Cellular and Molecular Neurobiology

, Volume 25, Issue 3–4, pp 513–552

Nicotinic Agonists, Antagonists, and Modulators From Natural Sources

Article

Abstract

1. Acetylcholine receptors were initially defined as nicotinic or muscarinic, based on selective activation by two natural products, nicotine and muscarine. Several further nicotinic agonists have been discovered from natural sources, including cytisine, anatoxin, ferruginine, anabaseine, epibatidine, and epiquinamide. These have provided lead structures for the design of a wide range of synthetic agents.

2. Natural sources have also provided competitive nicotinic antagonists, such as the Erythrina alkaloids, the tubocurarines, and methyllycaconitine. Noncompetitive antagonists, such as the histrionicotoxins, various izidines, decahydroquinolines, spiropyrrolizidine oximes, pseudophrynamines, ibogaine, strychnine, cocaine, and sparteine have come from natural sources. Finally, galanthamine, codeine, and ivermectin represent positive modulators of nicotinic function, derived from natural sources.

3. Clearly, research on acetylcholine receptors and functions has been dependent on key natural products and the synthetic agents that they inspired.

Key Words

anatoxin cocaine cytisine dihydro-beta-erythroidine epibatidine epiquinamide galanthamine histrionicotoxin ibogaine methyllycaconitine muscarine nicotine noncompetitive antagonists tubocurarine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abood, L. G., and Grassi, S. (1986). [3H]-Methylcarbamylcholine, a new radioligand for studying brain nicotinic receptors. Biochem. Pharmacol. 35:4199–4202.CrossRefPubMedGoogle Scholar
  2. Abood, L. G., Salles, K. S., and Maiti, K. (1988). Structure-activity studies of carbamate and other esters: Agonists and antagonists to nicotine. Pharmacol. Biochem. Behav. 30:403–408.CrossRefPubMedGoogle Scholar
  3. Abreo, M. A., Lin, N.-H., Garvey, D. S., Gunn, D. E., Hettinger, A.-M., Wasicak, J. T., Pavlik, P. A., Martin, Y. C., Donnelly-Roberts, D. L., Anderson, D. J., Sullivan, J. P., Williams, M., Arneric, S. P., and Holladay, M. W. (1996). Novel 3-pyridyl ethers with subnanomolar affinity for central neuronal nicotinic acetylcholine receptors. J. Med. Chem. 39:817–825.CrossRefPubMedGoogle Scholar
  4. Aiyar, V. N., Benn, M. H., Hanna, T., Jacyno, J., Roth, S. H., and Wilkens, J. L. (1979). The principal toxin of Delphinium brownii, and its mode of action. Experientia 35:1367–1368.PubMedGoogle Scholar
  5. Albuquerque, E. X., Barnard, E. A., Chiu, T. M., Lapa, A. J., Dolly, J. O., Jansson, S.-E., Daly, J. W., and Witkop, B. (1973). Acetylcholine receptor and ion conductance modulator sites at the murine neuromuscular junction: Evidence from specific toxin reactions. Proc. Natl. Acad. Sci. USA 70:949–953.PubMedGoogle Scholar
  6. Albuquerque, E. X., Tsai, M.-C., Aronstam, R. S., Witkop, B., Eldefrawi, A. T., and Eldefrawi, M. E. (1980). Phencyclidine interactions with the ion channel of the acetylcholine receptor and electrogenic membrane. Proc. Natl. Acad. Sci. USA 77:1224–1228.PubMedGoogle Scholar
  7. Anderson, D. J., and Arneric, S. P. (1994). Nicotinic receptor binding of [3H]cystisine, [3H]nicotine and [3H]methylcarbamylcholine in rat brain. Eur. J. Pharmacol. 253:261–267.CrossRefPubMedGoogle Scholar
  8. Anderson, D. J., Williams, M., Pauly, J. R., Raszkiewicz, J. L., Campbell, J. E., Rotert, G., Surber, B., Thomas, S. B., Wasicak, J., Arneric, S. P., and Sullivan, J. P. (1995). Characterization of [3H]ABT-418: A novel cholinergic channel ligand. J. Pharmacol. Exp. Ther. 273:1434–1441.PubMedGoogle Scholar
  9. Archer, S., Lands, A. M., and Lewis, T. R. (1962). Isomeric 1-acetoxytropine methiodides. J. Med. Pharm. Chem. 5:423–430.CrossRefGoogle Scholar
  10. Arias, H. R. (1998). Binding sites for exogenous and endogenous non-competitive inhibitors of the nicotinic acetylcholine receptor. Biochim. Biophys. Acta 1376:173–220.PubMedGoogle Scholar
  11. Aronstam, R. S., Daly, J. W., Spande, T. F., Narayanan, T. K., and Albuquerque, E. X. (1986). Interaction of gephyrotoxin and indolizidine alkaloids with the nicotinic acetylcholine receptor-ion channel complex of Torpedo electroplax. Neurochem. Res. 11, 8:1227–1240.CrossRefPubMedGoogle Scholar
  12. Aronstam, R. S., Edwards, M. W., Daly, J. W., and Albuquerque, E. X. (1988). Interactions of piperidine derivatives with the nicotinic cholinergic receptor complex from Torpedo electric organ. Neurochem. Res. 13:171–176.CrossRefPubMedGoogle Scholar
  13. Aronstam, R. S., Eldefrawi, A. T., Pessah, I. N., Daly, J. W., Albuquerque, E. X., and Eldefrawi, M. E. (1981). Regulation of [3H]perhydrohistrionicotoxin binding to Torpedo ocellata electroplax by effectors of the acetylcholine receptor. J. Biol. Chem. 256:2843–2850.PubMedGoogle Scholar
  14. Aronstam, R. S., King, C. T., Jr., Albuquerque, E. X., Daly, J. W., and Feigl, D. M. (1985). Binding of [3H]perhydrohistrionicotoxin and [3H]phencyclidine to the nicotinic receptor-ion channel complex of Torpedo electroplax. Inhibition by histrionicotoxins and derivatives. Biochem. Pharmacol. 34:3037–3047.CrossRefPubMedGoogle Scholar
  15. Avalos, M., Parker, M. J., Maddox, F. N., Carroll, F. I., and Luetje, C. W. (2002). Effects of pyridine ring substitutions on affinity, efficacy, and subtype selectivity of neuronal nicotinic receptor agonist epibatidine. J. Pharmacol. Exp. Ther. 302:1246–1252.CrossRefPubMedGoogle Scholar
  16. Avenoza, A., Busto, J. H., Cativiela, C., Dordal, A., Frigola, J., and Peregrina, J. M. (2002). Synthesis, activity and theoretical study of ABT-418 analogues. Tetrahedron 58:4505–4511.CrossRefGoogle Scholar
  17. Ayers, J. T., Dwoskin, L. P., Deaciuc, A. G., Grinevich, V. P., Zhu, J., and Crooks, P. A. (2002). bis-Azaaromatic quaternary ammonium analogues: Ligands for α4β2* and α7* subtypes of neuronal nicotinic receptors. Bioorg. Med. Chem. Lett. 12:3067–3071.CrossRefPubMedGoogle Scholar
  18. Badio, B., and Daly, J. W. (1994). Epibatidine, a potent analgetic and nicotinic agonist. Mol. Pharmacol. 45:563–569.PubMedGoogle Scholar
  19. Badio, B., Garraffo, H. M., Padgett, W. L., Greig, N. H., and Daly, J. W. (1997a). Pseudophrynaminol: A potent noncompetitive blocker of nicotinic receptor-channels. Biochem. Pharmacol. 53:671–676.CrossRefGoogle Scholar
  20. Badio, B., Garraffo, H. M., Plummer, C. V., Padgett, W. L., and Daly, J. W. (1997b). Synthesis and nicotinic activity of epiboxidine: An isoxazole analogue of epibatidine. Eur. J. Pharmacol. 321:189–194.CrossRefGoogle Scholar
  21. Badio, B., Garraffo, H. M., Spande, T. F., and Daly, J. W. (1994). Epibatidine: Discovery and definition as a potent analgesic and nicotinic agonist. Med. Chem. Res. 4:440–448.Google Scholar
  22. Badio, B., Shi, D., Garraffo, H. M., and Daly, J. W. (1995). Antinociceptive effects of the alkaloid epibatidine: Further studies on involvement of nicotinic receptors. Drug Dev. Res. 36:46–59.CrossRefGoogle Scholar
  23. Badio, B., Padgett, W. L., and Daly, J. W. (1997c). Ibogaine: A potent noncompetitive blocker of ganglionic/neuronal nicotinic receptors. Mol. Pharmacol. 51:1–5.Google Scholar
  24. Badio, B., Shi, D., Shin, Y., Hutchinson, K. D., Padgett, W. L., and Daly, J. W. (1996). Spiropyrrolizidines: A new class of blockers of nicotinic receptors. Biochem. Pharmacol. 52:933–939.CrossRefPubMedGoogle Scholar
  25. Balestra, B., Vailati, S., Moretti, M., Hanke, W., Clementi, F., and Gotti, C. (2000). Chick optic lobe contains a developmentally regulated α2α5β2 nicotinic receptor subtype. Mol. Pharmacol. 58:300–311.PubMedGoogle Scholar
  26. Balboni, G., Marastoni, M., Merighi, S., Borea, P. A., and Tomatis, R. (2000). Synthesis and activity of 3-pyridylamine ligands at central nicotinic receptors. Eur. J. Med. Chem. 35:979–988.CrossRefPubMedGoogle Scholar
  27. Barabino, B., Vailati, S., Moretti, M., Mcintosh, J. M., Longhi, R., Clementi, F., and Gotti, C. (2001). An α4β4 nicotinic receptor subtype is present in chick retina: Identification, characterization and pharmacological comparison with the transfected α4β4 and α6β4 subtypes. Mol. Pharmacol. 59:1410–1417.PubMedGoogle Scholar
  28. Barlocco, D., Cignarella, G., Tondi, D., Vianello, P., Villa, S., Bartolini, A., Ghelardini, C., Galeotti, N., Anderson, D. J., Kuntzweiler, T. A., Colombo, D., and Toma, L. (1998). Mono- and disubstituted-3,8-diazabicyclo[3.2.1]octane derivatives as analgesics structurally related to epibatidine: Synthesis, activity, and modeling. J. Med. Chem. 41:674–681.CrossRefPubMedGoogle Scholar
