Cellular and Molecular Neurobiology

, Volume 25, Issue 3–4, pp 485–512 | Cite as

Brain Angiotensin II: New Developments, Unanswered Questions and Therapeutic Opportunities

  • Juan M. Saavedra


1. There are two Angiotensin II systems in the brain. The discovery of brain Angiotensin II receptors located in neurons inside the blood brain barrier confirmed the existence of an endogenous brain Angiotensin II system, responding to Angiotensin II generated in and/or transported into the brain. In addition, Angiotensin II receptors in circumventricular organs and in cerebrovascular endothelial cells respond to circulating Angiotensin II of peripheral origin. Thus, the brain responds to both circulating and tissue Angiotensin II, and the two systems are integrated.

2. The neuroanatomical location of Angiotensin II receptors and the regulation of the receptor number are most important to determine the level of activation of the brain Angiotensin II systems.

3. Classical, well-defined actions of Angiotensin II in the brain include the regulation of hormone formation and release, the control of the central and peripheral sympathoadrenal systems, and the regulation of water and sodium intake. As a consequence of changes in the hormone, sympathetic and electrolyte systems, feed back mechanisms in turn modulate the activity of the brain Angiotensin II systems. It is reasonable to hypothesize that brain Angiotensin II is involved in the regulation of multiple additional functions in the brain, including brain development, neuronal migration, process of sensory information, cognition, regulation of emotional responses, and cerebral blood flow.

4. Many of the classical and of the hypothetical functions of brain Angiotensin II are mediated by stimulation of Angiotensin II AT1 receptors.

5. Brain AT2 receptors are highly expressed during development. In the adult, AT2 receptors are restricted to areas predominantly involved in the process of sensory information. However, the role of AT2 receptors remains to be clarified.

6. Subcutaneous or oral administration of a selective and potent non-peptidic AT1 receptor antagonist with very low affinity for AT2 receptors and good bioavailability blocked AT1 receptors not only outside but also inside the blood brain barrier. The blockade of the complete brain Angiotensin II AT1 system allowed us to further clarify some of the central actions of the peptide and suggested some new potential therapeutic avenues for this class of compounds.

7. Pretreatment with peripherally administered AT1 antagonists completely prevented the hormonal and sympathoadrenal response to isolation stress. A similar pretreatment prevented the development of stress-induced gastric ulcers. These findings strongly suggest that blockade of brain AT1 receptors could be considered as a novel therapeutic approach in the treatment of stress-related disorders.

8. Peripheral administration of AT1 receptor antagonists strongly affected brain circulation and normalized some of the profound alterations in cerebrovascular structure and function characteristic of chronic genetic hypertension. AT1 receptor antagonists were capable of reversing the pathological cerebrovascular remodeling in hypertension and the shift to the right in the cerebral autoregulation, normalizing cerebrovascular compliance. In addition, AT1 receptor antagonists normalized the expression of cerebrovascular nitric oxide synthase isoenzymes and reversed the inflammatory reaction characteristic of cerebral vessels in hypertension. As a consequence of the normalization of cerebrovascular compliance and the prevention of inflammation, there was, in genetically hypertensive rats a decreased vulnerability to brain ischemia. After pretreatment with AT1 antagonists, there was a protection of cerebrovascular flow during experimental stroke, decreased neuronal death, and a substantial reduction in the size of infarct after occlusion of the middle cerebral artery. At least part of the protective effect of AT1 receptor antagonists was related to the inhibition of the Angiotensin II system, and not to the normalization of blood pressure. These results indicate that treatment with AT1 receptor antagonists appears to be a major therapeutic avenue for the prevention of ischemia and inflammatory diseases of the brain.

9. Thus, orally administered AT1 receptor antagonists may be considered as novel therapeutic compounds for the treatment of diseases of the central nervous system when stress, inflammation and ischemia play major roles.

10. Many questions remain. How is brain Angiotensin II formed, metabolized, and distributed? What is the role of brain AT2 receptors? What are the molecular mechanisms involved in the cerebrovascular remodeling and inflammation which are promoted by AT1 receptor stimulation? How does Angiotensin II regulate the stress response at higher brain centers? Does the degree of activity of the brain Angiotensin II system predict vulnerability to stress and brain ischemia? We look forward to further studies in this exiting and expanding field.

