Alzheimer’s Disease—A Dysfunction in Cholesterol and Lipid Metabolism
Article
- 152 Downloads
- 27 Citations
Abstract
1. Strong etiological association exists between dysfunctional metabolism of brain lipids, age-related changes in the cerebral vasculature and neurodegenerative features characteristic of Alzheimer’s disease (AD) brain.
2. In this short review, recent experimental evidence for these associations is further discussed below.
Key Words
Alzheimer amyloid cholesterol lipids oxidation statinsPreview
Unable to display preview. Download preview PDF.
References
- Aliev, G., Smith, M. A., Obrenovich, M. E., de la Torre, J. C., and Perry, G. (2003). Role of vascular hypoperfusion-induced oxidative stress and mitochondria failure in the pathogenesis of Azheimer disease. Neurotox. Res. 5:491–504.PubMedGoogle Scholar
- Bazan, N. G., and Flower, R. J. (2002). Lipid signals in pain control. Nature 420:135–138.CrossRefPubMedGoogle Scholar
- Bazan, N. G., Colangelo, V., and Lukiw, W. J. (2002). Prostaglandins and other lipid mediators in Alzheimer’s disease. Prostaglandins and Other Lipid Mediators 68–69:197–210.CrossRefPubMedGoogle Scholar
- Baskin, F., Rosenberg, R. N., Fang, X., Hynan, L. S., Moore, C. B., Weiner, M., and Vega, G. L. (2003). Correlation of statin-increased platelet APP ratios and reduced blood lipids in AD patients. Neurology 60:2006–2007.PubMedGoogle Scholar
- Bodovitz, S., Klein, W. L. (1996). Cholesterol modulates alpha-secretase cleavage of amyloid precursor protein. J. Biol. Chem. 271:4436–4440.CrossRefPubMedGoogle Scholar
- Cacabelos, R., Fernandez-Novoa, L., Lombardi, V., Corzo, L., Pichel, V., and Kubota, Y. (2003). Cerebrovascular risk factors in Alzheimer’s disease: Brain hemodynamics and pharmacogenomic implications. Neurol. Res. 25:567–580.CrossRefPubMedGoogle Scholar
- Chaney, M. O., Baudry, J., Esh, C., Childress, J., Luehrs, D. C., Kokjohn, T. A., and Roher, A. E. (2003). A beta, aging, and Alzheimer’s disease: A tale, models, and hypotheses. Neurol. Res. 25:581–589.CrossRefPubMedGoogle Scholar
- Colangelo, V., Schurr, J., Ball, M. J., Pelaez, R. P., Bazan, N. G., and Lukiw, W. J. (2002). Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J. Neurosci. Res. 70:462–473.CrossRefPubMedGoogle Scholar
- Cutler, R. G., Kelly, J., Storie, K., Pedersen, W. A., Tammara, A., Hatanpaa, K., Troncoso, J. C., and Mattson, M. P. (2004). Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc. Natl. Acad. Sci. USA. 101:2070–2075.CrossRefPubMedGoogle Scholar
- Dietschy, J. M., and Turley, S. D. (2001). Cholesterol metabolism in the brain. Curr. Opin. Lipidol. 12:105–112.CrossRefPubMedGoogle Scholar
- Edwards, J. E., and Moore, R. A. (2003). Statins in hypercholesterolaemia: A dose-specific meta-analysis of lipid changes in randomised, double blind trials. BMC Family Pract4: 18.CrossRefGoogle Scholar
- Fitzpatrick, A. L., Kuller, L. H., Ives, D. G., Lopez, O. L., Jagust, W., Breitner, J. C., Jones, B., Lyketsos, C., and Dulberg, C. (2004). Incidence and prevalence of dementia in the Cardiovascular Health Study. J. Am. Geriatr. Soc. 52:195–204.CrossRefPubMedGoogle Scholar
- Flood, D. G., Reaume, A. G., Dorfman, K. S., Lin, Y. G., Lang, D. M., Trusko, S. P., Savage, M. J., Annaert, W. G., De Strooper, B., Siman, R., and Scott, R. W. (2002). FAD mutant PS-1 gene-targeted mice: increased Abeta 42 and Abeta deposition without APP overproduction. Neurobiol. Aging 23:335–348.CrossRefPubMedGoogle Scholar