  29. Battersby, A. R., and Hodson, H. F. (1968). Alkaloids of calabash curare and Strychnos species. In Manske, R. H. F. (ed.), The Alkaloids, Chemistry and Physiology, Vol. 11, Academic Press, New York, pp. 189–204.Google Scholar
  30. Beach, J. W., Damaj, M. I., Jonnala, R. R., Terry, A. V., Jr., and Buccafusco, J. J. (1998). Synthesis and in vivo and in vitro evaluation of isoarecolone and derivatives. Med. Chem. Res. 8:510–522.Google Scholar
  31. Bencherif, M., Eisenhour, C. M., Prince, R. J., Lippiello, P. M., and Lukas, R. J. (1995). The “calcium antagonist” TMB-8 [3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester] is a potent, non-competitive functional antagonist at diverse nicotinic acetylcholine receptor subtypes. J. Pharmacol. Exp. Ther. 275:1418–1426.PubMedGoogle Scholar
  32. Bencherif, M., Lovette, M. E., Fowler, K. W., Arrington, S., Reeves, L., Caldwell, W. S., and Lippiello, P. M. (1996). RJR-2403: A nicotinic agonist with CNS selectivity I. In vitro characterization. J. Pharmacol. Exp. Ther. 279:1413–1421.PubMedGoogle Scholar
  33. Bencherif, M., Schmitt, J. D., Bhatti, B. S., Crooks, P., Caldwell, W. S., Lovette, M. E., Fowler, K., Reeves, L., and Lippiello, P. M. (1998). The heterocyclic substituted pyridine derivative (±)-2-(-3-pyridinyl)-1-azabicyclo[2.2.2]octane (RJR-2429).: A selective ligand at nicotinic acetylcholine receptors. J. Pharmacol. Exp. Ther. 284:886–894.PubMedGoogle Scholar
  34. Bertrand, S., Patt, J. T., Spang, J. E., Westera, G., Schubigcor, P. A., and Bertrand, D. (1999). Neuronal nAChR stereoselectivity to non-natural epibatidine derivatives. FEBS Lett. 450:273–279.CrossRefPubMedGoogle Scholar
  35. Bick, R. C., Gillard, J. W., and Leow, H. M. (1979a). Alkaloids of Darlingia darlingiana. Aust. J. Chem. 32:2523–2536.Google Scholar
  36. Bick, R. C., Gillard, J. W., and Leow, H.-M. (1979b). Alkaloids of Darlingia ferruginea. Australian J. Chem. 32:2537–2543.Google Scholar
  37. Bikádi, Z., and Simonyi, M. (2003). Muscarinic and nicotinic cholinergic agonists: Structural analogies and discrepancies. Curr. Med. Chem. 10:2611–2620.CrossRefPubMedGoogle Scholar
  38. Brier, T. J., Mellor, I. R., Tikhonov, D. B., Neagoe, I., Shao, Z., Brierley, M. J., Stromgaard, K., Jaroszewski, J. W., Krogsgaard-Larsen, P., and Usherwood, P. N. R. (2003). Contrasting actions of philanthotoxin-343 and philanthotoxin-(12) on human muscle nicotinic acetylcholine receptors. Mol. Pharmacol. 64:954–964.CrossRefPubMedGoogle Scholar
  39. Briggs, C. A., Anderson, D. J., Brioni, J. D., Buccafusco, J. J., Buckley, M. J., Campbell, J. E., Decker, M. W., Donnelly-Roberts, D., Elliott, R. L., Gopalakrishnan, M., Holladay, M. W., Hui, Y.-H., Jackson, W. J., Kim, D. J. B., Marsh, K. C., O’Neill, A., Prendergast, M. A., Ryther, K. B., Sullivan, J. P., and Arneric, S. P. (1997). Functional characterization of the novel neuronal nicotinic acetylcholine receptor ligand GTS-21 in vitro and in vivo. Pharmacol. Biochem. Behav. 57:231–241.CrossRefPubMedGoogle Scholar
  40. Broad, L. M., Felthouse, C., Zwart, R., McPhie, G. I., Pearson, K. H., Craig, P. J., Wallace, L., Broadmore, R. J., Boot, J. R., Keenan, M., Baker, S. R., and Sher, E. (2002). PSAB-OFP, a selective α7 nicotinic receptor agonist, is also a potent agonist of the 5-HT3 receptor. Eur. J. Pharmacol. 452:137–144.CrossRefPubMedGoogle Scholar
  41. Brown, L. L., Kulkarni, S., Pavlova, O. A., Koren, A. O., Mukhin, A. G., Newman, A. H., and Horti, A. G. (2002). Synthesis and evaluation of a novel series of 2-chloro-5-((1-methyl-2-(S)-pyrrolidinyl)methoxy)-3-(2-(4-pyridinyl)vinyl)pyridine analogues as potential positron emission tomography imaging agents for nicotinic acetylcholine receptors. J. Med. Chem. 45:2841–2849.CrossRefPubMedGoogle Scholar
  42. Bryant, D. L., Free, R. B., Thomasy, S. M., Lapinsky, D. J., Ismail, K. A., McKay, S. B., Bergmeier, S. C., and McKay, D. B. (2002). Structure-activity studies with ring E analogues of methyllycaconitine on bovine adrenal α3β4 nicotinic receptors. Neurosci. Res. 42:57–63.CrossRefPubMedGoogle Scholar
  43. Bunnelle, W. H., Dart, M. J., and Schrimpf, M. R. (2004). Design of ligands for the nicotinic acetylcholine receptor: The quest for selectivity. Curr. Topics Med. Chem. 4:299–334.CrossRefGoogle Scholar
  44. Bunnelle, W. H., and Decker, M. W. (2003). Neuronal nicotinic acetylcholine receptor ligands as potential analgesics. Exp. Opin. Ther. Patents 13:1003–1021.CrossRefGoogle Scholar
  45. Cachelin, A. B., and Rust, G. (1995). β-Subunits co-determine the sensitivity of rat neuronal nicotinic receptors to antagonists. Pflügers Arch-Eur. J. Physiol. 429:449–451.CrossRefGoogle Scholar
  46. Carbonnelle, E., Sparatore, F., Canu-Boido, C., Salvagno, C., Baldani-Guerra, B., Terstappen, G., Zwart, R., Vijverberg, H., Clementi, F., and Gotti, C. (2003). Nitrogen substitution modifies the activity of cystisine on neuronal nicotinic receptor subtypes. Eur. J. Pharmacol. 471:85–96.CrossRefPubMedGoogle Scholar
  47. Carroll, F. I., Lee, J. R., Navarro, H. A., Brieaddy, L. E., Abraham, P., Damaj, M. I., and Martin, B. R. (2001a). Synthesis, nicotinic acetylcholine receptor binding, and antinociceptive properties of 2-exo-2-(2′-substituted-3′-phenyl-5′-pyridinyl)-7-azabicyclo[2.2.1]-heptanes. Novel nicotinic antagonist. J. Med. Chem. 44:4039–4041.CrossRefGoogle Scholar
  48. Carroll, F. I., Lee, J. R., Navarro, H. A., Ma, W., Brieaddy, L. E., Abraham, P., Damaj, M. I., and Martin, B. R. (2002). Synthesis, nicotinic acetylcholine receptor binding, and antinociceptive properties of 2-exo-2-(2′,3′-disubstituted 5′-pyridinyl)-7-azabicyclo[2.2.1]heptanes: Epibatidine analogues. J. Med. Chem. 45:4755–4761.CrossRefPubMedGoogle Scholar
  49. Carroll, F. I., Liang, F., Navarro, H. A., Brieaddy, L. E., Abraham, P., Damaj, M. I., and Martin, B. R. (2001b). Synthesis, nicotinic acetylcholine receptor binding, and antinociceptive properties of 2-exo-2-(2′-substituted-5′-pyridinyl)-7-azabicyclo[2.2.1]-heptanes. Epibatidine analogues. J. Med. Chem. 44:2229–2237.CrossRefGoogle Scholar
  50. Caulfield, M. P., and Birdsall, N. J. M. (1998). International union of pharmacology. XVII. Classification of muscarinic acetylcholine receptor. Pharmacol. Rev. 50:279–290.PubMedGoogle Scholar
  51. Cheng, Y.-X., Dukat, M., Dowd, M., Fiedler, W., Martin, B., Damaj, M. I., and Glennon, R. A. (1999). Synthesis and binding of 6,7,8,9-tetrahydro-5H-pyrido[3,4-d]azepine and related ring-opened analogs at central nicotinic receptors. Eur. J. Med. Chem. 34:177–190.CrossRefGoogle Scholar
  52. Cheng, J., Zhang, C., Stevens, E. D., Izenwasser, S., Wade, D., Chen, S., Paul, D., and Trudell, M. L. (2002). Synthesis and biological evaluation at nicotinic acetylcholine receptors of N-arylalkyl- and N-aryl-7-azabicyclo[2.2.1]heptanes. J. Med. Chem. 45:3041–3047.CrossRefPubMedGoogle Scholar
  53. Choi, K. J., Cha, J. H., Cho, Y. S., Pae, A. N., Jin, C., Yook, J., Cheon, H. G., Jeong, D., Kong, J. Y., and Koh, H. Y. (1999). Binding affinities of 3-(3-phenylisoxazol-5-yl)methylidene 1-azabicycles to acetylcholine receptors. Bioorg. Med. Chem. Lett. 9:2795–2800.CrossRefPubMedGoogle Scholar
  54. Clarke, P. B. S., and El-Bizri, H. (1994). Blockade of nicotinic receptor-mediated release of dopamine from striatal synaptosomes by chlorisondamine and other nicotinic antagonists administered in vitro. Br. J. Pharmacol. 111:406–413.PubMedGoogle Scholar
  55. Clarke, P. B. S. (1992). The fall and rise of neuronal α-bungarotoxin binding proteins. Trends Pharmacol. Sci. 13:407–413.CrossRefPubMedGoogle Scholar
  56. Cohen, C., Bergis, O. E., Galli, F., Lochead, A. W., Jegham, S., Biton, B., Léonardon, J., Avenet, P., Sgard, F., Besnard, F., Graham, D., Coste, A., Oblin, A., Curet, O., Voltz, C., Gardes, A., Caille, D., Perrault, G., George, P., Soubrié, P., and Scatton, B. (2003). SSR591813, a novel selective and partial α4β2 nicotinic receptor agonist with potential as an aid to smoking cessation. J. Pharmacol. Exp. Ther. 306:407–420.CrossRefPubMedGoogle Scholar
