Cellular and Molecular Neurobiology

, Volume 25, Issue 2, pp 223–244 | Cite as

A Neural Infrastructure for Rhythmic Motor Patterns

  • Allen I. SelverstonEmail author


It is possible to work out the neural circuity of many invertebrate central pattern generators (CPGs) thereby providing a basis for linking cellular processes to actual behaviors. This review summarizes the infrastructure of the two CPGs in the lobster stomatogastric ganglion in terms of circuitry, ionic conductances and chemical modulation by amines and peptides. Analysis of the circuit using modeling techniques including the use of electronic neurons closes the chapter.


stomatogastric ganglion lobster central pattern generator neural circuits 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abarbanel, H. D. I., Huerta, R., Rabinovich, M., Rulkov, N. F., Rowat, P. F., and Selverston, A. I. (1996). Synchronized action of synaptically coupled chaotic model neurons. Neural. Comput. 8:50–65.Google Scholar
  2. Ayers, J. L., and Selverston, A. I. (1979). Monosynaptic entrainment of an endogenous pacemaker network: A cellular mechanism for von Holst’s magnet effect. J. Comp. Physiol. 129:5–17.Google Scholar
  3. Ayers, J. L., and Selverston, A. I. (1984). Synaptic perturbation and entrainment of gastric mill rhythm of the spiny lobster. J. Neurophysiol. 51:113–125.PubMedGoogle Scholar
  4. Baro, D. J., Cole, C. L., Zarrin, A. R., Hughes, S., and Harris-Warrick, R. M. (1994). Shal gene expression in identified neurons of the pyloric network in the colster stomatogastric ganglion. Receptorsy Channels 2:193–205.Google Scholar
  5. Baro, D. J., Levini, R. M., Kim, M. T., Willms, A. R., Lanning, C. C., Rodriguez, H. E., and Harris-Warrick, R. M. (1997). Quantitative single-cell-reverse transcription-PCR demonstrates that A-current magnitude varies as a linear function of shal gene expression in identified stomatogastric neurons. J. Neurosci. 17:6597–6610.PubMedGoogle Scholar
  6. Bartos, M., Manor, Y., Nadim, F., Marder, E., and Nusbaum, M. P. (1999). Coordination of fast and slow rhythmic neuronal circuits. J. Neurosci. 19:6650–6660.PubMedGoogle Scholar
  7. Beenhakker, M. P., Blitz, D. M., and Nusbaum, M. P. (2004). Long acting activation of rhythmic neuronal activity by a novel mechanosensory system in the crustacean stomatogastric nervous system. J. Neurophysiol. 91:78–91.PubMedGoogle Scholar
  8. Bucher, D., Thirumalai, V., and Marder, E. (2003). Axonal dopamine receptors activate peripheral spike initiation in a stomatogastric motor neuron. J. Neurosci. 23:6866–6875.PubMedGoogle Scholar
  9. Cazalets, J. R., Nagy, F., and Moulins, M. (1990). Suppressive control of the crustacean pyloric network by a pair of identified interneuron. I. Modulation of the motor pattern. J. Neurosci. 10:448–457.PubMedGoogle Scholar
  10. Christie, A. E., Stein, W., Quinlan, J. E., Beenhakker, M. P., Marder, E., and Nusbaum, M. P. (2004). Actions of histaminergic/peptidergic projection neuronon rhythmic motor patterns in the stomatogastric nervous system of the crab Cancer borealis. J. Comp. Neurol. 469:153–169.PubMedGoogle Scholar
  11. Combes, D., Meyrand, P., and Simmers, J. (1999a). Motor pattern specification by dual descending pathways to a lobster rhythm-generating network. J. Neurosci. 19:3610–3619.Google Scholar
  12. Combes, D., Meyrand, P., and Simmers, J. (1999b). Dynamic restructuring of a rhythmic motor program by a single mechanoreceptor neuron in lobster. J. Neurosci. 19:3620–3628.Google Scholar
  13. Elson, R. C., and Selverston, A. I. (1995). Slow and fast synaptic inhibition evoked by pattern-generating neurons of the gastric mill network in spiny lobsters. J. Neurophysiol. 74:1996–2011.PubMedGoogle Scholar
  14. Elson, R. C., Huerta, R., Abarbanel, H., Rabinovich, M., and Selverston, A. (1999). Dynamic control of irregular bursting in an identified neuron of an oscillatory circuit. J. Neurophysiol. 82:115–122.PubMedGoogle Scholar
  15. Falke, M., Huerta, R., Rabinovich, M. I., Abarbanel, H. D. I., Elson, R. C., and Selverston, A. I. (2000). Modeling observed chaotic oscillations in bursting neurons: The role of calcium dynamics and IP3. Biol. Cyber. 82:517–527.Google Scholar
  16. Getting, P. A. (1989). Emerging principles governing the operation of neural networks. Ann. Rev. Neurosci. 12:185–204.PubMedGoogle Scholar
  17. Gola, M., and Selverston, A. I. (1981). Ionic requirements for bursting activity in lobster stomatogastric neurons. J. Comp. Physiol. 145:191–207.Google Scholar
  18. Golowasch, J., and Marder, E. (1992). Ionic currents of the lateral pyloric neuron of the stomatogastric ganglion of the crab. J. Neurophysiol. 67:318–331.PubMedGoogle Scholar
  19. Graubard, K., and Hartline, D. K. (1991). Voltage clamp analysis of intact stomatogastric neurons. Brain Res. 557:241–254.PubMedGoogle Scholar
