Cellular and Molecular Neurobiology

, Volume 25, Issue 2, pp 427–440 | Cite as

Hirudo medicinalis: A Platform for Investigating Genes in Neural Repair

  • W. -Z. Wang
  • R. D. Emes
  • K. Christoffers
  • J. Verrall
  • S. E. Blackshaw


We have used the nervous system of themedicinal leech as a preparation to study the molecular basis of neural repair. The leech central nervous system, unlikemammalian CNS, can regenerate to restore function, and contains identified nerve cells of known function and connectivity.

We have constructed subtractive cDNAprobes from whole and regenerating ganglia of the ventral nerve cord and have used these to screen a serotonergic Retzius neuron library. This identifies genes that are regulated as a result of axotomy, and are expressed by the Retzius cell.

This approach identifies many genes, both novel and known. Many of the known genes identified have homologues in vertebrates, including man. For example, genes encoding thioredoxin (TRX), Rough Endoplasmic Reticulum Protein 1 (RER-1) and ATP tsynthase are upregulated at 24 h postinjury in leech nerve cord.

To investigate the functional role of regulated genes in neuron regrowthwe are using microinjection of antisense oligonucleotides in combination with horseradish peroxidase to knock down expression of a chosen gene and to assess regeneration in single neurons in 3-D ganglion culture. As an example of this approach we describe experiments to microinject antisense oligonucleotide to a leech isoform of the structural protein, Protein 4.1.

Our approach thus identifies genes regulated at different times after injury thatmay underpin the intrinsic ability of leech neurons to survive damage, to initiate regrowth programs and to remake functional connections. It enables us to determine the time course of gene expression in the regenerating nerve cord, and to study the effects of gene knockdown in identified neurons regenerating in defined conditions in culture.