  57. Cosford, N. D. P., Bleicher, L., Herbaut, A., McCallum, J. S., Vernier, J.-M., Dawson, H., Whitten, J. P., Adams, P., Chavez-Noriega, L., Correa, L. D., Crona, J. H., Mahaffy, L. S., Menzaghi, F., Rao, T. S., Reid, R., Sacaan, A. I., Santori, E., Stauderman, K. A., Whelan, K., Lloyd, G. K., and McDonald, I. A. (1996). (S)-(−)-5-Ethynyl-3-(1-methyl-2-pyrrolidinyl)pyridine maleate (SIB-1508Y): A novel anti-parkinsonian agent with selectivity for neuronal nicotinic acetylcholine receptors. J. Med. Chem. 39:3235–3237.CrossRefPubMedGoogle Scholar
  58. Cox, C. D., Malpass, J. R., Gordon, J., and Rosen, A. (2001). Synthesis of epibatidine isomers: Endo-5- and 6-(6′-chloro-3′-pyridyl-2-azabicyclo[2.2.1]heptanes. J. Chem. Soc., Perkin Trans. 1 2372–2379.Google Scholar
  59. Culver, P., Burch, M., Potenza, C., Wasserman, L., Fenical, W., and Taylor, P. (1985). Structure-activity relationships for the irreversible blockade of nicotinic receptor agonist sites by lophotoxin and congeneric diterpene lactones. Mol. Pharmacol. 28:436–444.PubMedGoogle Scholar
  60. Dale, H. H. (1914). The action of certain esters and ethers of choline, and their relation to muscarine. J. Pharmacol. Exp. Ther. 6:147–190.Google Scholar
  61. Dale, H. H. (1954). The beginnings and the prospects of neurohumoral transmission. Pharmacol. Rev. 6:7–13.PubMedGoogle Scholar
  62. D’Amour, K. A., and Casida, J. E. (1999). Desnitroimidacloprid and nicotine binding site in rat recombinant α4β2 neuronal nicotinic acetylcholine receptor. Pesticide Biochem. Physiol. 64:55–61.CrossRefGoogle Scholar
  63. Daly, J. W. (2003). Ernest Guenther award in chemistry of natural products. Amphibian skin: A remarkable source of biologically active arthropod alkaloids. J. Med. Chem. 46:445–452.CrossRefPubMedGoogle Scholar
  64. Daly, J. W., Gupta, T. H., Padgett, W. L., and Pei, X.-F. (2000). 6β-Acyloxy(nor)tropanes: Affinities for antagonist/agonist binding sites on transfected and native muscarinic receptors. J. Med. Chem. 43:2514–2522.CrossRefPubMedGoogle Scholar
  65. Daly, J. W., Nishizawa, Y., Edwards, M. W., Waters, J. A., and Aronstam, R. S. (1991a). Nicotinic receptor-elicited sodium flux in rat pheochromocytoma PC12 cells: Effects of agonists, antagonists, and noncompetitive blockers. Neurochem. Res. 16:489–500.CrossRefGoogle Scholar
  66. Daly, J. W., Nishizawa, Y., Padgett, W. L., Tokuyama, T., McCloskey, P. J., Waykole, L., Schultz, A. G., and Aronstam, R. S. (1991b). Decahydroquinoline alkaloids: Noncompetitive blockers for nicotinic acetylcholine receptor-channels in pheochromocytoma cells and Torpedo electroplax. Neurochem. Res. 16:1207–1212.CrossRefGoogle Scholar
  67. Daly, J. W., Nishizawa, Y., Padgett, W. L., Tokuyama, T., Smith, A. L., Holmes, A. B., Kibayashi, C., and Aronstam, R. S. (1991c). 5,8-Disubstituted indolizidines: A new class of noncompetitive blockers for nicotinic receptor-channels. Neurochem. Res. 16:1213–1218.CrossRefGoogle Scholar
  68. Damaj, M. I., Glassco, W., Aceto, M. D., and Martin, B. R. (1999). Antinociceptive and pharmacological effects of metanicotine, a selective nicotinic agonist. J. Pharmacol. Exp. Ther. 291:390–398.PubMedGoogle Scholar
  69. Damaj, M. I., Glassco, W., Dukat, M., May, E. L., Glennon, R. A., and Martin, B. R. (1996). Pharmacology of novel nicotinic analogs. Drug Dev. Res. 38:177–187.CrossRefGoogle Scholar
  70. Davies, A. R. L., Hardick, D. J., Blagbrough, I. S., Potter, B. V. L., Wolsenholme, A. J., and Wonnacott, S. (1999). Characterization of the binding of [3H]methyllycaconitine: A new radioligand for labeling α7-type neuronal nicotinic acetylcholine receptors. Neuropharmacology 38:679–690.CrossRefPubMedGoogle Scholar
  71. Davila-Garcia, M. I., Musachio, J. L., Perry, D. C., Xiao, Y., Horti, A., London, E. D., Dannals, R. F., and Kellar, K. J. (1997). [125I]IPH, an epibatidine analog, binds with high affinity to neuronal nicotinic cholinergic receptors. J. Pharmacol. Exp. Ther. 282:445–451.PubMedGoogle Scholar
  72. Decker, M. W., Anderson, D. J., Brioni, J. D., Donnelly-Roberts, D. L., Diana, L., Kang, C. H., O’Neill, A. B., Piattoni-Kaplan, M., Swanson, S., and Sullivan, J. P. (1995a). Erysodine, a competitive antagonist at neuronal nicotinic acetylcholine receptors. Eur. J. Pharmacol. 280:79–89.CrossRefGoogle Scholar
  73. Decker, M. W., Brioni, J. D., Bannon, A. W., and Arneric, S. P. (1995b). Diversity of neuronal nicotinic acetylcholine receptors: Lessons from behavior and implications for CNS Thereutics. Life Sci. 56:545–570.CrossRefGoogle Scholar
  74. De Fiebre, C. M., Meyer, E. M., Henry, J. C., Muraskin, S. I., Kem, W. R., and Papke, R. L. (1995). Characterization of a series of anabaseine-derived compounds reveals that the 3-(4)-dimethylaminocinnamylidine derivative is a selective agonist at neuronal nicotinic α7/125I-α-bungarotoxin receptor subtypes. Mol. Pharmacol. 47:164–171.PubMedGoogle Scholar
  75. Devlin, J. P., Edwards, O. E., Gorham, P. R., Hunter, H. R., Pike, R. K., and Stavric, B. (1977). Anatoxin-a, a toxic alkaloid from Anabaena flos-aquae NRC-44h. Can. J. Chem. 55:1367–1371.Google Scholar
  76. Dukat, M., Damaj, I. M., Young, R., Vann, R., Collins, A. C., Marks, M. J., Martin, B. R., and Glennon, R. A. (2002a). Functional diversity among 5-substituted nicotine analogs; in vitro and in vivo investigations. Eur. J. Pharmacol. 435:171–180.CrossRefGoogle Scholar
  77. Dukat, M., Dowd, M., Damaj, M. I., Martin, B., El-Zahabi, M. A., and Glennon, R. A. (1999). Synthesis, receptor binding and QSAR studies on 6-substituted nicotine derivatives as cholinergic ligands. Eur. J. Med. Chem. 34:31–40.CrossRefGoogle Scholar
  78. Dukat, M., El-Zahabi, M., Ferretti, G., Damaj, M. I., Martin, B. R., Young, R., and Glennon, R. A. (2002b). (−)-6-n-Propylnicotine antagonizes the antinociceptive effects of (−)-nicotine. Bioorg. Med. Chem. Lett. 12:3005–3007.CrossRefGoogle Scholar
  79. Dukat, M., Fredler, W., Dumas, D., Damaj, I., Martin, B. R., Rosecrans, J. A., James, J. R., and Glennon, R. A. (1996). Pyrrolidine-modified and 6-substituted analogs of nicotine: A structure-affinity investigation. Eur. J. Med. Chem. 31:875–888.CrossRefGoogle Scholar
  80. Eaton, J. B., Peng, J.-H., Schroeder, K. M., George, A. A., Fryer, J. D., Krishnan, C., Buhlman, L., Kuo, Y.-P., Steinlein, O., and Lukas, R. J. (2003). Characterization of human α4β2-nicotinic acetylcholine receptors stably and heterologously expressed in native nicotinic receptor-null SH-EP1 human epithelial cells. Mol. Pharmacol. 64:1283–1294.CrossRefPubMedGoogle Scholar
  81. Efange, S. M. N., Tu, Z., von Hohenberg, K., Francesconi, L., Howell, R. C., Rampersad, M. V., Todaro, L. J., Papke, R. L., and Kung, M.-P. (2001). 2-(2-Piperidyl)- and 2-(2-pyrrolidyl)chromans as nicotine agonists: Synthesis and preliminary pharmacological characterization. J. Med. Chem. 44:4704–4715.CrossRefPubMedGoogle Scholar
  82. Eldefrawi, A. T., Eldefrawi, M. E., Albuquerque, E. X. Oliveira, A. C., Mansour, N., Adler, M., Daly, J. W., Brown, G. B., Burgermeister, W., and Witkop, B. (1977). Perhydrohistrionicotoxin: A potential ligand for the ion conductance modulator of the acetylcholine receptor. Proc. Natl. Acad. Sci. U.S.A 74:2172–2176.PubMedGoogle Scholar
  83. Elliott, R. L., Kopecka, H., Gunn, D. E., Lin, N.-H., Garvey, D. S., Ryther, K. B., Holladay, M. W., Anderson, D. J., Campbell, J. E., Sullivan, J. P., Buckley, M. J., Gunther, K. L., O’Neill, A. B., Decker, M. W., and Arneric, S. P. (1996). 2-(Aryloxymethyl)azacyclic analogues as novel nicotinic acetylcholine receptor (nAChR) ligands. Bioorg. Med. Chem. Lett. 6:2283–2288.CrossRefGoogle Scholar
  84. Elliott, R. L., Ryther, K. B., Anderson, D. J., Piattoni-Kaplan, M., Kuntzweiler, T. A., Donnelly-Roberts, D., Arneric, S. P., and Holladay, M. W. (1997). Novel 2-(2′-furo[3,2-b]pyridinyl)pyrrolidines: Potent neuronal nicotinic acetylcholine receptor ligands. Bioorg. Med. Chem. Lett. 7:2703–2708.CrossRefGoogle Scholar
  85. Elliott, R. L., Ryther, K. B., Anderson, D. J., Raszkiewicz, J. L., Campbell, J. E., Sullivan, J. P., and Garvey, D. S. (1995). Phenyl pyrrolidine analogues as potent nicotinic acetylcholine receptor (nAChR) ligands. Bioorg. Med. Chem. Lett. 5:991–996.CrossRefGoogle Scholar
  86. Ellis, J. L., Harman, D., Gonzalez, J., Spera, M. L., Liu, R., Shen, T. X., Wypij, D. M., and Zuo, F. (1999). Devlopment of muscarinic analgesics derived from epibatidine: Role of the M4 receptor subtype. J. Pharmacol. Exp. Ther. 288:1143–1150.PubMedGoogle Scholar
  87. Erspamer, V., and Benati, O. (1953). Identification of murexine as β-[imidazolyl-(4)]-acryl-choline. Experientia 117:161–162.Google Scholar