Key Words

renin angiotensin system angiotensin II receptors AT1 receptors AT2 receptors stress ischemia gastric ulcers sympathetic system hormones brain development sensory systems cerebrovascular circulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguilera, G., Kiss, A., and Luo, X. (1995a). Increased expression of type1 angiotensin II receptors in the hypothalamic paraventricular nucleus following stress and glucocorticoid administration. J. Neuroendocrinol. 7:775–783.Google Scholar
  2. Aguilera, G., Young, W. S., Kiss, A., and Bathia, A. (1995b). Direct regulation of hypothalamic corticotropin-releasing-hormone neurons by angiotensin II. Neuroendocrinology 61:437–444.Google Scholar
  3. Amin-Hanjani, S. H., Stagliano, N. E., Yamada, M., Huang, P. L., Liao, J. K., and Moskowitz, M. A. (2001). Mevastatin, an HMG-CoA reductase inhibitor, reduces stroke damage and upregulates endothelial nitric oxide synthase in mice. Stroke 32:980–986.PubMedGoogle Scholar
  4. Ando, H., Zhou, J., Macota, M., Imboden, H., and Saavedra, J. M. (2004). Angiotensin II AT1 receptor blockade reverses pathological hypertrophy and inflammation in brain microvessels of spontaneously hypertensive rats. Stroke 25:1726–1731.CrossRefGoogle Scholar
  5. Armando, I., Carranza, A., Nishimura, Y., Hoe, K. L., Barontini, M., Terrón, J. A., Falcón-Neri, A., Ito, T., Juorio, A. V., and Saavedra, J. M. (2001). Peripheral administration of an angiotensin II AT1 receptor antagonist decreases the hypothalamic-pituitary-adrenal response to stress. Endocrinology 142:3880–3889.CrossRefPubMedGoogle Scholar
  6. Bain, J. S., and Ferguson, A. V. (1995). Paraventricular nucleus neurons projecting to the spinal cord receive excitatory input from the subfornical organ. Am. J. Physiol. 268:R625–R633.PubMedGoogle Scholar
  7. Barnes, J. M., Stewards, L. J., Barber, P. C., and Barnes, N. M. (1993). Identification and characterization of angiotensin II receptors subtypes in human brain. Eur. J. Pharmacol. 230:251–258.CrossRefPubMedGoogle Scholar
  8. Baumbach, G. L., and Heistad, D. D. (1992). Drug-induced changes in mechanics and structure of cerebral arterioles. Journal of Hypertension 10(Suppl. 6):S137–S140.PubMedGoogle Scholar
  9. Blezer, E. L. A., Klaas, N., Bar, D., Goldschmeding, R., Jansen, G. H., Koomans, H. A., and Joles, J. A. (1998). Enalapril prevents imminent and reduces manifest cerebral edema in stroke-prone hypertensive rats. Stroke 29:1671–1678.PubMedGoogle Scholar
  10. Braun-Menéndez, E., Fasciolo, J. C., Leloir, L. F., and Muñoz, J. M. (1940). The substance causing renal hypertension. J. Physiol. (Lond) 98:283–298.Google Scholar
  11. Brecher, P., Tercyak, A., and Chobanian, A. V. (1981). Properties of angiotensin-converting enzyme in intact cerebral micro vessels. Hypertension 3:198–204.PubMedGoogle Scholar
  12. Bregonzio, C., Armando, I., Ando, H., Jezova, M., Baiardi, G., and Saavedra, J. M. (2003). Anti-inflammatory effects of Angiotensin II AT1 receptor antagonism prevent stress-induced gastric injury. Am. J. Physiol. Gastrointest. Liver Physiol. 285:G414–G423.PubMedGoogle Scholar
  13. Bremmer, J. D., Innis, R. B., Southwick, S. M., Staib, L., Zoghbi, S., and Charney, D. S. (2000). Decreased benzodiazepine receptor binding in prefrontal cortex in combat-related posttraumatic stress disorder. Am. J. Psychiatry 157:1120–1126.CrossRefPubMedGoogle Scholar
  14. Briones, A. M., Alonso, M. J., Hernanz, R., Miguel, M., and Salaices, M. (2002). Alterations of the nitric oxide pathway in cerebral arteries from spontaneously hypertensive rats. J Cardiovasc. Pharmacol. 39:378–388.CrossRefPubMedGoogle Scholar
