Cellular and Molecular Neurobiology

, Volume 25, Issue 6, pp 973–980

Enhanced BDNF Signaling is Associated with an Antidepressant-like Behavioral Response and Changes in Brain Monoamines

  • Eija Koponen
  • Tomi Rantamäki
  • Vootele Voikar
  • Tommi Saarelainen
  • Ewen MacDonald
  • Eero Castrén
Original Research
  • 301 Downloads

Summary

  1. 1.

    Neurotrophins and serotonin have both been implicated in the pathophysiology of depression and in the mechanisms of antidepressant treatments.

     
  2. 2.

    Brain-derived neurotrophic factor (BDNF) influences the growth and plasticity of serotonergic (5-HT) neurons via the activation of trkB receptor.

     
  3. 3.

    Transgenic mice overexpressing the full-length trkB receptor (TrkB.TK+) and showing increased trkB activity in brain, and their wild type (WT) littermates, were injected with the antidepressant fluoxetine or saline, and analyzed behaviorally in the forced swimming test paradigm and biochemically for the concentrations of brain monoamines and their metabolites.

     
  4. 4.

    The TrkB.TK+ mice displayed increased latency to immobility in the forced swim test, suggesting resistance to behavioral despair.

     
  5. 5.

    Fluoxetine increased the latency to immobility in wild-type mice to a similar level as seen in the trkB.TK+ mice after saline treatment, but had no further behavioral effect in the swimming behavior of the trkB.TK+ mice.

     
  6. 6.

    Only minor differences in the levels of brain monoamines and their metabolites were observed between the transgenic and wild-type mice.

     
  7. 7.

    These data, together with other recent observations, suggest that trkB activation may play a critical role in the behavioral responses to antidepressant drugs in mice.

     