  88. Evans, N. M., Bose, S., Benedetti, G., Zwart, R., Pearson, K. H., McPhie, G. I., Craig, P. J., Benton, J. P., Volsen, S. G., Sher, E., and Broad, L. M. (2003). Expression and functional characterization of a human chimeric nicotinic receptor with α6β4 properties. Eur. J. Pharmacol. 466:31–39.CrossRefPubMedGoogle Scholar
  89. Fan, H., Scheffel, U. A., Rauseo, P., Xiao, Y., Dogan, A. S., Yokoi, F., Hilton, J., Kellar, K. J., Wong, D. F., and Musachio, J. L. (2001). [125/123I]5-Iodo-3-pyridyl ethers: Syntheses and binding to neuronal nicotinic acetylcholine receptors. Nucl. Med. Biol. 28:911–921.CrossRefPubMedGoogle Scholar
  90. Felder, C. C., Bymaster, F. P., Ward, J., and DeLapp, N. (2000). Therapeutic opportunities for muscarinic receptors in the central nervous system. J. Med. Chem. 43:4333–4353.CrossRefPubMedGoogle Scholar
  91. Fenical, W., Okuda, R. K., Bandurraga, M. M., Culver, P., and Jacobs, R. S. (1981). Lophotoxin: A novel neuromuscular toxin from pacific sea whips of the genus Lophogorgia. Science 212:1512–1514.PubMedGoogle Scholar
  92. Ferretti, G., Dukat, M., Giannella, M., Piergentili, A., Pigini, M., Quaglia, W., Damaj, M. I., Martin, B. R., and Glennon, R. A. (2003). Binding of nicotine and homoazanicotine analogues at neuronal nicotinic acetylcholinergic (nACh) receptors. Bioorg. Med. Chem. Lett. 13:733–735.CrossRefPubMedGoogle Scholar
  93. Fitch, R. W., Garraffo, H. M., Spande, T. F., Yeh, H. J. C., and Daly, J. W. (2003a). Bioassay-guided isolation of epiquinamide, a novel quinolizidine alkaloid and nicotinic agonist from an Ecuadoran poison frog, Epipedobates tricolor. J. Nat. Prod. 66:1345–1350.CrossRefGoogle Scholar
  94. Fitch, R. W., Pei, X.-F., Kaneko, Y., Gupta, T., Shi, D., Federova, I., and Daly, J. W. (2004). Homoepiboxidines: Further potent agonists for nicotinic receptors. Bioorg. Med. Chem. 12:179–190.CrossRefPubMedGoogle Scholar
  95. Fitch, R. W., Xiao, Y., Kellar, K. J., and Daly, J. W. (2003b). Membrane potential fluorescence: A rapid and highly sensitive assay for nicotinic receptor channel function. Proc. Natl. Acad. Sci. U.S.A. 100:4909–4914.CrossRefGoogle Scholar
  96. Flammia, D., Dukat, M., Damaj, M. I., Martin, B., and Glennon, R. A. (1999). Lobeline: Structure-affinity investigation of nicotinic acetylcholinergic receptor binding. J. Med. Chem. 42:3726–3731.CrossRefPubMedGoogle Scholar
  97. Folkers, K., and Major, R. T. (1937). Isolation of erythroidine, an alkaloid of curare action, from Erythrina americana Mill. J. Am. Chem. Soc. 59:1850–1851.CrossRefGoogle Scholar
  98. Francis, M. M., Cheng, E. Y., Weiland, G. A., and Oswald, R. E. (2001). Specific activation of the α7 nicotinic acetylcholine receptor by a quaternary analog of cocaine. Mol. Pharmacol. 60:71–79.PubMedGoogle Scholar
  99. Francis, M. M., Vazquez, R. W., Papke, R. L., and Oswald, R. E. (2000). Subtype-selective inhibition of neuronal nicotinic acetylcholine receptors by cocaine is determined by the α4 subunits. Mol. Pharmacol. 58:109–119.PubMedGoogle Scholar
  100. Fryer, J. D., and Lukas, R. J. (1999). Noncompetitive functional inhibition at diverse, human nicotinic acetylcholine receptor subtypes by bupropion, phencyclidine and ibogaine. J. Pharmacol. Exp. Ther. 288:88–92.PubMedGoogle Scholar
  101. Garvey, D. S., Wasicak, J. T., Decker, M. W., Brioni, J. D., Buckley, M. J., Sullivan, J. P., Carrera, G. M., Holladay, M. W., Arneric, S. P., and Williams, M. (1994). Novel isoxazoles with interact with brain cholinergic channel receptors have intrinsic cognitive enhancing and anxiolytic activities. J. Med. Chem. 37:1055–1059.CrossRefPubMedGoogle Scholar
  102. Gentry, C. L., and Lukas, R. J. (2001). Local anesthetics noncompetitively inhibit function of four distinct nicotinic acetylcholine receptor subtypes. J. Pharmacol. Exp. Ther. 299:1038–1048.PubMedGoogle Scholar
  103. Ghelardini, C., Galeotti, N., Barlocco, D., and Bartolini, A. (1997). Antinociceptive profile of the new nicotinic agonist DBO-83. Drug Dev. Res. 40:251–258.CrossRefGoogle Scholar
  104. Ghelardini, C., Galeotti, N., Gualtieri, F., Bellucci, C., Manetti, D., Borea, P. A., and Bartolini, A. (1997). Antinociceptive property of the nicotinic agonist AG-4 in rodents. Drug Dev. Res. 41:1–9.CrossRefGoogle Scholar
  105. Glennon, R. A., and Dukat, M. (2000). Central nicotinic receptor ligands and pharmacophores. Pharm. Acta Helv. 74:103–114.CrossRefPubMedGoogle Scholar
  106. Glick, S. D., Maisonneuve, I. M., Kitchen, B. A., and Fleck, M. W. (2002). Antagonism of α3β4 nicotinic receptors as a strategy to reduce opioid and stimulant self-administration. Eur. J. Pharmacol. 438:99–105.CrossRefPubMedGoogle Scholar
  107. Gnädisch, D., London, E. D., Terry, P., Hill, G. R., and Mukhin, A. G. (1999). High affinity binding of [3H]epibatidine to rat brain membranes. NeuroReport 10:1631–1636.PubMedGoogle Scholar
  108. Gohlke, H., Gündisch, D., Schwartz, S., Seitz, G., Tilotta, M. C., and Wegge, T. (2002). Synthesis and nicotinic binding studies on enantiopure diazine analogues of the novel (2-chloro-5-pyridyl)-9-azabicyclo[4.2.1]non-2-ene UB-165. J. Med. Chem. 45:1064–1072.CrossRefPubMedGoogle Scholar
  109. Gohlke, H., Schwartz, S., Gundisch, D., Tilotta, M. C., Weber, A., Wegge, T., and Seitz, G. (2003). 3D QSAR analyses-guided rational design of novel ligands for the (α4)22)3 nicotinic acetylcholine receptor. J. Med. Chem. 46:2031–2048.CrossRefPubMedGoogle Scholar
  110. Gopalakrishnan, M., Buisson, B., Touma, E., Giordano, T., Campbell, J. E., Hu, I. C., Donnelly-Roberts, D., Arneric, S. P., Bertrand, D., and Sullivan, J. P. (1995). Stable expression and pharmacological properties of the human α7 nicotinic acetylcholine receptor. Eur. J. Pharmacol. 290:237–246.CrossRefPubMedGoogle Scholar
  111. Gopalakrishnan, M., Monteggia, L. M., Anderson, D. J., Molinari, E. J., Piattoni-Kaplan, M., Donnelly-Roberts, D., Arneric, S. P., and Sullivan, J. P. (1996). Stable expression, pharmacologic properties and regulation of the human neuronal nicotinic acetylcholine α4β2 receptor. J. Pharmacol. Exp. Ther. 276:289–297.PubMedGoogle Scholar
  112. Grady, S. R., Meinerz, N. M., Cao, J., Reynolds, A. M., Picciotto, M. R., Bhangeux, J.-P., McIntosh, J. M., Marks, M. J., and Collins, A. C. (2001). Nicotinic agonists stimulate acetylcholine release from mouse interpeduncular nucleus: A function mediated by a different nAChR than dopamine release from striatum. J. Neurochem. 76:258–268.CrossRefPubMedGoogle Scholar
  113. Guandalini, L., Dei, S., Gualtieri, F., Romanelli, M. N., Scapecchi, S., Teodori, E., and Varani, K. (2002). Synthesis of hexahydro-2-pyrindine ($=$ hexahydrocyclo-penta[c]pyridine) derivatives as conformationally restricted analogs of the nicotinic ligands arecolone and isoarecolone. Hev. Chim. Acta 85:96–107.CrossRefGoogle Scholar
  114. Gündisch, D., Kämpchen, T., Schwarz, S., Seitz, G., Siegl, J., and Wegge, T. (2002). Syntheses and evaluation of pyridazine and pyrimidine containing bioisoteres of (±)-pyrido[3.4-b]homotropane and pyrido-[3.4-b]tropane as novel nAChR ligands. Bioorg. Med. Chem. 10:1–9.CrossRefPubMedGoogle Scholar
  115. Haefely, W. (1974). Effects of various nicotine-like agents in the cat superior cervical ganglion in situ. Naunyn-Schmiedeberg’s Arch. Pharmacol. 281:93–117.CrossRefGoogle Scholar
  116. Hardick, D. J., Blagbrough, I. S., Cooper, G., Potter, B. V. L., Critchley, T., and Wonnacott, S. (1996). Nudicauline and elatine as potent norditerpenoid ligands at rat neuronal α-bungarotoxin binding sites: Importance of the 2-(methylsuccinimido)benzoyl moiety for neuronal nicotinic acetylcholine receptor binding. J. Med. Chem. 39:4860–4866.CrossRefPubMedGoogle Scholar
  117. Hayashi, E., Isogai, M., Kagawa, Y., Takayamagi, N., and Yamada, S. (1984). Neosurugatoxin, a specific antagonist of nicotinic acetylcholine receptors. J. Neurochem. 42:1491–1494.PubMedGoogle Scholar
  118. Heidmann, T., Oswald, R. E., and Changeux, J.-P. (1983). Multiple sites of action for noncompetitive blockers on acetylcholine receptor rich membrane fragments from Torpedo marmorata. Biochemistry 22:3112–3127.CrossRefPubMedGoogle Scholar
  119. Hilmas, C., Pereira, E. F. R., Alkondon, M., Rassoulpour, A., Schwarcz, R., and Albuquerque, E. X. (2001). The brain metabolite kynurenic acid inhibits α7 nicotinic receptor activity and increases non-α7 nicotinic receptor expression: Physiopathological implications. J. Neurosci. 21:7463–7473.PubMedGoogle Scholar