  20. Heinzel, H. G. (1988). Gastric mill activity in the lobster I. Spontaneous modes of chewing. J. Neurophysiol. 59:528–550.PubMedGoogle Scholar
  21. Hempel, C. M., Vincent, P., Adams, S. R., Tsien, R. Y., and Selverston, A. I. (1996). Spatio-temporal dynamics of cAMP signals in an intact neural circuit. Nature 384:166–169.PubMedGoogle Scholar
  22. Hindmarsh, J. L., and Rose, R. M. (1984). A model of neuronal bursting using three coupled first order differential equations. Proc. Roy. Soc. London B. 221:87–102.Google Scholar
  23. Johnson, B. R., Kloppenburg, P., and Harris-Warrick, R. M. (2003). Dopamine modulation of calcium currents in pyloric neurons of the lobster stomatogastric ganglion. J. Neurophysiol. 90:631–643.PubMedGoogle Scholar
  24. Katz, P. S., and Harris-Warrick, R. M. (1990a). Actions of identified neuromodulatory neurons in a simple motor system. TINS 13:367–373.Google Scholar
  25. Katz, P. S., and Harris-Warrick, R. M. (1990b). Neuromodulation of the crab pyloric central pattern generator by serotonergic/cholinergic proprioceptive afferents. J. Neurosci. 10:1495–1512.Google Scholar
  26. Katz, P. S., and Harris-Warrick, R. M. (1990c). Serotonergic/cholinergic muscle receptor cells in the crab stomatogastric nervous system. II. Rapid nicotinic and prolonged modulatory effects on neurons in the stomatogastric ganglion. J. Neurophysiol. 62(2):571–581.Google Scholar
  27. Le Masson, G., Le Masson, S., and Moulins, M. (1995). From conductances to neural network prperties: Analysis of simple circuits using the hybrid network method. Prog. Biophys. Mol. Biol. 64:201–220.PubMedGoogle Scholar
  28. Marder, E., and Meyrand, P. M. (1989). Chemical modulation of oscillatory neural circuit. In Jacklet, J. (ed.), Neuronal and Cellular Oscillators, Marcel Dekker, Inc., New York, pp. 317–338.Google Scholar
  29. Maynard, D. M. (1972). Simpler networks. Ann. N.Y. Acad. Sci. 193:59–72.PubMedGoogle Scholar
  30. Maynard, D. M., and Selverston, A. I. (1975). Organization of the stomatogastric ganglion of the spiny lobster. IV. The pyloric system. J. Comp. Physiol. 100:161–182.Google Scholar
  31. Miller, J. P., and Selverston, A. I. (1979). Rapid killing of single neurons by irradiation of intracellularly injected dye. Science 206:702–704.PubMedGoogle Scholar
  32. Miller, J. P., and Selverston, A. I. (1982). Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. IV. Network properties of pyloric system. J. Neurophysiol. 48:1416–1432.PubMedGoogle Scholar
  33. Mulloney, B., and Selverston, A. I. (1974). Organization of the stomatogastric in the spiny colster. J. Comp. Physiol. 91:53–78.Google Scholar
  34. Nadim, F., Manor, Y., Kopell, N., and Marder, E. (1999). Synaptic depression creates a switch that controls the frequency of an oscillatory circuit. Proc. Natl. Acad. Sci. 96:8206–8211.PubMedGoogle Scholar
  35. Nagy, F., and Moulins, M. (1981). Proprioceptive control of the bilaterally organized rhythmic activity of the oesophageal neuronal network in the Cape lobster Jasus lalandii. J. Exp. Biol. 90:231–251.Google Scholar
  36. Nagy, F., and Dickinson, P. S. (1983). Control of a central pattern generator by an identified modulatory interneurone in crustacea. I. Modulation of the pyloric motor output. J. Exp. Biol. 105:33–58.PubMedGoogle Scholar
  37. Pinto, R. D., Elson, R., Scucs, A., Rabinovich, M., Selverston, A. I., and Abarbanel, H. D. I. (2001). Extended dynamic clamp: controlling up to four neurons using a single desktop computer and interface. J. Neurosci. Methods. 108:39–48.PubMedGoogle Scholar
  38. Rezer, E., and Moulins, M. (1983). Expression of the crustacean pyloric pattern generator in the intact animal. J. Comp. Physiol. 153:17–28.Google Scholar
  39. Selverston, A. I. (1980). Are central pattern generators understandable ? Behav. Brain Sci. 3:535–571.Google Scholar
  40. Simmers, A. J., and Moulins, M. (1988). A disynaptic sensorimotor pathway in the lobster stomatogastric system. J. Neurophysiol. 59:740–756.PubMedGoogle Scholar
  41. Szucs, A., Varona, P., Volkovskii, A. R., Abarbanel, D. D. I., Rabinovich, M. I., and Selverston, A. I. (2000). Interacting biological and electronic neurons generate realistic oscillatory rhythms. Neuroreport 11:563–569.PubMedGoogle Scholar
  42. Tierney, A. J., and Harris-Warrick, R. M. (1992). Physiological role of the transient potassium current in the pyloric circuit of the lobster stomatogastric ganglion. J. Neurophysiol. 67:599–609.PubMedGoogle Scholar
  43. Turrigiano, G. G., and Selverston, A. I. (1990). A cholecystokinin-like hormone activates a feeding-related neural circuit in lobster. Nature 344:866–868.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Institute for Nonlinear Science-0402University of California, San DiegoLa Jolla
  2. 2.Institute for Nonlinear Science0402 University of CaliforniaSan Diego La Jolla

Personalised recommendations