  15. Buckley, J. P. (1988). The central effects of the renin-angiotensin system. Clin. Exp. Hypertens. (A) 10:1–16.Google Scholar
  16. Brunson, K. L., Grigoriadis, D. E., Lorang, M. T., and Baram, T. Z. (2002). Corticotropin-releasing hormone (CRH) downregulates the function of its receptor (CRF1) and induces CRF1 expression in hippocampal and cortical regions of the immature rat brain. Exp. Neurol. 176:75–86.CrossRefPubMedGoogle Scholar
  17. Bumpus, F. M., Pucell, A. G., Daud, A. I., and Hussain, A. (1988). Angiotensin II: An intraovarian regulatory peptide. Am. J. Med. Sci. 295:406–408.PubMedGoogle Scholar
  18. Cahill, P. A., Redmond, E. M., Foster, C., and Sitzmann, J. V. (1995). Nitric oxide regulates angiotensin II receptors in vascular smooth muscle cells. Eur. J. Pharmacol. 288:219–229.CrossRefPubMedGoogle Scholar
  19. Castrén, E., and Saavedra, J. M. (1988). Repeated stress increases the density of angiotensin II binding sites in the rat paraventricular nucleus and subfornical organ. Endocrinology 122:370–372.PubMedGoogle Scholar
  20. Castrén, E., and Saavedra, J. M. (1989). Angiotensin II receptors in paraventricular nucleus, subfornical organ, and pituitary gland of hypophysectomized, adrenalectomized, and vasopressin-deficient rats. Proc. Natl. Acad. Sci. U.S.A. 86:725–729.PubMedGoogle Scholar
  21. Chou, T. C., Yen, M. H., Chi-Yuan, L., and Ding, Y. A. (1998) Alterations of nitric oxide synthase expression with aging and hypertension in rats. Hypertension 31:643–648.PubMedGoogle Scholar
  22. Clauser, E., Curnow, K. M., Davies, E., Conchon, S., Teutsch, B., Vianello, B., Monnot, C., and Corvol, P. (1996). Angiotensin II receptors: Protein and gene structure, expression and potential pathological involvement. Eur. J. Endocrinol. 134:403–411.PubMedGoogle Scholar
  23. Cromheeke, K. M., Kockx, M. M., De Meyer, G. R. Y., Bosmans, J. M., Bult, H., Beelaerts, W. J. F., Vrints, C. J., and Herman, A. G., (1999). Inducible nitric oxide synthase colocalizes with signs of lipid oxidation-peroxidation in human atherosclerotic plaques. Cardiovasc. Res. 43:744–754.CrossRefPubMedGoogle Scholar
  24. De Gasparo, M., Catt, K. J., Inagami, T., Wright, J. W., and Unger, T. H. (2000). International Union of Pharmacology. XXIII. The angiotensin receptors. Pharmacol. Rev. 52:415–472.PubMedGoogle Scholar
  25. De Gasparo, M., and Siragy, H. M. (1999). The AT2 receptor: fact, fancy and fantasy. Regul. Pept. 81:11–24.CrossRefPubMedGoogle Scholar
  26. Edvinsson, L. (1975). Neurogenic mechanisms in the cerebrovascular bed. Autonomic nerves, amine receptors and their effects on cerebral blood flow. Acta Physiol. Scand. 427(Suppl):1–35.Google Scholar
  27. Edvinsson, L., Hardebo, J. E., and Owman, C. (1979). Effects of angiotensin II on cerebral blood vessels. Acta Physiol. Scand. 105:381–383.PubMedGoogle Scholar
  28. Filaretova, L. P., Filaretov, A. A., and Makara, G. B. (1998). Corticosterone increase inhibits stress-induced gastric erosions in rats. Am. J. Physiol. 274:G1024–G1030.PubMedGoogle Scholar
  29. Fujii, K., Weno, B. L., Baumbach, G. L., and Heistad, D. D. (1992). Effect of antihypertensive treatment on focal cerebral infarction. Hypertension 19:713–716.PubMedGoogle Scholar
  30. Gallinat, S., Busche, S., Raizada, M., and Sumners, C. (2000). The angiotensin II type 2 receptor: and enigma with multiple variations. Amer. J. Physiol. 278:E357–E374.Google Scholar