  120. Hodgson, D. M., Maxwell, C. R., Wisedale, R., Matthews, I. R., Carpenter, K. J., Dickenson, A. H., and Wonnacott, S. (2001). 6-Substituted 2-azabicyclo[2.2.1]hept-5-enes by nitrogen-directed radical rearrangement: Synthesis of an epibatidine analogue with high binding affinity at the nicotinic acetylcholine receptor. J. Chem. Soc., Perkin Trans. 1 2001:3150–3158.Google Scholar
  121. Holladay, M. W., Bai, H., Li, Y., Lin, N.-H., Daanen, J. F., Ryther, K. B., Wasicak, J. T., Kincaid, J. F., He, Y., Hettinger, A.-M., Huang, P., Anderson, D. J., Bannon, A. W., Buckley, M. J., Campbell, J. E., Donnelly-Roberts, D. L., Gunther, K. L., Kim, D. J. B., Kuntzweiler, T. A., Sullivan, J. P., Decker, M. W., and Arneric, S. P. (1998a). Structure-activity studies related to ABT-594, a potent nonopioid analgesic agent: Effect of pyridine and azetidine ring substitutions of nicotinic acetylcholine receptor binding affinity and analgesic activity in mice. Bioorg. Med. Chem. Lett. 8:2797–2802.CrossRefGoogle Scholar
  122. Holladay, M. W., Dart, M. J., and Lynch, J. K. (1997). Neuronal nicotinic acetylcholine receptors as targets for drug discovery. J. Med. Chem. 40:4169–4194.CrossRefPubMedGoogle Scholar
  123. Holladay, M. W., Wasicak, J. T., Lin, N.-H., He, Y., Ryther, K. B., Bannon, A. W., Buckley, M. J., Kim, D. J. B., Decker, M. W., Anderson, D. J., Campbell, J. E., Kuntzweiler, T. A., Donnelly-Roberts, D. L., Piattoni-Kaplan, M., Briggs, C. A., Williams, M., and Arneric, S. P. (1998b). Identification and initial structure-activity relationships of (R)-5-(2-azetidinylmethoxy)-2-chloropyridine (ABT-594)., a potent, orally active, non-opiate analgesic agent acting via neuronal nicotinic acetylcholine receptors. J. Med. Chem. 41:407–412.CrossRefGoogle Scholar
  124. Houghtling, R. A., Davila-Garcia, M. I., and Kellar, K. J. (1995). Characterization of (±)-[3H]epibatidine binding to nicotinic cholinergic receptors in rat and human brain. Mol. Pharmacol. 48:280–287.PubMedGoogle Scholar
  125. Imming, P., Klaperski, P., Stubbs, M. T., Seitz, G., and Gündisch, D. (2001). Syntheses and evaluation of halogenated cystisine derivatives and of bioisosteric thiocytisine as potent and selective nAChR ligands. Eur. J. Med. Chem. 36:375–388.CrossRefPubMedGoogle Scholar
  126. Ing, H. R. (1931). Cytisine Part I. J. Chem. Soc. 2195–2203.Google Scholar
  127. Ismail, K. A., and Bergmeier, S. C. (2002). Structure-activity studies with ring E analogues of methyllycaconitine. Synthesis and evaluation of enantiopure isomers of selective antagonist at the α3 nicotinic receptor. Eur. J. Med. Chem. 37:469–474.CrossRefPubMedGoogle Scholar
  128. Jacyno, J. M., Harwood, J. S., Lin, N. H., Cambell, J. E., Sullivan, J. P., and Holladay, M. W. (1996). Lycaconitine revisited: Partial synthesis and neuronal nicotinic acetylcholine receptor affinities. J. Nat. Prod. 59:707–709.CrossRefPubMedGoogle Scholar
  129. Jensen, A. A., Mikkelsen, I., Frolund, B., Bräuner-Osborne, H., Falch, E., and Krogsgaard-Larsen, P. (2003). Carbamoylcholine homologs: Novel and potent agonists at neuronal nicotinic acetylcholine receptors. Mol. Pharmacol. 64:865–875.CrossRefPubMedGoogle Scholar
  130. Jonnala, R. R., Graham, J. H. III, Terry, A. V., Jr., Beach, J. W., Young, J. A., and Buccafusco, J. J. (2003). Relative levels of cytoprotection produced by analogs of choline and the role of α7-nicotinic acetylcholine receptors. Synapse 47:262–269.CrossRefPubMedGoogle Scholar
  131. Kanne, D. B., and Abood, L. G. (1988). Synthesis and biological characterization of pyridohomotropanes. Structure-activity relationships of conformationally restricted nicotinoids. J. Med. Chem. 31:506–509.CrossRefPubMedGoogle Scholar
  132. Karig, G., Large, J. M., Sharples, C. G., Sutherland, A., Gallagher, T., and Wonnacott, S. (2003). Synthesis and nicotinic binding of novel phenyl derivatives of UB-165. Identifying factors associated with α7 selectivity. Bioorg. Med. Chem. Lett. 13:2825–2828.CrossRefPubMedGoogle Scholar
  133. Kassiou, M., Bottlaender, M., Loc’h, C., Dolle, F., Musachio, J. L., Coulon, C., Ottaviani, M., Dannals, R. F., and Maziere, B. (2002). Pharmacological evaluation of a Br-76 analog of epibatidine: A potent ligand for studying brain nicotinic acetylcholine receptors. Synapse 45:95–104.CrossRefPubMedGoogle Scholar
  134. Kem, W. R., Mahnir, V. M., Papke, R. L., and Lingle, C. J. (1997). Anabaseine is a potent agonist on muscle and neuronal alpha-bungarotoxin-sensitive nicotinic receptors. J. Pharmacol. Exp. Ther. 283:979–992.PubMedGoogle Scholar
  135. Kem, W. R. (1972). A study of the occurrence of anabaseine in Paranemertes and other nermertines. Toxicon 9:23–32.CrossRefGoogle Scholar
  136. Kim, K. D., Lerner-Marmaarosh, N., Saraswati, M., Kende, A. S., and Abood, L. G. (1994). 5-Isothiocyanonicotine: A high affinity irreversible ligand for brain nicotinic receptors. Biochem. Pharmacol. 47:1965–1967.CrossRefPubMedGoogle Scholar
  137. Kim, K. H., Lin, N.-H., and Anderson, D. J. (1996). Quantitative structure-activity relationships of nicotinic analogues as neuronal nicotinic acetylcholine receptor ligands. Bioorg. Med. Chem. 4:2211–2217.CrossRefPubMedGoogle Scholar
  138. King, H. (1946). Botanical origin of tube-curare. Nature 158:515–516.Google Scholar
  139. Kloog, Y., Kalir, A., Bachman, O., and Sokolosky, M. (1980). Specific binding of [3H]phencyclidines to membrane preparation. Possible interaction with the cholinergic ionophore. FEBS Lett. 109:125–128.CrossRefPubMedGoogle Scholar
  140. Koren, A. O., Horti, A. G., Kimes, A., Scheffel, U., Ravert, H. T., London, E. D., and Dannals, R. F. (1997). Synthesis and Evaluation of benzo-Analogs of Epibatidine as Potential nAChR Ligands for PET Studies. XIIth International Symposium on Radiopharmaceutical Chemistry, Uppsala, Sweden, p. 518.Google Scholar
  141. Kosuge, T., Tsuji, K., Hirai, K.,Yamaquchi, O., Kamoto, T., and Iitake, (1981). Isolation and structure determination of a new marine toxin, neosurugatoxin, from the Japanese ivory shell, Babylonia Japonica. Tetrahedron Lett. 22:3417–3420.CrossRefGoogle Scholar
  142. Krause, R. M., Buisson, B., Bertrand, S., Corringer, P.-J., Galzi, J.-L., Changeux, J.-P., and Bertrand, D. (1998). Ivermectin: A positive allosteric effector of the α7 neuronal nicotinic acetylcholine receptor. Mol. Pharmacol. 53:283–294.PubMedGoogle Scholar
  143. Krow, G. R., Cheung, O. H., Hu, Z., Huang, Q., Hutchinson, J., Liu, N., Nguyen, K. T., Ulrich, S., Yuan, J., Xiao, Y., Wypij, D. M., Zuo, F., and Carroll, P. J. (1999). Nitrogen bridge homoepibatidines. Syn-6- and syn-5(6-chloro-3-pyridyl)isoquinuclidines. Tetrahedron 55:7747–7756.CrossRefGoogle Scholar
  144. Krow, G. R., Yuan, J., Fang, Y., Meyer, M. D., Anderson, D. J., Campbell, J. E., and Carroll, P. J. (2000a). Synthesis of 3- and 5-endo-(6-chloro-3-pyridoxy)-methyl-2- azabicyclo[2.2.0]hexane and 3-endo-(6-chloro-3-pyridoxy)-methyl-2-azabicyclo[2.2.0]hex-5-ene. ABT-594 analogs. Tetrahedron 56:9227–9232.CrossRefGoogle Scholar
  145. Krow, G. R., Yuan, J., Huang, Q., Meyer, M. D., Anderson, D. J., Campbell, J. E., and Carroll, P. J. (2000b). Synthesis of 5- and 6-(6-chloro-3-pyridyl)-2-azabicyclo[2.2.0]hexanes. Epibatidine analogs. Tetrahedron 56:9233–9239.CrossRefGoogle Scholar
  146. Lands, A. M., and Archer, S. (1961). A study of the nicotinic action of 3-phenyltropane and related compounds. J. Med. Pharmacol. Chem. 2:449–460.CrossRefGoogle Scholar
  147. Latli, B., D’Amour, K., and Casida, J. E. (1999). Novel and potent 6-chloro-3-pyridinyl ligands for the α4β2 neuronal nicotinic acetylcholine receptor. J. Med. Chem. 42:2227–2234.CrossRefPubMedGoogle Scholar
  148. Lee, M., Dukat, M., Liao, L., Flammia, D., Damaj, M. I., Martin, B., and Glennon, R. A. (2002). A comparison of the binding of three series of nicotinic ligands. Bioorg. Med. Chem. Lett. 12:1989–1992.CrossRefPubMedGoogle Scholar
  149. Lin, N.-H., Abreo, M. A., Gunn, D. E., Lebold, S. A., Lee, E. L., Wasicak, J. T., Hettinger, A.-M., Daanen, J. F., Garvey, D. S., Campbell, J. E., Sullivan, J. P., Williams, M., and Arneric, S. P. (1999). Structure-activity studies on a novel series of cholinergic channel activators based on a heteroaryl ether framework. Bioorg. Med. Chem. Lett. 9:2747–2752.CrossRefPubMedGoogle Scholar
