Cellular and Molecular Neurobiology

, Volume 25, Issue 5, pp 819–832 | Cite as

Co-activation of P2Y2 Receptor and TRPV Channel by ATP: Implications for ATP Induced Pain

  • Srihasam Lakshmi
  • Preeti G. Joshi
Article

Summary

  1. 1.

    Extracellular ATP is recognized as a peripheral modulator of pain. Activation of ionotropic P2X receptors in sensory neurons has been implicated in induction of pain, whereas metabotropic P2Y receptors in potentiation of pain induced by chemical or physical stimuli via capsaicin sensitive TRPV1 channel. Here we report that P2Y2 receptor activation by ATP can activate the TRPV1 channel in absence of any other stimuli.

     
  2. 2.

    ATP-induced Ca2 + signaling was studied in Neuro2a cells. ATP evoked release of intracellular Ca2 + from ER and Ca2 + influx through a fast inactivating channel. The Ca2 + response was induced by P2Y receptor agonists in the order of potency ATP ≥ UTP ≥ ATPγ S > ADP and was inhibited by suramin and PPADS. The P2X receptor agonist α β methyl ATP was ineffective.

     
  3. 3.

    The Ca2 + influx was blocked by ruthenium red, an inhibitor of TRPV1 channel. Capsaicin, the most potent activator of the TRPV1 channel, evoked a fast inactivating Ca2 + transient suggesting the presence of endogenous TRPV1 channels in Neuro2a cells. NMS and PDBu, repressors of IP3 formation, drastically inhibited both the components of Ca2 + response.

     
  4. 4.

    Our data show co-activation of the P2Y2 receptor and capsaicin sensitive TRPV1 channel by ATP. Such functional interaction between endogenous P2Y2 receptor and TRPV1 channels could explain the ATP-induced pain.

     

Keywords

P2Y2 receptor TRPV channel capsaicin receptor extracellular ATP nociception Neuro2a cells intracellular Ca2 + Fura-2 

Abbreviations:

ADP

adenosine 5′-diphosphate

AMP

adenosine 5′-monophosphate

ATP

adenosine 5′-triphosphate

ATPγS

adenosine 5′-[γ -thio]triphosphate

αβ methyl ATP

α,β-methylene adenosine 5′-triphosphate

2 Me-S-ATP

2(methyl thio) adenosine 5′-triphosphate

CCE

capacitative calcium entry

CPA

cyclopiazonic acid

EGTA

ethylene glycol-bis (2-aminoethylether)-N,N,N′,N′-tetraacetic acid

GTP

guanosine 5′-triphoshate

IP3

inositol 1,4,5-triphosphate

NMS

neomycin sulphate

PDBu

phorbol 12,13-dibutyrate

PPADS

pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid)