  31. Ganong, W. F. (1993). Blood, pituitary, and brain Renin-Angiotensin Systems and regulation of secretion of anterior pituitary gland. Front. Neuroendocrinol. 14:233–249.CrossRefPubMedGoogle Scholar
  32. Ganong, W. F., and Murakami, K. (1987). The role of angiotensin II in the regulation of ACTH secretion. Ann. N.Y Acad. Sci. 512:176–186.PubMedGoogle Scholar
  33. Ganten, D., Lang, R. E., Lehmann, E., and Unger, T. (1984). Brain angiotensin: On the way to becoming a well-studied neuropeptide system. Biochem. Pharmacol. 33:3523–3528.CrossRefPubMedGoogle Scholar
  34. Ganten, D., Mullins, J., and Lindpaintner, K. (1989). The tissue renin-angiotensin system: a target for angiotensin-converting enzyme inhibitors. J. Hum. Hypertens. 3(Suppl 1):63–70.Google Scholar
  35. Gehlert, D. R., Speth, R. C., and Wamsley, J. K. (1986). Distribution of [125I] angiotensin II binding sites in the rat brain: A quantitative autoradiographic study. Neuroscience 18:837–856.CrossRefPubMedGoogle Scholar
  36. Griendling, K. K., Lassègue, B., and Alexander, R. W. (1996). Angiotensin receptors and their therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 36:281–306.CrossRefPubMedGoogle Scholar
  37. Griendling, K. K., Minieri, C. A., Ollerenshaw, J. D., and Alexander, R. W. (1994). Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ. Res. 74:1141–1148.PubMedGoogle Scholar
  38. Griffin, S. A., Brown, W. C. B., MacPherson, F., McGrath, J. C., Wilson, V. G., Korsgaard, N., Mulvany, M. J., and Lever, A. F. (1991). Angiotensin II causes vascular hypertrophy in part by a non-pressor mechanism. Hypertension 17:626–635.PubMedGoogle Scholar
  39. Guo, D. F., Uno, S., Ishihata, A., Nakamura, N., and Inagami, T. (1995). Identification of a cis-acting Glucocorticoid responsive element in the rat angiotensin II type 1A promoter. Circ. Res. 77:249–257.PubMedGoogle Scholar
  40. Hajdu, M. A., Heistad, D. D., Ghoneim, S., and Baumbach, G. F. (1991). Effects of antihypertensive treatment on composition of cerebral arterioles. Hypertension 18(Suppl. II):II-1115–II-1121.Google Scholar
  41. Hamaguchi, M., Watanabe, T., Higuchi, K., Tominaga, K., Fujiwara, Y., Arakawa, T. (2001). Mechanisms and roles of neutrophil infiltration in stress-induced gastric injury in rats. Dig. Dis. Sci. 46:2708–15.CrossRefPubMedGoogle Scholar
  42. Harrison, D. G. (1997). Cellular and molecular mechanisms of endothelial cell dysfunction. J. Clin. Invest. 100:2153–2157.PubMedGoogle Scholar
  43. Häuser, W., Jöhren, O., and Saavedra, J. M. (1998). Characterization and distribution of angiotensin II receptor subtypes in the mouse brain. Eur. J. Pharmacol. 348:101–114.CrossRefPubMedGoogle Scholar
  44. Healy, D. P., Maciejewski, A. R., and Printz, M. P. (1986). Localization of central angiotensin II receptors with [125I]-sarl, ile8-angiotensin II: periventricular sites of the anterior third ventricle. Neuroendocrinology 44:15–21.PubMedGoogle Scholar
  45. Heinemann, A., Sattler, V., Jocic, M., Wienen, W., and Holzer, P. (1999). Effect of angiotensin II and telmisartan, an angiotensin1 receptor antagonist, on rat mucosal gastric blood flow. Aliment. Pharmacol. Ther. 13:347–355.CrossRefPubMedGoogle Scholar
  46. Hirasawa, K., Sato, Y., Hosoda, Y., Yamamoto, T., and Hanai, H. (2002). Immunohistochemical localization of Angiotensin II receptor and local Renin-Angiotensin System in human colonic mucosa. J. Histochem. Cytochem. 50:275–282.PubMedGoogle Scholar
  47. Inagami, T., Guo, D.-F., and Kitami, Y. (1994). Molecular biology of angiotensin II receptors: An overview. J. Hypertens. 12:583–594.Google Scholar