  150. Lin, N.-H., Carrera, G. M., Jr., and Anderson, D. J. (1994). Synthesis and evaluation of nicotine analogs as neuronal nicotinic acetylcholine receptor ligands. J. Med. Chem. 37:3542–3553.CrossRefPubMedGoogle Scholar
  151. Lin, N.-H., Dong, L., Bunnelle, W. H., Anderson, D. J., and Meyer, M. D. (2002). Synthesis and biological evaluation of pyridine-modified analogues of 3-(2-aminoethoxy)pyridine as novel nicotinic receptor ligands. Bioorg. Med. Chem. Lett. 12:3321–3324.CrossRefPubMedGoogle Scholar
  152. Lin, N.-H., Gunn, D. E., Li, Y., He, Y., Bai, H., Ryther, K. B., Kuntzweiler, T., Donnelly-Roberts, D. L., Anderson, D. J., Campbell, J. E., Sullivan, J. P., Arneric, S. P., and Holladay, M. W. (1998). Synthesis and structure-activity relationships of pyridine-modified analogs of 3-[2-((S)-pyrrolidinyl)methoxy]pyridine, A-84543, a potent nicotinic acetylcholine receptor agonist. Bioorg. Med. Chem. Lett. 8:249–254.CrossRefPubMedGoogle Scholar
  153. Lin, N.-H., Gunn, D. E., Ryther, K. B., Garvey, D. S., Donnelly-Roberts, D. L., Decker, M. W., Brioni, J. D., Buckley, M. J., Rodrigues, A. D., Marsh, K. G., Anderson, D. J., Buccafusco, J. J., Prendergast, M. A., Sullivan, J. P., Williams, M., Arneric, S. P., and Holladay, M. W. (1997). Structure-activity studies on 2-methyl-3-(2(S)-pyrrolidinylmethoxy)pyridine (ABT-089): An orally bioavailable 3-pyridyl ether nicotinic acetylcholine receptor ligand with cognition-enhancing properties. J. Med. Chem. 40:385–390.CrossRefPubMedGoogle Scholar
  154. Lin, N.-H., Li, Y., He, Y., Holladay, M. W., Kuntzweiler, T., Anderson, D. J., Campbell, J. E., and Arneric, S. P. (2001). Synthesis and structure-activity relationships of 5-substituted pyridine analogues of 3-[2-((S)-pyrrolidinyl)methoxy]pyridine, A-84543: A potent nicotinic receptor ligand. Bioorg. Med. Chem. Lett. 11:631–633.CrossRefPubMedGoogle Scholar
  155. Lippielo, P. M., and Fernandes, K. G. (1986). The bindings of 1-[3H]nicotine to a single class of high affinity sites in rat brain. Mol. Pharmacol. 29:448–454.PubMedGoogle Scholar
  156. Lloyd, G. K., and Williams, M. (2000). Neuronal nicotinic acetylcholine receptors as novel drug targets. J. Pharmacol. Exp. Ther. 292:461–467.PubMedGoogle Scholar
  157. Luetje, C. W., Wada, K., Rogers, S., Abramson, S. N., Tsuji, K., Heinemann, S., and Patrick, J. (1990). Neurotoxins distinguish between different neuronal nicotinic acetylcholine receptor subunit compositions. J. Neurochem. 55:632–640.PubMedGoogle Scholar
  158. Lukas, R. J. (1989). Pharmacological distinctions between functional nicotinic acetylcholine receptors on the PC12 rat pheochromocytoma and the TE671 human medulloblastoma. J. Pharmacol. Exp. Ther. 251:175–182.PubMedGoogle Scholar
  159. Macallan, D. R. E., Lunt, G. G., Wonnacott, S., Swanson, K. L., Rapoport, H., and Albuquerque, E. X. (1988). Methyllycaconitine and (+)-anatoxin-a differentiate between nicotinic receptors in vertebrate and invertebrate nervous systems. FEBS Lett. 226:357–363.CrossRefPubMedGoogle Scholar
  160. Macor, J. E., Gurley, D., Lanthorn, T., Loch, J., Mack, R. A., Mullen, G., Tran, O., Wright, N., and Gordon, J. C. (2001). The 5HT3 antagonist tropisetron (ICS 205–930). is a potent and selective alpha7 nicotinic receptor partial agonist. Biorg. Med. Chem. Lett. 11:319–321.CrossRefGoogle Scholar
  161. Maelicke, A., and Albuquerque, E. X. (2000). Allosteric modulation of nicotinic acetylcholine receptors as a treatment strategy for Alzheimer’s disease. Eur. J. Pharmacol. 393:165–170.CrossRefPubMedGoogle Scholar
  162. Malpass, J. R., Hemmings, D. A., Wallis, A. L., Fletcher, S. R., and Patel, S. (2001). Synthesis and nicotinic acetylcholine binding properties of epibatidine homologues: Homoepibatidine and dihomoepibatidine. J. Chem. Soc., Perkin Trans. 1 2001:1044–1050.Google Scholar
  163. Manetti, D., Bartolini, A., Borca, P. A., Belluci, C., Dei, S., Ghelardini, C., Gualteri, F., Romanelli, M. N., Scapecchi, S., Teodori, E., and Varani, K. (1999). Hybridized and isosteric analogues of N′-acetyl-N4-dimethylpiperazinium iodide (ADMP) and N′-phenyl-N4-dimethylpiperazinium iodide (DMPP) with central nicotinic action. Bioorg. Med. Chem. 7:457–465.CrossRefPubMedGoogle Scholar
  164. Marks, M. J., Whiteaker, P., Calcaterra, J., Stitzel, J. A., Bullock, A. E., Grady, S. R., Picciotto, M. R., Changeux, J.-P., and Collins, A. C. (1999). Two pharmacologically distinct components of nicotinic receptor-mediated rubidium efflux in mouse brain require the β2 subunit. J. Pharmacol. Exp. Ther. 289:1090–1103.PubMedGoogle Scholar
  165. Marks, M. J., Whiteaker, P., Grady, S. R., Picciotto, M. R., McIntosh, J. M., and Collins, A. C. (2002). Characterization of [125I]epibatidine binding and nicotinic agonist-mediated 86Rb+ efflux in interpeduncular nucleus and inferior colliculus of β2 null mutant mice. J. Neurochem. 81:1102–1115.CrossRefPubMedGoogle Scholar
  166. Matsubayashi, H., II, Alkondon, M., Pereira, E. F. R., Swanson, K. L., and Albuquerque, E. X. (1998). Strychnine: A potent competitive antagonist of α-bungarotoxin-sensitive nicotinic acetylcholine receptors in rat hippocampal neurons. J. Pharmacol. Exp. Ther. 284:904–913.PubMedGoogle Scholar
  167. McIntosh, J. M., Santos, A. D., and Olivera, B. M. (1999). Conus peptides targeted to specific nicotinic acetylreceptor subtypes. Annu. Rev. Biochem. 68:59–88.CrossRefPubMedGoogle Scholar
  168. Meyer, M. D., Decker, M. W., Rueter, L. E., Anderson, D. J., Dart, M. J., Kim, K. H., Sullivan, J. P., and Williams, M. (2000). The identification of novel structural compound classes exhibiting high affinity for neuronal nicotinic acetylcholine receptors and analgesic efficacy in preclinical models of pain. Eur. J. Pharmacol. 393:171–177.CrossRefPubMedGoogle Scholar
  169. Meyer, E. M., deFiebre, C. M., Hunter, B. E., Simpkins, C. E., Franworth, N., and deFiebre, F. E. C. (1994). Effects of anabaseine-related analogs on rat brain nicotinic receptor binding and on avoidance behavior. Drug Dev. Res. 31:127–134.CrossRefGoogle Scholar
  170. Middleton, R. E., Strnad, N. P., and Cohen, J. B. (1999). Photoaffinity labeling the Torpedo nicotinic acetylcholine receptor with [3H]tetracaine, a nondesensitizing noncompetitive antagonist. Mol. Pharmacol. 56:290–299.PubMedGoogle Scholar
  171. Moltzen, E. K., and Bjornholm, B. (1995). Medicinal chemistry of muscarinic agonists: Developments since 1990. Drugs Future 20:37–54.Google Scholar
  172. Mullen, G., Napier, J., Balestra, M., DeCory, T., Hale, G., Macor, J., Mack, R., Loch, J., III, Wu, E., Kover, A., Verhoest, P., Sampognaro, A., Phillips, E., Zhu, Y., Murray, R., Griffith, R., Blosser, J., Gurley, D., Machulskis, A., Zongrone, J., Rosen, A., and Gordon, J. (2000). (−)-Spiro[1-azabicyclo[2.2.2]octane-3,5′-oxazolidin-2′-one], a conformationally restricted analogue of acetylcholine, is a highly selective full agonist at the α7 nicotinic acetylcholine receptor. J. Med. Chem. 43:4045–4050.CrossRefPubMedGoogle Scholar
  173. Nielsen, S. F., Nielsen, E. O ., Olsen, G. M., Liljefors, T., and Peters, D. (2000). Novel potent ligands for the central nicotinic acetylcholine receptor: Synthesis, receptor binding, and 3D-QSAR analysis. J. Med. Chem. 43:2217–2226.CrossRefPubMedGoogle Scholar
  174. Olesen, P. B., Swedberg, M. D. B., and Rimvall, K. (1998). 3-(5-Alkylamino-4-isoxazolyl)-1,2,5,6-tetrahydropyridines: A novel class of central nicotinic receptor ligands. Bioorg. Med. Chem. 6:1623–1629.CrossRefPubMedGoogle Scholar
  175. Olivo, H. F., Colby, D. A., and Hemenway, M. S. (1999). Syntheses of new open-ring and homo-epibatidine analogues from tropinone. J. Org. Chem. 64:4966–4968.CrossRefPubMedGoogle Scholar
  176. Olesen, P. H., Tonder, J. E., Hansen, J. B., Hansen, H. C., and Rimvall, K. (2000). Bioisosteric replacement strategy for the synthesis of 1-azacyclic compounds with high affinity for the central nicotinic cholinergic receptors. Bioorg. Med. Chem. 8:1443–1450.CrossRefPubMedGoogle Scholar
  177. Pabreza, L. A., Dhawau, S., and Kellar, K. J. (1991). [3H]Cytisine binding to nicotinic cholinergic receptors in brain. Mol. Pharmacol. 39:9–12.PubMedGoogle Scholar
  178. Papke, R. L., Bencherif, M., and Lippiello, P. (1996). An evaluation of neuronal nicotinic acetylcholine receptor activation by quaternary nitrogen compounds indicates that choline is selective for the alpha 7 subtype. Neurosci. Lett. 213:201–204.PubMedGoogle Scholar