Key Words

BDNF trkB neurotrophin serotonin norepinephrine hippocampus cingulate cortex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Castrén, E. (2004). Neurotrophic effects of antidepressant drugs. Curr. Opin. Pharmacol. 4:58–64.PubMedGoogle Scholar
  2. Castrén, E. (2005). Is mood chemistry? Nat. Rev. Neurosci. 6:241–246.PubMedGoogle Scholar
  3. Chourbaji, S., Hellweg, R., Brandis, D., Zorner, B., Zacher, C., Lang, U. E., Henn, F. A., Hortnagl, H., and Gass, P. (2004). Mice with reduced brain-derived neurotrophic factor expression show decreased choline acetyltransferase activity, but regular brain monoamine levels and unaltered emotional behavior. Brain Res. Mol. Brain Res. 121:28–36.PubMedGoogle Scholar
  4. Detke, M. J., Johnson, J., and Lucki, I. (1997). Acute and chronic antidepressant drug treatment in the rat forced swimming test model of depression. Exp. Clin. Psychopharmacol. 5:107–112.PubMedGoogle Scholar
  5. Drevets, W. C. (2001). Neuroimaging and neuropathological studies of depression: Implications for the cognitive-emotional features of mood disorders. Curr. Opin. Neurobiol. 11:240–249.PubMedCrossRefGoogle Scholar
  6. Duman, R. S., Heninger, G. R., and Nestler, E. J. (1997). A molecular and cellular theory of depression. Arch. Gen. Psychiatry 54:597–606.PubMedGoogle Scholar
  7. Galter, D., and Unsicker, K. (2000). Sequential activation of the 5-HT1(A) serotonin receptor and TrkB induces the serotonergic neuronal phenotype. Mol. Cell Neurosci. 15:446–455.PubMedCrossRefGoogle Scholar
  8. Huang, E. J., and Reichardt, L. F. (2003). Trk receptors: Roles in neuronal signal transduction. Annu. Rev. Biochem. 72:609–642.PubMedCrossRefGoogle Scholar
  9. Koponen, E., Lakso, M., and Castren, E. (2004a). Overexpression of the full-length neurotrophin receptor trkB regulates the expression of plasticity-related genes in mouse brain. Brain Res. Mol. Brain Res. 130:81–94.Google Scholar
  10. Koponen, E., Voikar, V., Riekki, R., Saarelainen, T., Rauramaa, T., Rauvala, H., Taira, T., and Castrén, E. (2004b). Transgenic mice overexpressing the full-length neurotrophin receptor trkB exhibit increased activation of the trkB-PLC gamma pathway, reduced anxiety, and facilitated learning. Mol. Cell Neurosci. 26:166–181.CrossRefGoogle Scholar
  11. Lu, B. (2003). BDNF and activity-dependent synaptic modulation. Learn. Mem. 10:86–98.PubMedCrossRefGoogle Scholar
  12. MacQueen, G. M., Ramakrishnan, K., Croll, S. D., Siuciak, J. A., Yu, G., Young, L. T., and Fahnestock, M. (2001). Performance of heterozygous brain-derived neurotrophic factor knockout mice on behavioral analogues of anxiety, nociception, and depression. Behav. Neurosci. 115:1145–1153.PubMedCrossRefGoogle Scholar
  13. Mamounas, L. A., Altar, C. A., Blue, M. E., Kaplan, D. R., Tessarollo, L., and Lyons, W. E. (2000). BDNF promotes the regenerative sprouting, but not survival, of injured serotonergic axons in the adult rat brain. J. Neurosci. 20:771–82.PubMedGoogle Scholar
  14. Mamounas, L. A., Blue, M. E., Siuciak, J. A., and Altar, C. A. (1995). Brain-derived neurotrophic factor promotes the survival and sprouting of serotonergic axons in rat brain. J. Neurosci. 15:7929–39.PubMedGoogle Scholar
  15. Manji, H. K., Drevets, W. C., and Charney, D. S. (2001). The cellular neurobiology of depression. Nat. Med. 7:541–547.PubMedCrossRefGoogle Scholar
  16. Mattson, M. P., Maudsley, S., and Martin, B. (2004). BDNF and 5-HT: A dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 27:589–594.PubMedCrossRefGoogle Scholar
  17. McAllister, A. K., Katz, L. C., and Lo, D. C. (1999). Neurotrophins and synaptic plasticity. Annu. Rev. Neurosci. 22:295–318.PubMedCrossRefGoogle Scholar
  18. Monteggia, L. M., Barrot, M., Powell, C. M., Berton, O., Galanis, V., Gemelli, T., Meuth, S., Nagy, A., Greene, R. W., and Nestler, E. J. (2004). Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc. Natl. Acad. Sci. USA 101:10827–10832.PubMedCrossRefGoogle Scholar
  19. Nestler, E. J., Barrot, M., DiLeone, R. J., Eisch, A. J., Gold, S. J., and Monteggia, L. M. (2002). Neurobiology of depression. Neuron 34:13–25.PubMedCrossRefGoogle Scholar
  20. Neves-Pereira, M., Mundo, E., Muglia, P., King, N., Macciardi, F., and Kennedy, J. L. (2002). The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: Evidence from a family-based association study. Am. J. Hum. Genet. 71:651–655.PubMedCrossRefGoogle Scholar
  21. Nibuya, M., Morinobu, S., and Duman, R. S. (1995). Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J. Neurosci. 15:7539–7547.PubMedGoogle Scholar
  22. Pang, P. T., Teng, H. K., Zaitsev, E., Woo, N. T., Sakata, K., Zhen, S., Teng, K. K., Yung, W. H., Hempstead, B. L., and Lu, B. (2004). Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306:487–491.PubMedCrossRefGoogle Scholar
  23. Poo, M. M. (2001). Neurotrophins as synaptic modulators. Nat. Rev. Neurosci. 2:24–32.PubMedCrossRefGoogle Scholar
  24. Porsolt, R. D., Bertin, A., and Jalfre, M. (1977). Behavioral despair in mice: A primary screening test for antidepressants. Arch. Int. Pharmacodyn. Ther. 229:327–336.PubMedGoogle Scholar
  25. Russo-Neustadt, A., Beard, R. C., and Cotman, C. W. (1999). Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology 21:679–682.PubMedCrossRefGoogle Scholar
  26. Saarelainen, T., Hendolin, P., Lucas, G., Koponen, E., Sairanen, M., MacDonald, E., Agerman, K., Haapasalo, A., Nawa, H., Aloyz, R., Ernfors, P., and Castrén, E. (2003). Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J. Neurosci. 23:349–357.PubMedGoogle Scholar
  27. Sen, S., Nesse, R. M., Stoltenberg, S. F., Li, S., Gleiberman, L., Chakravarti, A., Weder, A. B., and Burmeister, M. (2003). A BDNF coding variant is associated with the NEO personality inventory domain neuroticism, a risk factor for depression. Neuropsychopharmacology 28:397–401.PubMedCrossRefGoogle Scholar
  28. Shirayama, Y., Chen, A. C., Nakagawa, S., Russell, D. S., and Duman, R. S. (2002). Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neurosci. 22:3251–3261.PubMedGoogle Scholar
  29. Siuciak, J. A., Boylan, C., Fritsche, M., Altar, C. A., and Lindsay, R. M. (1996). BDNF increases monoaminergic activity in rat brain following intracerebroventricular or intraparenchymal administration. Brain Res. 710:11–20.PubMedCrossRefGoogle Scholar
  30. Siuciak, J. A., Clark, M. S., Rind, H. B., Whittemore, S. R., and Russo, A. F. (1998). BDNF induction of tryptophan hydroxylase mRNA levels in the rat brain. J. Neurosci. Res. 52:149–158.PubMedCrossRefGoogle Scholar
  31. Siuciak, J. A., Lewis, D. R., Wiegand, S. J., and Lindsay, R. M. (1997). Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol. Biochem. Behav. 56:131–137.PubMedCrossRefGoogle Scholar
  32. Sklar, P., Gabriel, S. B., McInnis, M. G., Bennett, P., Lim, Y. M., Tsan, G., Schaffner, S., Kirov, G., Jones, I., Owen, M., Craddock, N., DePaulo, J. R., and Lander, E. S. (2002). Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Mol. Psychiatry 7:579–593.PubMedCrossRefGoogle Scholar
  33. Zafra, F., Hengerer, B., Leibrock, J., Thoenen, H., and Lindholm, D. (1990). Activity-dependent regulation of BDNF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptors. EMBO J. 9:3545–3550.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Eija Koponen
    • 1
  • Tomi Rantamäki
    • 3
  • Vootele Voikar
    • 3
  • Tommi Saarelainen
    • 1
  • Ewen MacDonald
    • 2
  • Eero Castrén
    • 3
  1. 1.Department of Neurobiology, A.I. Virtanen InstituteUniversity of KuopioFinland
  2. 2.Pharmacology and ToxicologyUniversity of KuopioFinland
  3. 3.Neuroscience CenterUniversity of HelsinkiFinland

Personalised recommendations