PIP2

phosphoinositol-4,5-bisphosphate

PKC

protein kinase C

PLC

phosholipase C

PTx

pertussis toxin

SOC

store-operated calcium entry

TRPV

transient receptor potential channel, subfamily V

TRPC

transient receptor potential channel, subfamily C

UDP

uridine 5′-diphoshate

UTP

uridine 5′-triphoshate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burnstock, G., and Wood, J. N. (1996). Purinergic receptors: Their role in nociception and primary afferent neurotransmission. Curr. Opin. Neurobiol. 6:526–532CrossRefPubMedGoogle Scholar
  2. Carney, D. H., Scott, D. L., Gordon, E. A., and LaBelle, E. F. (1985). Phoshoinositides in mitogenesis: Neomycin inhibits thrombin-stimulated phoshoinositde turnover and initiation of cell proliferation. Cell 42:479–488.CrossRefPubMedGoogle Scholar
  3. Caterina, M. J. (2001). Quenching fire with fat: Phosphatidylinositides as putative regulators of pain. Trends Pharmacol. Sci. 22:602–604.CrossRefPubMedGoogle Scholar
  4. Caterina, M. J., and Julius, D. (2001). The vanilloid receptor: A molecular gateway to the pain pathway. Ann. Rev. Neurosci. 24:487–517CrossRefPubMedGoogle Scholar
  5. Chen, C. C., and Chen, W. C. (1997). P2Y receptor linked to phospholipase C: Stimulation of Neuro2a cells by UTP and ATP and possible regulation by protein kinase C subtype epsilon. J. Neurochem. 69:1409–1416.PubMedGoogle Scholar
  6. Chizh, B. A., and Illes, P. (2001). P2X receptors and nociception. Pharmacol. Rev. 53:553–568.PubMedGoogle Scholar
  7. Chuang, H. H., Prescott, E. D., Kong, H., Shields, S., Jordt, S. E., Basbaum, A. I., Chao, M. V., and Julius, D. (2001). Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns (4,5)P2-mediated inhibition. Nature 411:957–962.CrossRefPubMedGoogle Scholar
  8. Cook, S. P., and McCleskey, E. W. (2002). Cell damage excites nociceptors through release of cytosolic ATP. Pain 95:41–47.CrossRefPubMedGoogle Scholar
  9. Fields, R. D., and Stevens, B. (2000). ATP: An extracellular signaling molecule between neuron and glia. Trends Neurosci. 23:625–633.CrossRefPubMedGoogle Scholar
  10. Fredholm, B. B. (1995). Purinoceptors in the nervous system. Pharmacol. Toxicol. 76:228–239.PubMedGoogle Scholar
  11. Gunthorpe, M. J., Benham, C. D., Randall, A., and Davis, J. B. (2002). The diversity in the vanilloid (TRPV) receptor family of ion channels. Trends Pharmacol. Sci. 23:183–191.CrossRefPubMedGoogle Scholar
  12. Hamilton, S. G., and McMahon, S. B. (2000). ATP as a peripheral mediator of pain. J Auton. Nerv. Syst. 81:187–194.CrossRefPubMedGoogle Scholar
  13. Illes, P., and Alexandre Ribeiro, J. (2004). Molecular physiology of P2 receptors in the central nervous system. Eur. J. Pharmacol. 483:5–17.CrossRefPubMedGoogle Scholar
  14. Joshi, P. G., and Mishra, S. (1998). A novel type of Ca2+ channel activated by antibody to galactocerebroside in U-87 MG cells. Life Sci. 62:409–444.Google Scholar
  15. Khakh, B. S., Burnstock, G., Kennedy, C., King, B. F., North, R. A., Seguela, P., Voigt, M., and Humphrey, P. P. A. (2001). International union of pharmacology XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits. Pharmacol. Rev. 53:107–118.PubMedGoogle Scholar
  16. King, B. F., Townsend-Nicholson, A., and Burnstock, G. (1998). Metabotropic receptors for ATP and UTP: Exploring the correspondence between native and recombinant nucleotide receptors. Trends Pharmacol. 19:506–514.CrossRefGoogle Scholar
  17. Kiselyov, K., Xu, X., Mozhayeva, G., Kuo, T., Pessah, I., Mignery, G., Zhu, X., Birnbaumer, L., and Muallem, S. (1998). Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 396:478–482.CrossRefPubMedGoogle Scholar
  18. Moriyama, T., Iida, T., Kobayashi, K., Higashi, T., Fukuoka, T., Tsumura, H., Leon, C., Suzuki, N., Inoue, K., Gachet, C., Noguchi, K., and Tominaga, M. (2003). Possible involvement of P2Y2 metabotropic receptors in ATP-induced transient receptor potential vanilloid receptor 1-mediated thermal hypersensitivity. J. Neurosci. 23:6058–6062.PubMedGoogle Scholar
