Cellular and Molecular Neurobiology

, Volume 25, Issue 8, pp 1209–1223

Multi-Transcriptional Profiling of Melanin-Concentrating Hormone and Orexin-Containing Neurons

  • Lucien F. Harthoorn
  • Arseni Sañé
  • Micha Nethe
  • Joop J. Van Heerikhuize


  1. 1.

    Melanin-concentrating hormone (MCH) and orexin-containing neurons participate in hypothalamic circuits that control energy homeostasis. While these two systems have projections to widespread target areas within the central nervous system, little is known about intrinsic characteristics and the molecular composition of both the MCH and orexin neurons themselves.

  2. 2.

    By a combinatory approach of quantitative immunocytochemical identification and analysis with laser microdissection and semi-quantitative Real-time RT-PCR, here we present multi-transcriptional profiling of MCH and orexin neurons in the rat lateral hypothalamus.

  3. 3.

    Immunocytochemical analysis showed that orexin peptide expression was increased after fasting both during the activity and resting period of rats, whereas MCH peptide content was only clearly upregulated at resting phase. Subsequent transcriptional profiling showed distinct expression patterns of MCH, orexin and cocaine-amphetamine regulated transcript (CART) between MCH and orexin neurons. A low expression level of dynorphin was found both in MCH and orexin neurons. Receptor expression profiles, reflecting interaction with neuropeptide Y, melanocortins, leptin, glucocorticoids and GABA, showed approximately similar expression patterns among the MCH and orexin neuronal systems. Expression of glutamate- and GABA-markers revealed a possible contributory role of both glutamate and GABA in functional output of MCH and orexin neurons.

  4. 4.

    This method allowed differential screening at mRNA level after immunocytochemical neuron identification and analysis in heterogeneous brain regions, which can further specify functioning of the individual neurons. With respect to MCH and orexin neurons, this study emphasizes that these neurons are targets for stimulatory and inhibitory signals from other brain regions including the arcuate nucleus and the general circulation. Additionally, both glutamate and GABA appear to be involved in MCH and orexin neuronal functioning related to feeding and regulation of the energy balance.



