Cellular and Molecular Neurobiology

, Volume 25, Issue 3–4, pp 743–757 | Cite as

ACTH Enhancement of T-Lymphocyte Cytotoxic Responses

  • Eve W. Johnson
  • Thomas K. HughesJr
  • Eric M. Smith
Article

Abstract

1. Corticotropin (ACTH) was one of the first neuropeptides shown to bind to receptors on leukocytes and modulate immune responses. Generally ACTH inhibits immune responses, but certain functions can be enhanced. The present study was performed to determine the effects of ACTH on cytotoxic T-lymphocyte responses, the components, and the major phenotypes of the participating cells.

2. The action of ACTH on cytotoxicity was measured in vitro, in assays utilizing T-lymphocytes that had been previously sensitized in vivo. The cells were then cultured with ACTH and target cells bearing the appropriate stimulatory major histocompatiblity antigens.

3. ACTH did not significantly affect a primary mixed lymphocyte reaction whereas it enhanced a secondary (memory) cytotoxic response up to 100% following 2 days of ACTH treatment. The effect was a shift in the kinetics of effector cell generation so that ACTH-treated cultures demonstrated an augmented cytotoxic activity on day 2, that was not as pronounced on day 3 as cytotoxic activity in control cultures became maximal. ACTH also inhibited Concanavalin A-stimulated T-lymphocyte mitogenesis. Immature thymocyte mitogenesis was inhibited more than that of mature thymocytes.

4. The finding that IFN-γ was elevated in the cultures suggested that ACTH may enhance memory cytotoxic responses through a combination of mechanisms such as direct cell alterations or synergy with regulatory cytokines. While corticosteroids are probably the most recognized neuroendocrine, stress hormone to affect immune functions, our study illustrates that other neuroendocrine factors such as ACTH, also directly affect immune functions.