  19. Nakamura, F., and Strittmatter, S. M. (1996). P2Y1 purinergic receptors in sensory neurons: Contribution to touch-induced impulse generation. Proc. Natl. Acad. Sci. USA. 93:10465– 10470.CrossRefPubMedGoogle Scholar
  20. Neary, J. T., Rathbone, M. P., Cattabeni, F., Abbrachio, M. P., and Burnstock, G. (1996). Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends Neurosci. 19:13–18.CrossRefPubMedGoogle Scholar
  21. Nishizuka, Y. (1992). Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258: 607–614.PubMedGoogle Scholar
  22. North, R. A. (2002). Molecular physiology of P2X Receptors. Physiol Rev. 82:1013–1067.PubMedGoogle Scholar
  23. Ohta, T., Morishita, M., Mori, Y., and Ito, S. (2004). Ca2+ store-independent augmentation of [Ca2+]i responses to G-protein coupled receptor activation in recombinantly TRPC5-expressed rat pheochromocytoma (PC12) cells. Neurosci. Lett. 358:161–164.CrossRefPubMedGoogle Scholar
  24. Olsson, R. A., and Pearson, J. D. (1990). Cardiovascular purinoceptors. Physiol. Rev. 70:761–845.PubMedGoogle Scholar
  25. Premkumar, L. S., and Ahern, G. P. (2000). Induction of vanilloid receptor channel activity by protein kinase C. Nature 408:985–990.CrossRefPubMedGoogle Scholar
  26. Putney, J. W., Jr. (2003). Capacitative calcium entry in the nervous system. Cell Calcium 34:339–344.CrossRefPubMedGoogle Scholar
  27. Ralevic, V., and Burnstock, G. (1998). Receptors for purines and pyrimidines. Pharmacol. Rev. 50:413–492.PubMedGoogle Scholar
  28. Rathbone, M. P., Middlemiss, P. J., Gysbers, J. W., Andrew, C., Herman, M. A., Reed, J. K., Ciccarelli, R., Di Iorio, P., and Caciagli, F. (1999). Trophic effects of purines in neurons and glial cells. Prog. Neurobiol. 59:663–690.CrossRefPubMedGoogle Scholar
  29. Ravichandra, B., and Joshi, P. G. (1999). Regulation of transmembrane signaling by ganglioside GM1: Interaction of anti-GM1 with Neuro2a cells. J. Neurochem. 73:557–567.CrossRefPubMedGoogle Scholar
  30. Sanada, M., Yasuda, H., Omatsu-Kanbe, M., Sango, K., Isono, T, Matsuura, H., and Kikkawa, R. (2002). Increase in intracellular Ca2+ and calcitonin gene-related peptide release through metabotropic P2Y receptors in rat dorsal root ganglion cells. Neuroscience 111:413–422.CrossRefPubMedGoogle Scholar
  31. Santos, A. R., and Calixto, J. B. (1997). Ruthenium red and capsazepine antinociceptive effect in formalin and capsaicin models of pain in mice. Neurosci. Lett. 235:73–76.CrossRefPubMedGoogle Scholar
  32. Tominaga, M., Wada, M., and Masu, M. (2001). Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP evoked pain and hyperalgesia. Proc. Natl. Acad. Sci. USA. 98:6951–6956.CrossRefPubMedGoogle Scholar
  33. Tsuda, M., Ueno, S., and Inoue, K. (1999). Evidence for the involvement of spinal endogenous ATP and P2X receptors in nociceptive responses caused by formalin and capsaicin in mice. Br. J. Pharmacol. 128:1497–1507.CrossRefPubMedGoogle Scholar
  34. Vellani, V., Mapplebeck, S., Moriondo, A., Davis, J. B., and McNaughton, P. A. (2001). Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J. Physiol. 534:813–825.CrossRefPubMedGoogle Scholar
  35. Wildman, S. S., Unwin, R. J., and King, B. F. (2003). Extended pharmacological profiles of rat P2Y2 and rat P2Y4 receptors and their sensitivity to extracellular H+ and Zn2+ ions. Br. J. Pharmacol. 140:1177–1186.CrossRefPubMedGoogle Scholar
  36. Zitt, C., Halaszovich, C. R., and Luckhoff, A. (2002). The TRP family of cation channels: Probing and advancing the concepts on receptor-activated calcium entry. Prog. Neurobiol. 66:243–264.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Srihasam Lakshmi
    • 1
  • Preeti G. Joshi
    • 1
  1. 1.Department of BiophysicsNational Institute of Mental Health and NeurosciencesBangaloreIndia

Personalised recommendations