immunocytochemistry gene expression hypothalamus food intake diurnal rat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahamson, E. E., Leak, R. K., and Moore, R. Y. (2001). The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems. NeuroReport 12:435–440.PubMedGoogle Scholar
  2. Antunes, V. R., Brailoiu, G. C., Kwok, E. H., Scruggs, P., and Dun, N. J. (2001). Orexins/hypocretins excite rat sympathetic preganglionic neurons in vivo and in vitro. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281:1801–1807.Google Scholar
  3. Bäckberg, M., Collin, M., Ovesjo, M. L., and Meister, B. (2003). Chemical coding of GABA B receptor-immunoreactive neurones in hypothalamic regions regulating body weight. J. Endocrinol. 15: 1–14.Google Scholar
  4. Bäckberg, M., Ultenius, C., Fritschy, J. M., and Meister, B. (2004). Cellular localization of GABA receptor alpha subunit immunoreactivity in the rat hypothalamus: Relationship with neurones containing orexigenic or anorexigenic peptides. J. Endocrinol. 16:589–604.Google Scholar
  5. Bahn, S., Augood, S. J., Ryan, M., Standaert, D. G., Starkey, M., and Emson, P. C. (2001). Gene expression profiling in the post-mortem human brain—No cause for dismay. J. Chem. Neuroanat. 22:79–94.CrossRefPubMedGoogle Scholar
  6. Bittencourt, J. C., Presse, F., Arias, C., Peto, C., Vaughan, J., Nahon, J. L., Vale, W., and Sawchenko, P. E. (1992). The melanin-concentrating hormone system of the rat brain: An immuno- and hybridization histochemical characterization. J. Comp. Neurol. 319:218–245.CrossRefPubMedGoogle Scholar
  7. Broberger, C., De Lecea, L., Sutcliffe, J. G., and Hökfelt, T. (1998). Hypocretin/orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: Relationship to the neuropeptide Y and agouti gene-related protein systems. J. Comp. Neurol. 402:460–474.CrossRefPubMedGoogle Scholar
  8. Broberger, C. (1999). Hypothalamic cocaine- and amphetamine-regulated transcript (CART) neurons: Histochemical relationship to thyrotropin-releasing hormone, melanin-concentrating hormone, orexin/hypocretin and neuropeptide Y. Brain Res. 848:101–113.CrossRefPubMedGoogle Scholar
  9. Bujs, R. M., Chun, S. J., Niijima, A., Romijn, H. J., and Nagai, K. (2001). Parasympathetic and sympathetic control of the pancreas: A role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J. Comp. Neurol. 431:405–423.Google Scholar
  10. Campbell, R. E., Smith, M. S., Allen, S. E., Grayson, B. E., Ffrench-Mullen, J. M., and Grove, K. L. (2003). Orexin neurons express a functional pancreatic polypeptide Y4 receptor. J. Neurosci. 23:1487–1497.PubMedGoogle Scholar
  11. Castaño, J. P., Faught, W. J., Glave, E. E., Russell, B. S., and Frawley, L. S. (1997). Discordance of prolactin gene transcription, mRNA storage, and hormone release in individual mammotropes . Am. J. Physiol. 272:E390–E396.PubMedGoogle Scholar
  12. Chemelli, R. M., Willie, J. T., Sinton, C. M., Elmquist, J. K., Scammell, T., Lee, C., Richardson, J. A., Williams, S. C., Xiong, Y., Kisanuki, Y., Fitch, T. E., Nakazato, M., Hammer, R. E., Saper, C. B., and Yanagisawa, M. (1999). Narcolepsy in orexin knockout mice: Molecular genetics of sleep regulation. Cell 98:437–451.CrossRefPubMedGoogle Scholar
  13. Chou, T. C., Lee, C. E., Lu, J., Elmquist, J. K., Hara, J., Willie, J. T., Beuckmann, C. T., Chemelli, R. M., Sakurai, T., Yanagisawa, M., Saper, C. B., and Scammell, T. E. (2001). Orexin (hypocretin) neurons contain dynorphin. J. Neurosci. 21:RC168.PubMedGoogle Scholar
  14. Collin, M., Bäckberg, M., Ovesjo, M. L., Fisone, G., Edwards, R. H., Fujiyama, F., and Meister, B. M. (2003). Plasma membrane and vesicular glutamate transporter mRNAs/proteins in hypothalamic neurons that regulate body weight. Eur. J. Neurosci. 18:1265–1278.PubMedGoogle Scholar
  15. Date, Y., Ueta, Y., Yamashita, H., Yamaguchi, H., Matsukura, S., Kangawa, K., Sakurai, T., Yanagisawa, M., and Nakazato, M. (1999). Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc. Natl. Acad. Sci. U.S.A. 96:748–753.CrossRefPubMedGoogle Scholar