- Frears, E. R., Stephens, D. J., Walters, C. E., Davies, H., and Austen, B. M. (1999). The role of cholesterol in the biosynthesis of beta-amyloid. Neuroreport 10:1699–1705.PubMedGoogle Scholar
- Fukumoto, H., Rosene, D. L., Moss, M. B., Raju, S., Hyman, B. T., and Irizarry, M. C. (2004). Beta-secretase activity increases with aging in human, monkey, and mouse brain. Am. J. Pathol. 164:719–725.PubMedGoogle Scholar
- Gibson Wood, W., Eckert, G. P., Igbavboa, U., and Muller, W. E. (2003). Amyloid beta-protein interactions with membranes and cholesterol: Causes or casualties of Alzheimer’s disease. Biochim. Biophys. Acta 1610:281–290.PubMedGoogle Scholar
- Grant, W. B. (1999). Dietary links to Alzheimer’s Disease: 1999 update, J. Alzheimer Dis. 1:197–201.Google Scholar
- Hoglund, K., Wiklund, O., Vanderstichel, H., Eikenberg, O., Vanmechelen, E., and Blennow, K. (2004). Plasma levels of beta-amyloid(1–40), beta-amyloid(1–42), and total beta-amyloid remain unaffected in adult patients with hypercholesterolemia after treatment with statins. Arch Neurol. 61:333–337.CrossRefPubMedGoogle Scholar
- Jankowsky, J. L., Fadale, D. J., Anderson, J., Xu, G. M., Gonzales, V., Jenkins, N. A., Copeland, N. G., Lee, M. K., Younkin, L. H., Wagner, S. L., Younkin, S. G., and Borchelt, D. R. (2004). Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: Evidence for augmentation of a 42-specific gamma secretase. Hum. Mol. Genet. 13:159–170.CrossRefPubMedGoogle Scholar
- Jick, H., Zornberg, G. L., Jick, S. S., Seshadri, S., and Drachman, D. A. (2000). Statins and the risk of dementia. Lancet 356:1627–1631.CrossRefPubMedGoogle Scholar
- Kolsch, H., Lutjohann, D., von Bergmann, K., and Heun, R. (2003). The role of 24S-hydroxycholesterol in Alzheimer’s disease. J. Nutr. Health Aging 7:37–41.PubMedGoogle Scholar
- Launer, L. (2003). Nonsteroidal anti-inflammatory drug use and the risk for Alzheimer’s disease: Dissecting the epidemiological evidence. Drugs 63:731–739.PubMedGoogle Scholar
- Lukiw, W. J. (2004). Gene Expression Profiling in Fetal, Aged and Alzheimer Hippocampus—A Continuum of Stress-Related Signaling. Neurochem. Res. 29:1287–1297.CrossRefPubMedGoogle Scholar
- Lutjohann, D., and von Bergmann, K. (2003). 24S-hydroxycholesterol: A marker of brain cholesterol metabolism. Pharmacopsychiatry 36:S102–S106.CrossRefPubMedGoogle Scholar
- Marcheselli, V. L., Hong, S., Lukiw, W. J., Tian, X. H., Gronert, K., Musto, A., Hardy, M., Gimenez, J. M., Chiang, N., Serhan, C. N., and Bazan, N. G. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J. Biol. Chem. 278:43807–43817.CrossRefPubMedGoogle Scholar
- Mason, R. P., Shoemaker, W. J., Shajenko, L., Chambers, T. E., and Herbette, G. (1992). Evidence for changes in the Alzheimer’s disease brain cortical membrane structure mediated by cholesterol. Neurobiol. Aging 13:413–419.CrossRefPubMedGoogle Scholar
- McGeer, P. L., Schulzer, M., and McGeer, E. G. (1996). Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: A review of 17 epidemiologic studies. Neurology 47:425–432.PubMedGoogle Scholar
- Miller, L. J., and Chacko, R. (2004). The role of cholesterol and statins in Alzheimer’s disease. Ann. Pharmacother. 38:91–98.CrossRefPubMedGoogle Scholar