Key Words

psychoneuroimmunology stress immune system neuroendocrine system pituitary 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akbulut, S., Byersdorfer, C. A., Larsen, C., Zimmer, S. L., Humphreys, T. D., and Clarke, B. L. (2001). Expression of the melanocortin 5 receptor on rat lymphocytes. Biochem. Biophys. Res. Commun. 281:1086–1092.CrossRefPubMedGoogle Scholar
  2. Alvarez-Mon, M., Kehrl, J. H., and Fauci, A. S. (1985). A potential role for adrenocorticotropin in regulating human B lymphocyte functions. J. Immunol. 135:3823–3826.PubMedGoogle Scholar
  3. Ashton-Rickardt, P. G., and Opferman, J. T. (1999). Memory T lymphocytes. Cell Mol. Life Sci. 56:69–77.CrossRefPubMedGoogle Scholar
  4. Bhardwaj, R., Becher, E., Mahnke, K., Hartmeyer, M., Schwarz, T., Scholzen, T., and Luger, T. A. (1997). Evidence for the differential expression of the functional alpha-melanocyte-stimulating hormone receptor MC-1 on human monocytes. J. Immunol. 158:3378–3384.PubMedGoogle Scholar
  5. Bost, K. L., Clarke, B. L., Xu, J. C., Kiyono, H., McGhee, J. R., and Pascual, D. (1990). Modulation of IgM secretion and H chain mRNA expression in CH12.LX.C4.5F5 B cells by adrenocorticotropic hormone. J. Immunol. 145:4326–4331.PubMedGoogle Scholar
  6. Campbell, J. B., Grunberger, J., Kochman, M. A., and White, S. L. (1975). A microplaque reduction assay for human and mouse interferon. Can. J. Microbiol 21:1247–1253.PubMedGoogle Scholar
  7. Catania, A., Rajora, N., Capsoni, F., Minonzio, F., Star, R. A., and Lipton, J. M. (1996). The neuropeptide alpha-MSH has specific receptors on neutrophils and reduces chemotaxis in vitro. Peptides 17:675–679.CrossRefPubMedGoogle Scholar
  8. Clarke, B. L., and Bost, K. L. (1989). Differential expression of functional adrenocorticotropic hormone receptors by subpopulations of lymphocytes. J. Immunol. 143:464–469.PubMedGoogle Scholar
  9. Cohen, S., Tyrrell, D., and Smith, A. P. (1991). Psychological stress and susceptibility to the common cold. N. Engl. J. Med. 1991:606–612.Google Scholar
  10. DuPont, A. G., Somers, G., Van Steirteghem, A. C., Warson, F., and Vanhaelst, L. (1984). Ectopic adrenocorticotropin production: Disappearance after removal of inflammatory tissue. J. Clin. Endocrinol Metab 58:654–658.PubMedGoogle Scholar
  11. Galvan, M., Murali-Krishna, K., Ming, L. L., Baum, L., and Ahmed, R. (1998). Alterations in cell surface carbohydrates on T cells from virally infected mice can distinguish effector/memory CD8+ T cells from naive cells. J. Immunol. 161:641–648.PubMedGoogle Scholar
  12. Glaser, R., Kiecolt-Glaser, J. K., Bonneau, R. H., Malarkey, W. B., Kennedy, S., and Hughes, J. (1992). Stress-induced modulation of the immune response to recombinant hepatitis B vaccine. Psychom. Med. 54:22–29.Google Scholar
  13. Hartmeyer, M., Scholzen, T., Becher, E., Bhardwaj, R. S., Schwarz, T., and Luger, T.A. (1997). Human dermal microvascular endothelial cells express the melanocortin receptor type 1 and produce increased levels of IL-8 upon stimulation with alpha-melanocyte-stimulating hormone. J. Immunol. 159:1930–1937.PubMedGoogle Scholar
  14. Heijnen, C. J., Zijlstra, J., Kavelaars, A., Croiset, G., and Ballieux, R. E. (1987). Modulation of the immune response by POMC-derived peptides. I. Influence on proliferation of human lymphocytes. Brain Behav. Immun. 1:284–291.CrossRefPubMedGoogle Scholar
  15. Hughes, T. K., and Smith, E. M. (1989). Corticotropin (ACTH) induction of tumor necrosis factor alpha by monocytes. J. Biol. Regul. Homeost. Agents 3:163–166.PubMedGoogle Scholar
  16. Johnson, E. W. (1989) Distribution, modulation, and function of murine leukocyte adrenocorticotropin receptors: a dissertation, pp. 1–117. University of Texas Medical Branch, Galveston.Google Scholar
  17. Johnson, E. W., Blalock, J. E., and Smith, E. M. (1988). ACTH receptor-mediated induction of leukocyte cyclic AMP. Biochem. Biophys. Res. Commun. 157:1205–1211.CrossRefPubMedGoogle Scholar
  18. Johnson, E. W., Hughes, T. K., and Smith, E. M. (2001). ACTH receptor distribution and modulation among murine mononuclear leukocyte populations. J. Biol. Regul. Homeost. Agents 15:156–162.PubMedGoogle Scholar
  19. Johnson, H. M., Smith, E. M., Torres, B. A., and Blalock, J. E. (1982). Regulation of the in vitro antibody response by neuroendocrine hormones. Proc. Natl Acad. Sci USA 79:4171–4174.PubMedGoogle Scholar
  20. Johnson, H. M., Torres, B. A., Smith, E. M., Dion, L. D., and Blalock, J. E. (1984). Regulation of lymphokine (gamma-interferon) production by corticotropin. J. Immunol. 132:246–250.PubMedGoogle Scholar
  21. Kavelaars, A., Ballieux, R. E., and Heijnen, C. (1988). Modulation of the immune response by proopiomelanocortin derived peptides. II. Influence of adrenocorticotropic hormone on the rise in intracellular free calcium concentration after T cell activation. Brain Behav. Immun. 2:57–66.CrossRefPubMedGoogle Scholar
  22. Kiecolt-Glaser, J. K., Glaser, R., Gravenstein, S., Malarkey, W. B., and Sheridan, J. (1996). Chronic stress alters the immune response to influenza virus vaccine in older adults. Proc. Natl. Acad. Sci. USA 93:3043–3047.CrossRefPubMedGoogle Scholar
  23. Koff, W. C., and Dunegan, M. A. (1985). Modulation of macrophage-mediated tumoricidal activity by neuropeptides and neurohormones. J. Immunol. 135:350–354.PubMedGoogle Scholar