  179. Papke, R. L., and Porter-Papke, J. W. (2002). Comparative pharmacology of rat and human alpha7 nAChR conducted with net charge analysis. Br. J. Pharmacol. 137:49–61.CrossRefPubMedGoogle Scholar
  180. Papke, R. L., Porter-Papke, J. K., and Rose, G. M. (2004). Activity of α7-selective agonists at nicotinic and serotonin 5HT3 receptors expressed in Xenopus oocytes. Bioorg. Med. Chem. Lett. 14:1849–1853.CrossRefPubMedGoogle Scholar
  181. Papke, R. L., and Thinschmidt, J. S. (1998). The correction of alpha 7 nicotinic acetylcholine receptor concentration-response relationships in Xenopus oocytes. Neurosci. Lett. 256:163–166.CrossRefPubMedGoogle Scholar
  182. Pedersen, S. E. (1995). Site-selective photoaffinity labeling of the Torpedo californica nicotinic acetylcholine receptor by azide derivatives of ethidium bromide. Mol. Pharmacol. 47:1–9.PubMedGoogle Scholar
  183. Pei, X. F., Gupta, T. H., Badio, B., Padgett, W. L., and Daly, J. W. (1998). 6β-Acetoxynortropane: A potent muscarinic agonist with apparent selectivity toward M2-receptors. J. Med. Chem. 41:2047–2055.CrossRefPubMedGoogle Scholar
  184. Pereira, E. F. R., Alkondon, M., Reinhardt, S., Maelicke, A., Peng, X., Lindstrom, J., Whiting, P., and Albuquerque, E. X. (1994). Physostigmine and galanthamine characterize the presence of the novel binding site on the α4β2 subtype of neuronal nicotinic acetylcholine receptor stably expressed in fibroblasts cells. J. Pharmacol. Exp. Ther. 270:768–778.PubMedGoogle Scholar
  185. Rádl, S., Hezký, P., Hafner, W., Budinský, M., and Hejnová, L. (2000). Synthesis and binding studies of some epibatidine analogues. Bioorg. Med. Chem. Lett. 10:55–58.CrossRefPubMedGoogle Scholar
  186. Romanelli, M. N., and Gualtieri, F. (2003). Cholinergic nicotinic receptors: Competitive ligands, allosteric modulators, and their potential applications. Med. Res. Rev. 23:393–426.CrossRefPubMedGoogle Scholar
  187. Romanelli, M. N., Manetti, D., Scapecchi, S., Borea, P. A., Dei, S., Bartolini, A., Ghelardini, C., Gualtieri, F., Guandalini, L., and Varani, K. (2001). Structure-affinity relationships of a unique nicotinic ligand: N1-Dimethyl-N4-phenylpiperazinium iodide (DMPP). J. Med. Chem. 44:3946–3955.CrossRefPubMedGoogle Scholar
  188. Sacaan, A. I., Reid, R. T., Santori, E. M., Adams, P., Correa, L. D., Mahaffy, L. S., Bleicher, L., Cosford, N. D. P., Stauderman, K. A., McDonald, I. A., Rao, T. S., and Lloyd, G. K. (1997). Pharmacological characterization of SIB-1765F: A novel cholinergic ion channel agonist. J. Pharmacol. Exp. Ther. 280:373–383.Google Scholar
  189. Saji, H., Watanabe, A., Magata, Y., Ohmomo, Y., Kiyono, Y., Yamada, Y., Iida, Y., Yonekura, Y., Konishi, J., and Yokoyama, A. (1997). Synthesis and characterization of radioiodinated (S)-5-iodonicotine: A new ligand for potential imaging of brain nicotinic cholinergic receptors by single photon emission computed tomography. Chem. Pharmacol. Bull. 45:284–290.Google Scholar
  190. Sakurai, Y., Takano, Y., Kohjimoto, Y., Kenji, K., and Hiro, O. (1982). Enhancement of [3H]dopamine release and its [3H]metabolites in rat striatum by nicotinic drugs. Brain Res. 242:99–106.CrossRefPubMedGoogle Scholar
  191. Saraswati, M., Lerner-Marmarosh, N., Wang, D. X., Shen, S.-S., Sharma, V., and Abood, L. G. (1994). Structure-activity studies of N,N-dialkyl and cycloalkyl carbamate esters of dimethylethanolamine and choline with nicotinic and muscarinic receptors. Drug Dev. Res. 31:142–146.CrossRefGoogle Scholar
  192. Schmidt, J. D. (2000). Exploring the nature of molecular recognition in nicotinic acetylcholine receptors. Curr. Med. Chem. 7:749–800.PubMedGoogle Scholar
  193. Schrattenholz, A., Pereira, E. F. R., Roth, U., Weber, K.-H., Albuquerque, E. X., and Maelicke, A. (1996). Agonist responses of neuronal nicotinic acetylcholine receptors are potentiated by a novel class of allosterically acting ligands. Mol. Pharmacol. 49:1–6.PubMedGoogle Scholar
  194. Seerden, J.-P. G., Tulp, M. Th. M., Scheeren, H. W., and Kruse, C. G. (1998). Synthesis and structure-activity data of some new epibatidine analogues. Bioorg. Med. Chem. 6:2103–2110.CrossRefPubMedGoogle Scholar
  195. Sharples, C. G. V., Karig, G., Simpson, G. L., Spencer, J. A., Wright, E., Millar, N. S., Wonnacott, S., and Gallagher, T. (2002). Synthesis and pharmacological characterization of novel analogues of the nicotinic acetylcholine receptor agonist (±)-UB-165. J. Med. Chem. 45:3235–3245.CrossRefPubMedGoogle Scholar
  196. Shaw, K.-P., Aracava, Y., Akaike, A., Daly, J. W., Rickett, D. L., and Albuquerque, E. X. (1985). The reversible cholinesterase inhibitor physostigmine has channel-blocking and agonist effects on the acetylcholine receptor-ion channel complex. Mol. Pharmacol. 28:527–538.PubMedGoogle Scholar
  197. Sihver, W., Nordberg, A., Långström, B., Mukhin, A. G., Koren, A. O., Kimes, A. S., and London, E. D. (2000). Development of ligands for in vivo imaging of cerebral nicotinic receptors. Behav. Brain. Res. 113:143–157.CrossRefPubMedGoogle Scholar
  198. Simsek, R., Chang-Fong, J., Lee, M., Dukat, M., Damaj, M. I., Martin, B. R., and Glennon, R. A. (2003). Quaternary ammonium 3-(aminoethoxy)pyridines as antinociceptive agents. Bioorg. Med. Chem. Lett. 13:2917–2920.CrossRefPubMedGoogle Scholar
  199. Singh, S., Avor, K. S., Pouw, B., Seale, T. W., and Basmadjian, G. P. (1999). Design and synthesis of isooxazole containing bioisosteres of epibatidine as potent nicotinic acetylcholine receptor agonists. Chem. Pharmacol. Bull. 47:1501–1505.Google Scholar
  200. Slater, Y. E., Houlihan, L. M., Maskell, P. D., Exley, R., Bermúdez, I., Lukas, R. J., Valdivia, A. C., and Cassels, B. K. (2003). Halogenated cystisine derivatives as agonists at human neuronal nicotinic acetylcholine receptor subtypes. Neuropharmacology 44:503–515.CrossRefPubMedGoogle Scholar
  201. Small, G., Erkinjuntti, T., Kurz, A., Lilienfeld, S. (2003). Galantamine in the treatment of cognitive decline in patients with vascular dementia or Alzheimer’s disease with cerebrovascular disease. CNS Drugs 17:905–914.PubMedGoogle Scholar
  202. Smith, B. P., Tyler, M. J., Kaneko, T., Garraffo, H. M., Spande, T. F., and Daly, J. W. (2002). Evidence for biosynthesis of pseudophrynamine alkaloids by an Australian myobatrachid frog (Pseudophryne) and sequestration of dietary pumiliotoxins. J. Nat. Prod. 65:439–447.CrossRefPubMedGoogle Scholar
  203. Souccar, C., Varanda, W. A., Aronstam, R. S., Daly, J. W., and Albuquerque, E. X. (1984a). Interactions of gephyrotoxin with the acetylcholine receptor-ionic channel complex. II. Enhancement of desensitization. Mol. Pharmacol. 25:395–400.Google Scholar
  204. Souccar, C., Varanda, W. A., Daly, J. W., and Albuquerque, E. X. (1984b). Interactions of gephyrotoxin with the acetylcholine receptor-ionic channel complex. I. Blockade of the ionic channel. Mol. Pharmacol. 25:384–394.Google Scholar
  205. Spande, T. F., Garraffo, H. M., Edwards, M. W., Yeh, H. J. C., Pannell, L., and Daly, J. W. (1992). Epibatidine: A novel (chloropyridyl)azabicycloheptane with potent analgesic activity from an Ecuadoran poison frog. J. Am. Chem. Soc. 114:3475–3478.CrossRefGoogle Scholar
  206. Spang, J. E., Bertrand, S., Westera, G., Patt, J. T., Schubiger, P. A., and Bertrand, D. (2000). Chemical modification of epibatidine causes a switch from agonist to antagonist and modifies its selectivity for neuronal nicotinic acetylcholine receptors. Chem. Biol. 7:545–555.CrossRefPubMedGoogle Scholar
  207. Spivak, C. E., Gund, T. M., Liang, R. F., and Waters, J. A. (1986). Structural and electronic requirements for potent agonists at a nicotinic receptor. Eur. J. Pharmacol. 120:127–131.CrossRefPubMedGoogle Scholar
  208. Spivak, C. E., Maleque, M. A., Oliveira, A. C., Masukawa, L. M., Tokuyama, T., Daly, J. W., and Albuquerque, E. X. (1982). Actions of the histrionicotoxins at the ion channel of the nicotinic acetylcholine receptor and at the voltage-sensitive ion channels of muscle membranes. Mol. Pharmacol. 21:351–361.PubMedGoogle Scholar
  209. Spivak, C. E., Waters, J., Witkop, B., and Albuquerque, E. X. (1983). Potencies and channel properties induced by semirigid agonists at frog nicotinic acetylcholine receptors. Mol. Pharmacol. 23:337–343.PubMedGoogle Scholar