- Mirra, S. S., Heyman, A., McKeel, D., Sumi, S. M., Crain, B. J., Brownlee, L. M., Vogel, F. S., Hughes, J. P., van Belle, G., and Berg, L. (1991). The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486.PubMedGoogle Scholar
- Mizuno, T., Haass, C., Michikawa, M., and Yanagisawa, K. (1998). Cholesterol-dependent generation of a unique amyloid beta-protein from atypically missorted amyloid precursor protein in MDCK cells. Biochem. Biophys. Acta 1373:119–130.PubMedGoogle Scholar
- Murphy, M. P., Das, P., Nyborg, A. C., Rochette, M. J., Dodson, M. W., Loosbrock, N. M., Souder, T. M., McLendon, C., Merit, S. L., Piper, S. C., Jansen, K. R., and Golde, T. E. (2003). Overexpression of nicastrin increases Abeta production. FASEB J. 17:1138–1140.PubMedGoogle Scholar
- Newschaffer, C. J., Bush, T. L., and Hale, W. E. (1992). Aging and total cholesterol levels: Cohort, period and survivorship effects. Am. J. Epidemiol. 136:23–34.PubMedGoogle Scholar
- Notkola, I. L., Sulkava, R., Pekkanen, J., Erkinjuntti, T., Ehnholm, C., Kivinen, P., Tuomilehto, J., and Nissinen, A. (1998). Serum total cholesterol, apolipoprotein E epsilon 4 allele, and Alzheimer’s disease. Neuroepidemiology 17:14–20.CrossRefPubMedGoogle Scholar
- Pappolla, M. A., Omar, R. A., Kim, K. S., and Robakis, N. K. (1992). Immunohistochemical evidence of oxidative stress in Alzheimer’s disease. Am. J. Pathol. 140: 621–628.PubMedGoogle Scholar
- Pappolla, M. A., Chyan, Y. J., Omar, R. A., Hsiao, K., Perry, G., Smith, M. A., and Bozner, P. (1998). Evidence of oxidative stress and in vivo neurotoxicity of beta-amyloid in a transgenic mouse model of Alzheimer’s disease: A chronic oxidative paradigm for testing antioxidant therapies in vivo. Am. J. Pathol. 152:871–877.PubMedGoogle Scholar
- Pappolla, M. A., Bryant-Thomas, T. K., Herbert, D., Pacheco, J., Fabra Garcia, M., Manjon, M., Girones, X., Henry, T. L., Matsubara, E., Zambon, D., Wolozin, B., Petanceska, S. S., Sano, M., Cruz-Sanchez, F. F., Thal, L. J., and Refolo, L. M. (2003). Hypercholesterolemia is an Early Risk Factor for the Development of Alzheimer Amyloid Pathology. Neurology 61:199–205.PubMedGoogle Scholar
- Park, I. H., Hwang, E. M., Hong, H. S., Boo, J. H., Oh, S. S., Lee, J., Jung, M. W., Bang, O. Y., Kim, S. U., and Mook-Jung, I. (2003). Lovastatin enhances Abeta production and senile plaque deposition in female Tg2576 mice. Neurobiol Aging. 24:637–643.CrossRefPubMedGoogle Scholar
- Pasternak, S. H., Callahan, J. W., and Mahuran, D. J. (2004). The role of the endosomal/lysosomal system in amyloid-beta production and the pathophysiology of Alzheimer’s disease: Reexamining the spatial paradox from a lysosomal perspective. J. Alzheimers Dis. 6:53–65.PubMedGoogle Scholar
- Petanceska, S. S., DeRosa, S., Sharma, A., Diaz, N., Duff, K., Tint, S. G., Refolo, L. M., and Pappolla, M. (2003). Changes in apolipoprotein E expression in response to dietary and pharmacological modulation of cholesterol. J. Mol. Neurosci. 20:395–406.CrossRefPubMedGoogle Scholar
- Puglielli, L., Tanzi, R. E., and Kovacs, D. M. (2003). Alzheimer’s disease: The cholesterol connection. Nat. Neurosci. 6:345–351.CrossRefPubMedGoogle Scholar
- Qin, W., Ho, L., Pompl, P. N., Peng, Y., Zhao, Z., Xiang, Z., Robakis, N. K., Shioi, J., Suh, J., and Pasinetti, G. M. (2003). Cyclooxygenase (COX)-2 and COX-1 potentiate beta-amyloid peptide generation through mechanisms that involve gamma-secretase activity. J. Biol. Chem. 278:50970–50977.CrossRefPubMedGoogle Scholar