  16. Drazen, D. L., Coolen, L. M., Strader, A. D., Wortman, M. D., Woods, S. C., and Seeley, R. J. (2004). Differential effects of adrenalectomy on melanin-concentrating hormone and orexin A. Endocrinology 145:3404–3412.CrossRefPubMedGoogle Scholar
  17. Elias, C. F., Saper, C. B., Maratos-Flier, E., Tritos, N. A., Lee, C., Kelly, J., Tatro, J. B., Hoffman, G. E., Ollmann, M. M., Barsh, G. S., Sakurai, T., Yanagisawa, M., and Elmquist, J. K. (1998). Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J. Comp. Neurol. 402:442–459.CrossRefPubMedGoogle Scholar
  18. Emmert-Buck, M. R., Bonner, R. F., Smith, P. D., Chuaqui, R. F., Zhuang, Z., Goldstein, S. R., Weiss, R. A., and Liotta, L. A. (1996). Laser capture microdissection. Science 274:998–1001.CrossRefPubMedGoogle Scholar
  19. Fink, L., Kinfe, T., Stein, M. M., Ermert, L., Hanze, J., Kummer, W., Seeger, W., and Bohle, R. M. (2000). Immunostaining and laser-assisted cell picking for mRNA analysis. Lab. Invest. 80:327–333.PubMedGoogle Scholar
  20. Goncharuk, V. D., Van Heerikhuize, J., Dai, J. P., Swaab, D. F., and Buijs, R. M. (2001). Neuropeptide changes in the suprachiasmatic nucleus in primary hypertension indicate functional impairment of the biological clock. J. Comp. Neurol. 431:320–330.CrossRefPubMedGoogle Scholar
  21. Hagan, J. J., Leslie, R. A., Patel, S., Evans, M. L., Wattam, T. A., Holmes, S., Benham, C. D., Taylor, S. G., Routledge, C., Hemmati, P., Munton, R. P., Ashmeade, T. E., Shah, A. S., Hatcher, J. P., Hatcher, P. D., Jones, D. N., Smith, M. I., Piper, D. C., Hunter, A. J., Porter, R. A., and Upton, N. (1999). Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc. Natl. Acad. Sci. U.S.A. 96:10911–10916.CrossRefPubMedGoogle Scholar
  22. Hökansson, M. L., Brown, H., Ghilardi, N., Skoda, R. C., and Meister, B. (1998). Leptin receptor immunoreactivity in chemically defined target neurons of the hypothalamus. J. Neurosci. 18:559–572.Google Scholar
  23. Hökansson, M., De Lecea, L., Sutcliffe, J. G., Yanagisawa, M., and Meister, B. (1999). Leptin receptor- and STAT3-immunoreactivities in hypocretin/orexin neurones of the lateral hypothalamus. J. Neuroendocrinol. 11:653–663.Google Scholar
  24. Harthoorn, L. F., Oudejans, R. C., Diederen, J. H., Van de Wijngaart, D. J., and Van der Horst, D. J. (2001). Absence of coupling between release and biosynthesis of peptide hormones in insect neuroendocrine cells. Eur. J. Cell. Biol. 80:451–457.CrossRefPubMedGoogle Scholar
  25. Hill, J., Duckworth, M., Murdock, P., Rennie, G., Sabido-David, C., Ames, R. S., Szekeres, P., Wilson, S., Bergsma, D. J., Gloger, I. S., Levy, D. S., Chambers, J. K., and Muir, A. I. (2001). Molecular cloning and functional characterization of MCH2, a novel human MCH receptor. J. Biol. Chem. 276:20125–20129.PubMedGoogle Scholar
  26. Horvath, T. L., Peyron, C., Diano, S., Ivanov, A., Aston-Jones, G., Kilduff, T. S., and Van den Pol, A. N. (1999). Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J. Comp. Neurol. 415:145–159.CrossRefPubMedGoogle Scholar
  27. Kamphuis, W., Schneemann, A., Van Beek, L. M., Smit, A. B., Hoyng, P. F. J., and Koya, E. (2001). Prostanoid receptor gene expression profile in human trabecular meshwork: A quantitative real-time PCR approach. Invest. Ophthalmol. Vis. Sci. 42:3209–3215.PubMedGoogle Scholar
  28. Kiyashchenko, L. I., Mileykovskiy, B. Y., Maidment, N., Lam, H. A., Wu, M. F., John, J., Peever, J., and Siegel, J. M. (2002). Release of hypocretin (orexin) during waking and sleep states. J. Neurosci. 22:5282–5286.PubMedGoogle Scholar
  29. Kristensen, P., Judge, M. E., Thim, L., Ribel, U., Christjansen, K. N., Wulff, B. S., Clausen, J. T., Jensen, P. B., Madsen, O. D., Vrang, N., Larsen, P. J., and Hastrup, S. (1998). Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 393:72–76.CrossRefPubMedGoogle Scholar