  48. Intengan, H. D., and Schiffrin, E. L., (2001). Vascular remodeling in hypertension roles of apoptosis, inflammation and fibrosis. Hypertension 38:(Pt 2):581–587.PubMedGoogle Scholar
  49. Israel, A., Strömberg, C., Tsutsumi, K., Garrido, M. D. R., Torres, M., and Saavedra, J. M. (1995). Angiotensin II receptor subtypes and phosphoinositide hydrolysis in rat adrenal medulla. Brain Res. Bull. 38:441–446.CrossRefPubMedGoogle Scholar
  50. Ito, T., Nishimura, Y., and Saavedra, J. M. (2001). Pre-treatment with candesartan protects from cerebral ischemia. J. Renin Ang. Aldost. Syst. 2:174–179.Google Scholar
  51. Ito, T., Yamakawa, H., Bregonzio, C., Terrón, J. A., Falcón-Neri, A., and Saavedra, J. M. (2002). Protection against ischemia and improvement of cerebral blood flow in genetically hypertensive rats by chronic pretreatment with an Angiotensin II AT1 antagonist. Stroke 33:2297–2303.CrossRefPubMedGoogle Scholar
  52. Jezova, M., Armando, I., Bregonzio, C., Yu, Zu-Xi., Qian, S., Ferrans, V. J., Imboden, H., and Saavedra, J. M. (2003). Angiotensin II AT1 and AT2 receptors contribute to maintain basal adrenomedullary norepinephrine synthesis and tyrosine hydroxylase transcription. Endocrinology 144:2092–2101.CrossRefPubMedGoogle Scholar
  53. Jezova, D., Ochedalski, T., Kiss, A., and Aguilera, G. (1998). Brain angiotensin II modulates sympathoadrenal and hypothalamic pituitary adrenocortical activation during stress. J. Neuroendocrinol. 10:67–72.CrossRefPubMedGoogle Scholar
  54. Jöhren, O., Inagami, T., and Saavedra, J. M. (1995). AT1A, AT1B, and AT2 angiotensin II receptor subtype gene expression in rat brain. Neuroreport 6:2549–2551.PubMedGoogle Scholar
  55. Jöhren, O., Inagami, T., and Saavedra, J. M. (1996). Localization of AT2 angiotensin receptor gene expression in rat brain by in situ hybridization histochemistry. Brain Res. Mol. Brain Res. 37:192–200.CrossRefPubMedGoogle Scholar
  56. Jöhren, O., and Saavedra, J. M. (1996a). Gene expression of angiotensin II receptor subtypes in the cerebellar cortex of young rats. Neuroreport 7:1349–1352.Google Scholar
  57. Jöhren, O., and Saavedra, J. M. (1996b). Expression of AT1A$ and AT1B angiotensin II receptor messenger RNA in forebrain of two-week-old rats. Am. J. Physiol. 271:E104–E112.Google Scholar
  58. Jones, A., and Woods, D. R. (2003). Skeletal muscle RAS and exercise performance. Int. J. Biochem. Cell. Biol. 35:855–866.CrossRefPubMedGoogle Scholar
  59. Jonsson, J. R., Game, P. A., Head, R. J., and Frewin, D. B. (1994). The expression and localization of the angiotensin-converting enzyme mRNA in human adipose tissue. Blood Press. 3:72–75.PubMedGoogle Scholar
  60. Kakar, S. S., Sellers, J. C., Devor, D. C., Musgrove, L. C., and Neill, J. D. (1992). Angiotensin II type-1 receptor subtype cDNAs: Differential tissue expression and hormonal regulation. Biochem. Biophys. Res Commun. 183:1090–1096.CrossRefPubMedGoogle Scholar
  61. Kambayashi, Y., Bardhan, S., Takahashi, K., Tsuzuki, S., Inui, H., Hamakubo, T., and Inagami, T. (1993). Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J. Biol. Chem. 268:24543–23546.PubMedGoogle Scholar
  62. Keck, M. E., and Holsboer, F. (2001). Hyperactivity of CRH neuronal circuits as a target for therapeutic interventions in affective disorders. Peptides 22:835–844.CrossRefPubMedGoogle Scholar
  63. Leker, R. R., Teichner, A., Ovadia, H., Keshet, E., Reinherz, E. and Ben-Hur, T. (2001). Expression of endothelial nitric oxide synthase in the ischemic penumbra: Relationship to expression of neuronal nitric oxide synthase and vascular endothelial growth factor. Brain Res. 909:1–7.CrossRefPubMedGoogle Scholar