- Ravona-Springer, R., Davidson, M., and Noy, S. (2003). The role of cardiovascular risk factors in Alzheimer’s disease. CNS Spectr. 8:824–833.PubMedGoogle Scholar
- Refolo, L. M., Malester, B., LaFrancois, J., Bryant-Thomas, T., Wang, R., Tint, G. S., Sambamurti, K., Duff, K., and Pappolla, M. A. (2000). Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol. Dis. 7:321–331.CrossRefPubMedGoogle Scholar
- Rohe, A. E., Kuo, Y. M., Kokjohn, K. M., Emmerling, M. R., and Gracon, S. (1999). Amyloid and lipids in the pathology of Alzheimer disease. Amyloid 6:136–145.PubMedGoogle Scholar
- Schenk, D. (2000). Alzheimer’s disease: A partner for presenilin. Nature 407:48–54.CrossRefPubMedGoogle Scholar
- Sidera, C., Parsons, R., and Austen, B. (2004). Proteolytic cascade in the amyloido-genesis of Alzheimer’s disease. Biochem. Soc. Trans. 32:33–36.CrossRefPubMedGoogle Scholar
- Simons, M., Keller, P., De Strooper, B., Beyreuther, K., Dotti, C. G., and Simons, K. (1998). Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Pro. Natl. Acad. Sci. USA 95:6460–6464.CrossRefGoogle Scholar
- Sparks, D. L., Martin, T. A., Gross, D. R., and Hunsaker, J. C. III (2000). Link between heart disease, cholesterol, and Alzheimer’s disease: A review. Microsc. Res. Tech. 50:287–290.CrossRefPubMedGoogle Scholar
- Strittmatter, W. J., Saunders, A. M., Schmeche, D., Pericak-Vance, M., Enghild, J., Salvesen, G. S., and Roses, A. D. (1993). Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. USA 90:1977–1981.PubMedGoogle Scholar
- Stuve, O., Youssef, S., Steinman, L., and Zamvil, S. S. (2003). Statins as potential therapeutic agents in neuroinflammatory disorders. Curr. Opin. Neurol. 16:393–401.CrossRefPubMedGoogle Scholar
- Weir, M. R., Sperling, R. S., Reicin, A., and Gert, B. J. (2003). Selective COX-2 inhibition and cardiovascular effects: A review of the rofecoxib program. Am. Heart J. 146:591–604.CrossRefPubMedGoogle Scholar
- Wilson, H. L., Schwartz, D. M., Bhatt, H. R., McCulloch, C. E., and Duncan, J. L. (2004). Statin and aspirin therapy are associated with decreased rates of choroidal neovascularization among patients with age-related macular degeneration. Am. J. Ophthalmol. 137:615–624.CrossRefPubMedGoogle Scholar
- Wolozin, B., Kellman, W., Ruosseau, P., Celesia, G. G., and Siegel, G. (2000). Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Arch. Neurol. 57:1439–1443.CrossRefPubMedGoogle Scholar
- Wolozin, B. (2003). Cyp46 (24S-cholesterol hydroxylase): A genetic risk factor for Alzheimer disease. Arch. Neurol. 60:29–35.PubMedGoogle Scholar
- Wood, W. G., Schroeder, F., Avdulov, N. A., Chochina, S. V., and Igbavboa, U. (1999). Recent advances in brain cholesterol dynamics: Transport, domains and Alzheimer’s disease. Lipids 34:225–234.PubMedGoogle Scholar
- Zatta, P., Zambenedetti, P., Stella, M. P., and Licastro, F. (2002). Astrocytosis, microgliosis, metallothionein-I-II and amyloid expression in high cholesterol-fed rabbits. J. Alzheimers Dis. 4:1–9.PubMedGoogle Scholar
- Zlokovic, B. V., Yamada, S., Holtzman, D., Ghiso, J., and Frangione, B. (2000). Clearance of amyloid beta-peptide from brain: Transport or metabolism? Nat. Med. 6:718.CrossRefGoogle Scholar
Copyright information
© Springer Science + Business Media, Inc. 2005