Surgucheva, I., Festoff, B., Surguchov, A., and Wolozin, B. (2005). β-Synuclein prevents proteasomal inhibition by α-synuclein but not γ-synuclein. J. Biol. Chem. 280:7562 –7569.PubMedCrossRefGoogle Scholar
  48. Snyder, H., Mensah, K., Theisler, C., Lee, J., Matouschek, A., and Wolozin, B. (2003). Aggregated and monomeric alpha-synuclein bind to the 6′ proteasomal protein and inhibit proteasomal function. J. Biol. Chem. 278:11753 –11759.PubMedGoogle Scholar
  49. Soto, C. (2001). Protein misfolding and disease; protein refolding and therapy. FEBS Lett. 498:204 –207.PubMedCrossRefGoogle Scholar
  50. Soto, C. (2003). Unfolding the role of protein misfolding in neurodegenerative diseases. Nat. Rev. Neurosci. 4:49 –60.PubMedCrossRefGoogle Scholar
  51. Surgucheva, I., Tomarev, S., Yue, B., Park, B. C., and Surguchov, A. (2005). Interaction of myocilin with gamma-synuclein. A possible role in glaucoma. Mol. Cell. Neurobiol. 25:1009 –1033.Google Scholar
  52. Surguchov, A., McMahon, B., Masliah, E., and Surgucheva, I. (2001a). Synucleins in ocular tissues. J. Neurosci. Res. 65:68 –77.CrossRefGoogle Scholar
  53. Surguchov, A., Palazzo, R. E., and Surgucheva, I. (2001b). Gamma synucleins: Subcellular localization in neuronal and nonneuronal cells and effect on signal transduction. Cell Motil. Cytoskeleton 49:218 –228.CrossRefGoogle Scholar
  54. Tabrizi, S. J., Orth, M., Wilkinson, J. M., Taanman, J. W., Warner, T. T., Cooper, J. M., and Schapira, A. H. (2000). Expression of mutant alpha-synuclein causes increased susceptibility to dopamine toxicity. Hum. Mol. Genet. 9:2683 –2689.PubMedCrossRefGoogle Scholar
  55. Takahata, K., Katsuki, H., Kobayashi, Y., Muraoka, S., Yoneda, F., Kume, T., Kashii, S., Honda, Y., and Akaike, A. (2003). Protective effects of selegiline and desmethylselegiline against N-methyl-d-aspartate-induced rat retinal damage. Eur. J. Pharmacol. 458:81 –89.PubMedCrossRefGoogle Scholar
  56. Tan, E., Ding, X. Q., Saadi, A., Agarwal, N., Naash, M. I., and Al-Ubaidi, M. R. (2004). Expression of cone-photoreceptor-specific antigens in a cell line derived from retinal tumors in transgenic mice. Invest. Ophthalmol. Vis. Sci. 45:764 –768.PubMedGoogle Scholar
  57. Tran, P. B., and Miller, R. J. (1999). Aggregates in neurodegenerative disease: Crowds and power? Trends Neurosci. 22:194 –197.PubMedCrossRefGoogle Scholar
  58. Trojanowski, J. Q., and Lee, V. M. (2000). “Fatal attractions” of proteins. A comprehensive hypothetical mechanism underlying Alzheimer's disease and other neurodegenerative disorders. Ann. N.Y. Acad. Sci. 924:62 –67.PubMedGoogle Scholar
  59. Wersinger, C., and Sidhu, A. (2003). Differential cytotoxicity of dopamine and H2 O 2 in a human neuroblastoma divided cell line transfected with alpha-synuclein and its familial Parkinson's disease-linked mutants. Neurosci. Lett. 15:124 –128.Google Scholar
  60. Xu, L., Ma, J., Jiamg, W. J., Greene, W., Seigel, G. M., and Stewart, W. C. (1999). L-Deprenyl, blocking apoptosis, and regulating gene expression in cultured retinal neurons. Biochem. Pharmacol. 58:1183 –1190.PubMedGoogle Scholar
  61. Yu, H., Kaung, G., Kobayashi, S., and Kopito, R. R. (1997). Cytosolic degradation of T-cell receptor alpha chains by the proteasome. J. Biol. Chem. 272:20800 –20804.PubMedGoogle Scholar
  62. Zhao, J., Ren, Y., Jiang, Q., and Feng, J. (2003). Parkin is recruited to the centrosome in response to inhibition of proteasomes. J. Cell Sci. 116:4011 –4019.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Irina Surgucheva
    • 1
    • 2
  • Natalia Ninkina
    • 3
  • Vladimir L. Buchman
    • 3
  • Kenneth Grasing
    • 1
    • 4
  • Andrei Surguchov
    • 1
    • 2
    • 5
    Email author
  1. 1.Retinal Disease Research LaboratoryVeterans Administration Medical CenterKansas City
  2. 2.Department of NeurologyKansas University Medical CenterKansas City
  3. 3.Cardiff School of BiosciencesCardiffUnited Kingdom
  4. 4.Department of MedicineKansas University Medical CenterKansas CityKansas
  5. 5.Retinal Disease Research LaboratoryVA Medical Center and Kansas University Medical CenterKansas City

Personalised recommendations