  64. Leong, D. S., Terrón, J. A., Falcón-Neri, A., Armando, I., Ito, T., Jöhren, O., Tonelli, L. H., Hoe, K.-L., and Saavedra, J. M. (2002). Restraint stress modulates brain, pituitary and adrenal expression of angiotensin II AT1A, AT1B and AT2 receptors. Neuroendocrinology 75:227–240.CrossRefPubMedGoogle Scholar
  65. Leung, P. S., and Carlsson, P. O. (2001). Tissue renin-angiotensin system: Its expression, localization, regulation and potential role in the pancreas. J. Mol. Endocrinol. 26:155–164.CrossRefPubMedGoogle Scholar
  66. Lind, R. W., Swanson, L. W., and Ganten, D. (1985). Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system. Neuroendocrinology 40:2–24.PubMedGoogle Scholar
  67. Medina, J. H., Novas, M. L., Wolfman, C. N. V., De Stein, M. L., and De Robertis, E. (1983). Benzodiazepine receptors in rat cerebral cortex and hippocampus undergo rapid and reversible changes alter acute stress. Neuroscience 9:331–335.CrossRefPubMedGoogle Scholar
  68. Mendelsohn, F. A. O., Quirion, R., Saavedra, J. M., Aguilera, G., and Catt, K. J. (1984). Autoradiographic localization of angiotensin II receptors in rat brain. Proc. Natl. Acad. Sci. USA 81:1575–1579.PubMedGoogle Scholar
  69. Millan, M. A., and Aguilera, G. (1988). Angiotensin II receptors in testes. Endocrinology 122:1984–1990.PubMedGoogle Scholar
  70. Millatt, L. J., Abdel-Rahman, E. M., and Siragy, H. M., (1999). Angiotensin II and nitric oxide: A question of balance. Regul. Pept. 81:1–10.CrossRefPubMedGoogle Scholar
  71. Morsing, P., (1999). Candesartan: A new generation Angiotensin II AT1 receptor blocker: pharmacology, antihypertensive efficacy, renal function, and renoprotection. J. Am. Soc. Nephrol. 10:S248–S254.PubMedGoogle Scholar
  72. Mulvany, M. J., Baumbach, G. L., Aalkjaer, C., Heagerty, A. M., Korsgaard, N., Schiffrin, E. L., and Heistad, D. D. (1996). Vascular remodeling. Hypertension 28:505–506.PubMedGoogle Scholar
  73. Näveri, L., Strömberg, C., and Saavedra, J. M. (1994). Angiotensin II AT1 receptor mediated contraction of the perfused rat cerebral artery. Neuroreport 5:2278–2280.PubMedGoogle Scholar
  74. Nishimura, Y., Ito, T., Hoe, K.-L., and Saavedra, J. M. (2000a). Chronic peripheral administration of the angiotensin II AT1 receptor antagonist candesartan blocks brain AT1 receptors. Brain Res. 871:29–38.CrossRefGoogle Scholar
  75. Nishimura, Y., Ito, T., and Saavedra, J. M. (2000b). Angiotensin II AT1 blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats. Stroke 31:2478–2486.Google Scholar
  76. Nishimura, Y., Xu, T., Jöhren, O., Häuser, W., and Saavedra, J. M. (1998). The angiotensin AT1 receptor antagonist candesartan regulates cerebral blood flow and brain angiotensin AT1 receptor expression. Basic Res. Cardiol. 93(Suppl. 2):63–68.CrossRefGoogle Scholar
  77. Page, I. H. (1987). Hypertension Mechanisms. Grune & Stratton, New York, p. 1102.Google Scholar
  78. Page, I. H., and Helmer, O. M. (1940). A crystalline pressor substance (angiotensin) resulting from the reaction between renin and renin activator. J. Exp. Med. 71:29–42.CrossRefGoogle Scholar
  79. Peng, J., and Phillips, M. I. (2001). Opposite regulation of brain angiotensin type1 and type 2 receptors in cold-induced hypertension. Regul. Pept. 97:91–102.CrossRefPubMedGoogle Scholar
  80. Phillips, M. I., and Sumners, C. (1998). Angiotensin II in central nervous system physiology. Regul. Pept. 78:1–11.CrossRefPubMedGoogle Scholar