  210. Stauderman, K. A., Mahaffy, L. S., Akong, M., Velicelebi, G., Chavez-Noriega, L. E., Crona, J. H., Johnson, E. C., Elliott, K. J., Gillespie, A., Reid, R. T., Adams, P., Harpold, M. M., and Corey-Naeve, J. (1998). Characterization of human recombinant neuronal nicotinic acetylcholine receptor subunit combinations α2β4, α3β4 and α4β4 stably expressed in HEK293 cells. J. Pharmacol. Exp. Ther. 284:777–789.PubMedGoogle Scholar
  211. Storch, A., Schrattenholz, A., Cooper, J. C., Abdel Ghani, E. M., Gutbrod, O., Weber, K.-H., Reinhardt, S., Lobron, C., Hermsen, B., Soskic, V., Pereira, E. F. R., Albuquerque, E. X., Methfessel, C., and Maelicke, A. (1995). Physostigmine, galanthamine and codeine act as noncompetitive nicotinic agonists on clonal rat pheochromocytoma cells. Eur. J. Pharmacol. 290:207–219.CrossRefPubMedGoogle Scholar
  212. Sutherland, A., Gallagher, T., Sharples, C. G., and Wonnacott, S. (2003). Synthesis of two fluoro analogues of the nicotinic acetylcholine receptor agonist UB-165. J. Org. Chem. 68:2475–2478.CrossRefPubMedGoogle Scholar
  213. Swanson, K. L., Allen, C. N., Aronstam, R. S., Rapoport, H., and Albuquerque, E. X. (1986). Molecular mechanisms of the potent and stereospecific nicotinic receptor agonist (+)-anatoxin-a. Mol. Pharmacol. 29:250–257.PubMedGoogle Scholar
  214. Tabachnick, I. I. A., Roth, F. E., Mershon, J., Rubin, A. A., Eckhardt, E. T., and Govier, W. M. (1958). Enzymic and pharmacologic comparison of imidazoleacetylcholine with two related choline esters, murexine and dihydromurexine. J. Pharmacol. Exp. Ther. 123:98–103.PubMedGoogle Scholar
  215. Tonder, J. E., and Olesen, P. H. (2001). Agonists at the α4β2 nicotinic acetylcholine receptors: Structure-activity relationships and molecular modelling. Curr. Med. Chem. 8:651–674.PubMedGoogle Scholar
  216. Tonder, J. E., Hansen, J. B., Begtrup, M., Pettersson, I., Rimvall, K., Christensen, B., Ehrbar, U., and Olesen, P. H. (1999). Improving the nicotinic pharmacophore with a series of (isoxazole)methylene-1-azacyclic compounds: Synthesis, structure-activity relationship, and molecular modeling. J. Med. Chem. 42:4970–4980.CrossRefPubMedGoogle Scholar
  217. Toma, L., Quadrelli, P., Bunnelle, W. H., Anderson, D. J., Meyer, M. D., Cignarella, G., Gelain, A., and Barlocco, D. (2002). 6-Chloropyridazin-3-yl derivatives active as nicotinic agents: Synthesis, binding, and modeling studies. J. Med. Chem. 45:4011–4017.CrossRefPubMedGoogle Scholar
  218. Tsuda, Y., and Sano, T. (1996). Erythrina and related alkaloids. In Cordell, G. A. (ed.), The Alkaloids, Vol. 48, Academic Press, New York. pp. 249–337.Google Scholar
  219. Ullrich, T., Krich, S., Binder, D., Mereiter, K., Anderson, D. J., Meyer, M. D., and Pyerin, M. (2002). Conformationally constrained nicotines: Polycyclic, bridged, and spiro-annulated analogues as novel ligands for the nicotinic acetylcholine receptor. J. Med. Chem. 45:4047–4054.CrossRefPubMedGoogle Scholar
  220. Vernier, J.-M., El-Abdellaoui, H., Holsenback, H., Cosford, N. D. P., Bleicher, L., Barker, G., Bontempi, B., Chavez-Noriega, L., Menzaghi, F., Rao, T. S., Reid, R., Sacaan, A. I., Suto, C., Washburn, M., Lloyd, G. K., and McDonald, I. A. (1999). 4-[[2-(1-Methyl-2-pyrrolidinyl)ethyl]thio]-phenol hydrochloride (SIB-1553A): A novel cognitive enhancer with selectivity for neuronal nicotinic acetylcholine receptors. J. Med. Chem. 42:1684–1686.CrossRefPubMedGoogle Scholar
  221. Wang, D. X., Booth, H., Lerner-Marmarosh, N., Osdene, T. S., and Abood, L. G. (1998). Structure-activity relationships for nicotine analogs comparing competition for [3H]nicotine binding and psychotropic potency. Drug Dev. Res. 45:10–16.CrossRefGoogle Scholar
  222. Wang, F., Gerzanich, V., Wells, G. B., Anand, R., Peng, X., Keyser, K., and Lindstrom, J. (1996). Assembly of human neuronal nicotinic receptor α5 subunits with α3, β2, and β4 subunits. J. Biol. Chem. 271:17656–17665.PubMedGoogle Scholar
  223. Wang, G. K., Molinaro, S., and Schmidt, J. (1978). Ligand responses of α-bungarotoxin binding sites from skeletal muscle and optic lobe of the chick. J. Biol. Chem. 253:8507–8512.PubMedGoogle Scholar
  224. Ward, J. M., Cockcroft, V. B., Lunt, G. G., Smillie, F. S., and Wonnacott, S. (1990). Methyllycaconitine: A selective probe for neuronal α-bungarotoxin binding sites. FEBS Lett. 270:45–48.CrossRefPubMedGoogle Scholar
  225. Ward, J. S., Merritt, L., Bymaster, F. P., and Calligaro, D. O. (1994). Isoarecolones and arecolones: Selective central nicotinic agonists that cross the blood brain barrier. Bioorg. Med. Chem. Lett. 4:573–578.CrossRefGoogle Scholar
  226. Warnick, J. E., Jessup, P. J., Overman, L. E., Eldefrawi, M. E., Nimit, Y., Daly, J. W., and Albuquerque, E. X. (1982). Pumiliotoxin-C and synthetic analogues: A new class of nicotinic antagonists. Mol. Pharmacol. 22:565–573.PubMedGoogle Scholar
  227. Waters, J. A., Spivak, C. E., Hermsmeier, M., Yadav, J. S., Liang, R. F., and Gund, T. M. (1988). Synthesis, pharmacology and molecular modeling studies of semirigid, nicotinic agonists. J. Med. Chem. 31:545–554.CrossRefPubMedGoogle Scholar
  228. Wei, Z. L., Petukhov, P. A., Xiao, Y., Tückmantel, W., George, C., Kellar, K. J., and Kozikowski, A. P. (2003a). Synthesis, nicotinic acetylcholine receptor binding affinities, and molecular modeling of constrained epibatidine analogues. J. Med. Chem. 46:921–924.CrossRefGoogle Scholar
  229. Wei, Z.-L., Xiao, Y., George, C., Kellar, K. J., and Kozikowski, A. P. (2003b). Functionalization of the alicyclic skeleton of epibatidine: Synthesis and nicotinic acetylcholine receptor binding affinities of epibatidine analogues. Org. Biomol. Chem. 1:3878–3881.CrossRefGoogle Scholar
  230. Wheeler, J. W., Olubajo, O., Storm, C. B., and Duffield, R. M. (1981). Anabaseine: Venom alkaloid of Aphaenogaster ants. Science 211:1051–1052.Google Scholar
  231. Wilkins, L. H., Jr., Greinevich, V. P., Ayers, J. T., Crooks, P. A., and Dwoskin, L. P. (2003). N-n-Alkylnicotinium analogs, a novel class of nicotinic receptor antagonists: Interaction with α4β2 and α7 neuronal nicotinic receptors. J. Pharmacol. Exp. Ther. 304:400–410.CrossRefPubMedGoogle Scholar
  232. Wonnacott, S., Jackman, S., Swanson, K. L., Rapoport, H., and Albuquerque, E. X. (1991). Nicotinic pharmacology of anatoxin analogs. II. Side chain structure-activity relationships at neuronal nicotinic ligand binding sites. J. Pharmacol. Exp. Ther. 259:387–391.PubMedGoogle Scholar
  233. Wonnacott, S., Swanson, K. L., Albuquerque, E. X., Huby, N. J. S., Thompson, P., and Gallagher, T. (1992). Homoanatoxin: A potent analogue of anatoxin-a. Biochem. Pharmacol. 43:419–423.CrossRefPubMedGoogle Scholar
  234. Wright, E., Gallagher, T., Sharples, C. G. V., and Wonnacott, S. (1997). Synthesis of UB-165: A novel nicotinic ligand and anatoxin-a/epibatidine hybrid. Bioorg. Med. Chem. Lett. 7:2867–2870.CrossRefGoogle Scholar
  235. Xu, R., Bai, D., Chu, G., Tao, J., and Zhu, X. (1996). Synthesis and analgesic activity of epibatidine analogues. Bioorg. Med. Chem. Lett. 6:279–282.CrossRefGoogle Scholar
  236. Xu, R., Dwoskin, L. P., Grinevich, V. P., Deaciuc, G., and Crooks, P. A. (2001). Neuronal nicotinic acetylcholine receptor binding affinities of boron-containing nicotine analogues. Bioorg. Med. Chem. Lett. 11:1245–1248.CrossRefPubMedGoogle Scholar
  237. Xu, R., Dwoskin, P., Grinevich, V., Sumithran, S. P., and Crooks, P. A. (2002). Synthesis and evaluation of conformationally restricted pyridine n-alkylated nicotine analogs as nicotinic acetylcholine receptor antagonists. Drug Dev. Res. 55:173–186.CrossRefGoogle Scholar
  238. Zhang, C., Gyermek, L., and Trudell, M. L. (1997). Synthesis of optically pure epibatidine analogs: (1R,2R,5S)-2β-(2-chloro-5-pyridinyl)-8-azabicyclo[3.2.1]octane and (1R,2S,5S)-2α-(2-chloro-5-pyridinyl)-8-azabicyclo[3.2.1]octane from (−)-cocaine. Tetrahedron Lett. 38:5619–5622.CrossRefGoogle Scholar
  239. Zhang, N., Tomizawa, M., and Casida, J. E. (2003). 5-Azidoepibatidine: An exceptionally potent photoaffinity ligand for neuronal α4β2 and α7 nicotinic acetylcholine receptors. Bioorg. Med. Chem. Lett. 13:525–527.CrossRefPubMedGoogle Scholar
  240. Zhang, X., Gong, Z.-H., Fasth, K. J., Långström, B., and Nordberg, A. (1998). Interaction of the nicotinic agonist (R, S)-3-pyridyl-1-methyl-2-(3-pyridyl)-azetidine (MPA) with nicotinic acetylcholine receptor subtypes expressed in cell lines and rat cortex. Neurochem. Int. 32:435–441.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of Health, DHHSBethesda
  2. 2.National Institutes of HealthBethesda

Personalised recommendations