  30. Meijerink, J., Mandigers, C., Van de Locht, L., Tonnissen, E., Goodsaid, F., and Raemaekers, J. (2001). A novel method to compensate for different amplification efficiencies between patient DNA samples in quantitative real-time PCR. J. Mol. Diagn. 3:55–61.PubMedGoogle Scholar
  31. Peyron, C., Tighe, D. K., Van den Pol, A. N., De Lecea, L., Heller, H. C., Sutcliffe, J. G., and Kilduff, T. S. (1998). Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 18:9996–10015.PubMedGoogle Scholar
  32. Qu, D., Ludwig, D. S., Gammeltoft, S., Piper, M., Pelleymounter, M. A., Cullen, M. J., Mathes, W. F., Przypek, R., Kanarek, R., and Maratos-Flier, E. (1996). A role for melanin concentrating hormone in the central regulation of feeding behaviour. Nature 380:243–247.CrossRefPubMedGoogle Scholar
  33. Ramakers, C., Ruijter, J. M., Deprez, R. H., and Moorman, A. F. (2003). Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 339:62–66.CrossRefPubMedGoogle Scholar
  34. Rosin, D. L., Weston, M. C., Sevigny, C. P., Stornetta, R. L., and Guyenet, P. G. (2003). Hypothalamic orexin (hypocretin) neurons express vesicular glutamate transporters VGLUT1 or VGLUT2. J. Comp. Neurol. 465:593–603.CrossRefPubMedGoogle Scholar
  35. Saito, Y., Cheng, M., Leslie, F. M., and Civelli, O. (2001). Expression of the melanin concentrating hormone (MCH) receptor mRNA in the rat brain. J. Comp. Neurol. 435:26–40.CrossRefPubMedGoogle Scholar
  36. Sakurai, T., Amemiya, A., Ishii, M., Matsuzaki, I., Chemelli, R. M., Tanaka, H., Williams, S. C., Richarson, J. A., Kozlowski, G. P., Wilson, S., Arch, J. R., Buckingham, R. E., Haynes, A. C., Carr, S. A., Annan, R. S., McNulty, D. E., Liu, W. S., Terrett, J. A., Elshourbagy, N. A., Bergsma, D. J., and Yanagisawa, M. (1998). Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585.PubMedGoogle Scholar
  37. Schwartz, M. W., Woods, S. C., Porte, D., Seeley, R. J., and Baskin, D. G. (2000). Central nervous system control of food intake. Nature 404:661–671.PubMedGoogle Scholar
  38. Simone, N. L., Bonner, R. F., Gillespie, J. W., Emmert-Buck, M. R., and Liotta, L. A. (1998). Laser-capture microdissection: Opening the microscopic frontier to molecular analysis. Trends Genet. 14:272–276.CrossRefPubMedGoogle Scholar
  39. Stricker-Krongrad, A., and Beck, B. (2002). Modulation of hypothalamic hypocretin/orexin mRNA expression by glucocorticoids. Biochem. Biophys. Res. Commun. 296:129–133.PubMedGoogle Scholar
  40. Van den Pol, A. N. (1999). Hypothalamic hypocretin (orexin): Robust innervation of the spinal cord. J. Neurosci. 19:3171–3182.PubMedGoogle Scholar
  41. Van der Sluis, P. J., Pool, C. W., and Sluiter, A. A. (1988). Immunochemical detection of peptides and proteins on press-blots after direct tissue gel isoelectric focusing. Electrophoresis 9:654–661.CrossRefPubMedGoogle Scholar
  42. Vrang, N., Larsen, P. J., Clausen, J. T., and Kristensen, P. (1999). Neurochemical characterization of hypothalamic cocaine-amphetamine-regulated transcript neurons. J. Neurosci. 19:RC5.PubMedGoogle Scholar
  43. Yamanaka, A., Beuckmann, C. T., Willie, J. T., Hara, J., Tsujino, N., Mieda, M., Tominaga, M., Yagami, K., Sugiyama, F., Goto, K., Yanagisawa, M., and Sakurai, T. (2003). Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38:701–713.CrossRefPubMedGoogle Scholar
  44. Yoshida, Y., Fujiki, N., Nakajima, T., Ripley, B., Matsumura, H., Yoneda, H., Mignot, E., and Nishino, S. (2001). Fluctuation of extracellular hypocretin-1 (orexin A) levels in the rat in relation to the light–dark cycle and sleep–wake activities. Eur. J. Neurosci. 14:1075–1081.CrossRefPubMedGoogle Scholar
  45. Zeitzer, J. M., Buckmaster, C. L., Parker, K. J., Hauck, C. M., Lyons, D. M., and Mignot, E. (2003). Circadian and homeostatic regulation of hypocretin in a primate model: Implications for the consolidation of wakefulness. J. Neurosci. 23:3555–3560.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Lucien F. Harthoorn
    • 1
  • Arseni Sañé
    • 1
  • Micha Nethe
    • 1
  • Joop J. Van Heerikhuize
    • 1
  1. 1.Netherlands Institute for Brain ResearchAmsterdamThe Netherlands

Personalised recommendations