  81. Pieruzzi, F., Abassi, Z. A., and Keiser, H. R. (1995). Expression of renin-angiotensin system components in the heart, kidneys, and lungs of rats with experimental heart failure. Circulation 92:3105–3112.PubMedGoogle Scholar
  82. Rajagopalan, S., Kurz, S., Münzel, T., Tarpey, M., Freeman, B. A., Griendling, K. K., and Harrison, D. G. (1996). Angiotensin II-mediated hypertension in the rat increases vascular superoxide to production via membrane NADH/NADPH oxidase activation. J. Clin. Invest. 97:1916–1923.PubMedGoogle Scholar
  83. Ross, R. (1993). The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 362:801–809.PubMedGoogle Scholar
  84. Rudic, R. D., and Sessa, W. C. (1999). Human genetics’99: The cardiovascular system nitric oxide in endothelial dysfunction and vascular remodeling: Clinical correlates and experimental links. Am. J. Hum. Gene. 64:673–677.CrossRefGoogle Scholar
  85. Rudic, R. D., Shesely, E. G., Maeda, N., Smithies, O., Segal, S. S., and Sessa, W. C. (1998). Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J. Clin. Invest. 101:731–736.PubMedGoogle Scholar
  86. Saavedra, J. M. (1992). Brain and pituitary angiotensin. Endocrinol. Rev. 13:329–380.CrossRefGoogle Scholar
  87. Saavedra, J. M. (1999). Emerging features of brain angiotensin receptors. Regul. Pept. 85:31–45.CrossRefPubMedGoogle Scholar
  88. Saavedra, J. M., Israel, A., Plunkett, L. M., Kurihara, M., Shigematsu, K., and Correa, F. M. A. (1986). Quantitative distribution of angiotensin II binding sites in rat brain by autoradiography. Peptides 7:679–687.CrossRefPubMedGoogle Scholar
  89. Saavedra, J. M., and Nishimura, Y. (1999). Angiotensin and cerebral blood flow. Cell Mol. Neurobiol. 19:553–573.CrossRefPubMedGoogle Scholar
  90. Sasaki, K., Yamano, Y., Bardhan, S., Iwai, N., Murria, J., Hasegawa, M., Matsuda, Y., and Inagami, T. (1991). Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature 351:230–233.CrossRefPubMedGoogle Scholar
  91. Serra, M., Concas, A., Mostallino, M. C., Chessa, M. F., Stomati, M., Petraglia, F., Genazzani, A. R., and Biggio, G. (1999). Antagonism by pivagabine of stress-induced changes in GABAA receptor function and corticotropin-releasing factor concentrations in rat brain. Psychoneuroendocrinology 24:269–284.CrossRefPubMedGoogle Scholar
  92. Sever, P. S. (1999). Key features of candesartan cilexetil and a comparison with other angiotensin II receptor antagonists. J. Hum. Hypertens. 13(Suppl. 1):S3–S10.CrossRefGoogle Scholar
  93. Shigematsu, K., Saavedra, J. M., Plunkett, L. M., Kurihara, M., and Correa, F. M. A. (1986). Angiotensin II binding site in the anteroventral-third ventricle (AV3V) area and related structures of the rat brain. Neurosci. Lett. 67:37–41.CrossRefPubMedGoogle Scholar
  94. Smith, T. A. (2001). Type A gamma-aminobutyric acid (GABAA) receptor subunits and benzodiazepine binding: Significance to clinical syndromes and their treatment. Br. J. Biomed. Sci. 58:111–121.PubMedGoogle Scholar
  95. Speth, R. C., and Harik, S. I. (1985). Angiotensin II receptor binding sites in brain microvessels. Proc. Natl. Acad. Sci. U.S.A. 82:6340–6343.PubMedGoogle Scholar
  96. Sumitomo, T., Suda, T., Nakano, Y., Tozawa, F., Yamada, M., and Demura, H. (1991). Angiotensin II increases the corticotropin-releasing factor messenger ribonucleic acid levels in the rat hypothalamus. Endocrinology 128:2248–2252.PubMedGoogle Scholar
  97. Timmermans, P. B. (1999). Pharmacological properties of angiotensin II receptor antagonists. Can. J. Cardiol. 15(Suppl. 7):26 F–28 F.Google Scholar