  24. MacDonald, H. R., Cerottini, J. C., Ryser, J. E., Maryanski, J. L., Taswell, C., Widmer, M. B., and Brunner, K. T. (1980). Quantitation and cloning of cytolytic T lymphocytes and their precursors. Immunol. Rev. 51:93–123.PubMedGoogle Scholar
  25. McEwen, B. S., Biron, C. A., Brunson, K. W., Bulloch, K., Chambers, W. H., Dhabhar, F. S., Goldfarb, R. H., Kitson, R. P., Miller, A. H., Spencer, R. L., and Weiss, J. M. (1997). The role of adrenocorticoids as modulators of immune function in health and disease: Neural, endocrine and immune interactions. Brain Res. Rev. 23:79–133.CrossRefPubMedGoogle Scholar
  26. Meyer, III, W. J., Smith, E. M., Richards, G. E., Cavallo, A., Morrill, A. C., and Blalock, J. E. (1987). In vivo immunoreactive adrenocorticotropin (ACTH) production by human mononuclear leukocytes from normal and ACTH-deficient individuals. J. Clin. Endocrinol. Metabol 64:98–105.Google Scholar
  27. Mishell, B. B., and Shiigi, S. M. (1980) Selected Methods in Cellular Immunol. pp. 1–486. W. H. Freeman, San Francisco.Google Scholar
  28. Reisner, Y., Linker-Israeli, M., and Sharon, N. (1976). Separation of mouse thymocytes into two subpopulations by the use of peanut agglutinin. Cell Immunol. 25:129–134.CrossRefPubMedGoogle Scholar
  29. Schioth, H. B., Chhajlani, V., Muceniece, R., Klusa, V., and Wikberg, J. E. (1996). Major pharmacological distinction of the ACTH receptor from other melanocortin receptors. Life Sci. 59:797–801.CrossRefPubMedGoogle Scholar
  30. Sheridan, J. F. (1998). Norman Cousins Memorial Lecture 1997. Stress-induced modulation of anti-viral immunity. Brain Behav. Immun. 12:1–6.CrossRefPubMedGoogle Scholar
  31. Smith, E. M. (1994). Corticotropin and Immunoregulation.in by Scharrer, B E., Smith, M., and Stefano, G. B. (eds), Neuropeptides and Immunoregulation. Springer-Verlag, Berlin, pp. 28–45.Google Scholar
  32. Smith, E. M., and Blalock, J. E. (1981). Human lymphocyte production of corticotropin and endorphin-like substances: Association with leukocyte interferon. Proc. Natl Acad. Sci. USA 78:7530–7534.PubMedGoogle Scholar
  33. Smith, E. M., Brosnan, P., Meyer, W. J., and Blalock, J. E. (1987). An ACTH receptor on human mononuclear leukocytes. Relation to adrenal ACTH-receptor activity. N. Engl. J. Med. 317:1266–1269.PubMedGoogle Scholar
  34. Smith, E. M., Galin, F. S., LeBoeuf, R. D., Coppenhaver, D. H., Harbour, D. V., and Blalock, J. E. (1990). Nucleotide and amino acid sequence of lymphocyte-derived corticotropin: Endotoxin induction of a truncated peptide. Proc. Natl. Acad. Sci. USA 87:1057–1060.PubMedGoogle Scholar
  35. Smith, E. M., Hughes, T. K., Jr., Hashemi, F., and Stefano, G. B. (1992). Immunosuppressive effects of corticotropin and melanotropin and their possible significance in human immunodeficiency virus infection. Proc Natl Aca Sci USA 89:782–786.Google Scholar
  36. Smith, E. M., Johnson, H. M., and Blalock, J. E. (1983). Staphylococcus aureus protein A induces the production of interferon-alpha in human lymphocytes and interferon-alpha/beta in mouse spleen cells. J. Immunol. 130:773–776.PubMedGoogle Scholar
  37. Smith, E. M., Meyer, W. J., and Blalock, J. E. (1982). Virus-induced corticosterone in hypophysectomized mice: A possible lymphoid adrenal axis. Science 218:1311–1312.PubMedGoogle Scholar
  38. Sprent, J. (2003). Turnover of memory-phenotype CD8+ T cells. Microbes Infect. 5:227–231.CrossRefPubMedGoogle Scholar
  39. Sprent, J., and Surh, C. D. (2001). Generation and maintenance of memory T cells. Curr. Opin. Immun. 13:248–254.CrossRefGoogle Scholar
  40. Sprent, J., and Surh, C. D. (2002). T cell memory. Annu. Rev. Immun. 20:551–579.CrossRefPubMedGoogle Scholar
  41. Star, R. A., Rajora, N., Huang, J., Stock, R. C., Catania, A., and Lipton, J. M. (1995). Evidence of autocrine modulation of macrophage nitric oxide synthase by alpha-melanocyte-stimulating hormone. Proc. Natl Acad. Sci. USA 92:8016–8020.PubMedGoogle Scholar
  42. Stefano, G. B., and Smith, E. M. (1996). Adrenocorticotropin–a central trigger in immune responsiveness: Tonal inhibition of immune activation. Med. Hypo. 46:471–478.CrossRefGoogle Scholar
  43. Stein, C., Hassan, A. H., Przewlocki, R., Gramsch, C., Peter, K., and Herz, A. (1990). Opioids from immunocytes interact with receptors on sensory nerves to inhibit nociception in inflammation. Proc. Natl. Acad. Sci USA 87:5935–5939.PubMedGoogle Scholar
  44. Swain, S. L. (2003). Regulation of the generation and maintenance of T-cell memory: A direct, default pathway from effectors to memory cells. Microbes Infect. 5:213–219.CrossRefPubMedGoogle Scholar
  45. Tomiyama, H., Matsuda, T., and Takiguchi, M. (2002). Differentiation of human CD8+ T cells from a memory to memory/effector phenotype. J. Immunol. 168:5538–5550.PubMedGoogle Scholar
  46. Wikberg, J. E. (1999). Melanocortin receptors: perspectives for novel drugs. Eur. J. Pharmacol. 375:295–310.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Eve W. Johnson
    • 1
    • 2
  • Thomas K. HughesJr
    • 1
  • Eric M. Smith
    • 1
    • 3
  1. 1.Microbiology and ImmunologyUniversity of Texas Medical BranchGalveston
  2. 2.Eve Johnson Wilson, MedicallianceColumbia
  3. 3.Psychiatry and Behavioral SciencesUniversity of Texas Medical BranchGalveston

Personalised recommendations