  98. Timmermans, P. B. M. W. M., Inagami, T., Saavedra, J. M., Ardaillou, R., Rosenfeld, C. R., and Mendelsohn, F. A. O. (1995). Angiotensin receptor subtypes and their pharmacology. In Cuello, A. C., and Collier, B. (eds.), Pharmacological Sciences: Perspectives for Research and Therapy in the Late 1990s. Birkhauser Verlag, Basel, Switzerland, pp. 37–58.Google Scholar
  99. Timmermans, P. B. M. W. M., Wong, P. C., Chiu, A. T., Herblin, W. F., Benfield, P., Carini, D. J., Lee, R. J., Wexler, R. R., Saye, J. A. M., and Smith, R. D. (1993). Angiotensin II receptors and angiotensin II receptors antagonists. Pharmacol. Rev. 45:205–251.PubMedGoogle Scholar
  100. Tsutsumi, K., and Saavedra, J. M. (1991a). Characterization and development of angiotensin II receptor subtypes (AT1 and AT2) in rat brain. Am. J. Physiol. 261:R209–R216.Google Scholar
  101. Tsutsumi, K., and Saavedra, J. M. (1991b). Angiotensin II receptor subtypes in median eminence and basal forebrain areas involved in the regulation of pituitary function. Endocrinology 129:3001–3008.Google Scholar
  102. Tsutsumi, K., and Saavedra, J. M. (1991c). Characterization of AT2 angiotensin II receptors in rat anterior cerebral arteries. Am. J. Physiol. 261:H667–H670.Google Scholar
  103. Tsutsumi, K., Strömberg, C., Viswanathan, M., and Saavedra, J. M. (1991a). Angiotensin-II receptor subtypes in fetal tissues of the rat: Autoradiography, guanine nucleotide sensitivity, and association with phosphoinositide hydrolysis. Endocrinology 129:1075–1082.Google Scholar
  104. Tsutsumi, K., Viswanathan, M., Strömberg, C., and Saavedra, J. M. (1991b). Type-1 and type-2 angiotensin receptors in fetal rat brain. Eur. J. Pharmacol. 198:89–92.CrossRefGoogle Scholar
  105. Vraamak, T., Waldemar, G., Strandgaard, S., and Paulson, S. (1995). Angiotensin II receptor antagonist candesartan and cerebral blood flow autoregulation. J. Hypertens. 13:755–761.PubMedGoogle Scholar
  106. Van Houten, M., Schiffrin, E. L., Mann, J. F. E., Posner, B. I., and Boucher, R. (1980). Radioautographic localization of specific binding sites for blood-borne angiotensin II in the rat brain. Brain Res. 186:480–485.CrossRefPubMedGoogle Scholar
  107. Wong, P. C., Hart, S. D., Zaspel, A. M., Chiu, A. T., Ardecky, R. J., Smith, R. D., and Timmermans, P. B. (1990). Functional studies of nonpeptide angiotensin II receptor subtype-specific ligands: DuP 753 (AII-1) and PD 123177 (AII-2). J. Pharmacol. Exp. Ther. 255:584–592.PubMedGoogle Scholar
  108. Xang, G., Xi, Z. X., Wan, Y., Wang, H., and Bi, G. (1993). Changes in circulating and tissue angiotensin II during acute and chronic stress. Biol. Signals 2:166–172.PubMedGoogle Scholar
  109. Yamakawa, H., Jezova, M., Ando, H., and Saavedra, J. M. (2003). Normalization of endothelial and inducible nitric oxide synthase expression in brain microvessels of spontaneously hypertensive rats by angiotensin II AT1 receptor inhibition. J. Cereb. Blood Flow Metab. 23:371–380.CrossRefPubMedGoogle Scholar
  110. Yang, G., Wan, Y., and Zhu, Y. (1996). Angiotensin II- An important stress hormone. Biol. Signals 5:1–8.PubMedGoogle Scholar
  111. Yogo, K., Shimokawa, H., Funakoshi, H., Kandabashi, T., Miyata, K., Okamoto, S., Egashire, K., Huang, P., Akaike, T., and Takeshita, A. (2000). Different vasculoprotective roles of NO synthase isoforms in vascular lesion formation in mice. Arteriosc. Thromb. Vasc. Biol. 20:e96–e100.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Section on Pharmacology, National Institute of Mental Health, National Institutes of HealthDepartment of Health and Human ServicesBethesda

Personalised recommendations