neural regeneration axotomy leech serotonergic neurons upregulated genes thioredoxin RER-1 ATP synthase Protein 4.1 antisense oligonucleotides 3-D culture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25(17):3389–402.PubMedGoogle Scholar
  2. Baines, A. J., Keating, L., Phillips, G. W., and Scott, C. (2001). The postsynaptic spectrin/4.1 membrane protein “accumulation machine.” Cell & Molecular Biol. Lett. 6:691–702.Google Scholar
  3. Baker, M. W., and Macagno, E. (2000). RNAi of the receptor tyrosine phosphatase HmLAR2 in a single cell of an intact leech embryo leads to growth-cone collapse. Curr. Biol. 10:1071–1074.PubMedGoogle Scholar
  4. Bannatyne, B. A., Blackshaw, S. E., and McGregor, M. S. (1989). New growth elicited in adult leech mechanosensory neurones by peripheral axon damage. J. Exp. Biol. 143:419–434PubMedGoogle Scholar
  5. Bennett, V. (1989). The spectrin-actin junction of erythrocyte membrane skeletons. Biochimica et Biophysica Acta 988:107–121.PubMedGoogle Scholar
  6. Blackshaw, S. E. (1994). Cellular and molecular approaches to neural repair in the medicinal leech. Prog. Neurobiol. 42:333–338.PubMedGoogle Scholar
  7. Blackshaw, S. E., Arkison, S., Cameron, C., and Davies, J. A. (1997). Promotion of regeneration and axon growth following injury in an invertebrate nervous system by the use of three-dimensional collagen gels. Proc. Royal Soc. B 264:657–661.Google Scholar
  8. Blackshaw, S. E., Arkison, S., Davies, J. A., and Holmes, D. (1998). Intracellular injection of antisense oligonucleotides into identifed leech neurons regenerating in 3-D cultures. J. Physiol. 509P:191.Google Scholar
  9. Blackshaw, S. E., Babington, E. J., Emes, R. D., Malek, J., and Wang, W. -Z. (2004). Identifying genes for neuron survival and axon outgrowth in Hirudo medicinalis. J Anat. 204:13–24.PubMedGoogle Scholar
  10. Boiziau, C., Thuong, N. T., and Toulmé, J. J. (1992). Mechanisms of the inhibition of reverse transcription by antisense oligonucleotides. Proc. National Acad. Sci. USA 89:768–772.Google Scholar
  11. Bonilla, I. E., Tanabe, K., and Strittmatter, S. M. (2002). Small Proline-Rich Repeat Protein 1A is Expressed by Axotomized Neurons and Promotes Axonal Outgrowth. J. Neurosci. 22:1303–1315.PubMedGoogle Scholar
  12. Cai, D., Qiu, J., Cao, Z., McAtee, M., Bregman, B. S., and Filbin, M. T. (2001). Neuronal Cyclic AMP Controls the Developmental Loss in Ability of Axons to Regenerate. J. Neurosci. 21:4731–4739.PubMedGoogle Scholar
  13. Christman, C. W., Slavant, J. B., Jr., Walker, S. A., and Povlishock, J. T. (1997). Characterization of a prolonged regenerative attempt by diffusely injured axons following traumatic brain injury in adult cat: A light and electron microscopic immunocytochemical study. Acta Neuropathologica 94:329–337.PubMedGoogle Scholar
  14. Coleman, S. K., Cai, C., Mottershead, D. G., Haapalahti, J. -P., and Keinanen, K. (2003). Surface Expression of GluR-D AMPA Receptor Is Dependent on an Interaction between Its C-Terminal Domain and a 4.1 Protein. J. Neurosci. 23:798–806.PubMedGoogle Scholar
  15. Denker, S. P., and Barber, D. L. (2002). Ion transport proteins anchor and regulate the cytoskeleton. Curr. Opinion Cell Biol. 14:214–220.PubMedGoogle Scholar
  16. Emes, R. D., Wang, W. -Z., and Blackshaw, S. E. (2002). Subtracted cDNA libraries from regenerating leech ganglia identify transcripts upregulatd at different times post-axotomy. J. Physiol. 539P:108P.Google Scholar
  17. Emes, R. D., Wang, W. -Z., Lanary, K., and Blackshaw, S. E. (2003). HmCRIP, a cysteine-rich intestinal protein, is expressed by an identified regenerating nerve cell. FEBS Lett. 533:124–128.PubMedGoogle Scholar
  18. Fawcett, J. W. (1992). Intrinsic neuronal determinants of regeneration. Trends Neurosci. 15:5–8.PubMedGoogle Scholar
  19. Fawcett, J. W., and Keynes, R. (1990). Peripheral nerve regeneration. Ann. Rev. Neurosci. 13:43–60.PubMedGoogle Scholar
  20. Fernandez-de-Miguel, F. F. (1997). Outgrowth patterns and directed growth of identified neurons induced by native substrates in culture. J.Comparative Neurology 380:1–15.Google Scholar
  21. Fernandez-de-Miguel, F. F., and Drapeau, P. (1995). Synapse formation and function: insights from identified leech neurons in culture. J. Neurobiol. 27:367–379.PubMedGoogle Scholar
  22. Fu, S. Y., and Gordon, T. (1997). The cellular and molecular basis of peripheral nerve regeneration. Mol. Neurobiol. 14: 67–116.PubMedGoogle Scholar
  23. Giehl, K. M., Röhrig, S., Bonatz, H., Gutjahr, M., Leiner, B., Bartke, I., Yan, Q., Reichardt, L. F., Backus, C., Welcher, A. A., Dethleffsen, K., Mestres, P., and Meyer, M. (2001). Endogenous Brain-Derived Neurotrophic Factor and Neurotrophin-3 Antagonistically Regulate Survival of Axotomized Corticospinal Neurons. In Vivo J. Neurosci. 21:3492–3502.Google Scholar
  24. Goodstadt, L., and Ponting, C. P. (2001). CHROMA: consensus-based colouring of multiple alignments for publication. Bioinformatics 17(9):845–846.PubMedGoogle Scholar
  25. Hunter, A. J., Leslie, R. A., and Gloger, I. S. (1995). Probing the function of novel genes in the nervous system: Is antisense the answer? Trends Neurosci. 18:329–331.PubMedGoogle Scholar
  26. Korneev, S., Blackshaw, S. E., and Davies, J. A. (1994). cDNA libraries from a few neural cells. Progr. Neurobiol. 42:339–346.PubMedGoogle Scholar
  27. Korneev, S., Blackshaw, S. E., Kaiser, K., and Davies, J. A. (1996). cDNA libraries from identified neurons. Proc Roy Soc B 263:56–72.Google Scholar
  28. Korneev, S., Fedorov, A., Collins, R., Blackshaw, S. E., and Davies, J. A. (1997). A subtractive cDNA library from an identified regenerating neuron is enriched in sequences upregulated during nerve regeneration. Invertebrate Neurosci. 3:185–192.Google Scholar
  29. Kwon, B. K., Liu, J., Messerer, C., Kobayashi, N. R., McGraw, J., Oschipok, L., and Tetzlaff, W. (2002). Survival and regeneration of rubrospinal neurons 1 year after spinal cord injury. PNAS 99(5):3246–3251.PubMedGoogle Scholar
  30. Lichtman, J. W. (1977). The reorganization of synaptic connections in the rat submandibular ganglion during post-natal development. J. Physiol. 273:155–177.PubMedGoogle Scholar
  31. Leake, L. D. (1986). Leech Retzius cells and 5-hydroxytryptamine. Comp. Biochem. Physiol. C 83(2):229–239.PubMedGoogle Scholar
  32. Malek, J. A., and Blackshaw, S. E. (2004). Real-time RT-PCR analysis of voltage-gated sodium channel transcripts in leech ganglia after injury. J. Physiol. 41P: PC29.Google Scholar
  33. Marty, S., and Peschanski, M. (1994). Fine structural alteration in target-deprived axonal terminals in the rat thalamus. Neuroscience 62:1121–1132.PubMedGoogle Scholar
  34. Masuda-Nakagawa, L. M., and Wiedemann, C. (1992). The role of matrix molecules in regeneration of leech CNS. J. Neurobiol. 23:551–567.PubMedGoogle Scholar
  35. Muller, K. J., and McMahan, U. J. (1976). The shapes of sensory and motor neurones and the distribution of their synapses in ganglia of the leech: A study using intracellular injection of horseradish peroxidase. Proc. Royal Soc. London Series B 194:481–499.Google Scholar
  36. Muller, K. J., Nicholls, J. G., and Stent, G. S. (1981). Neurobiology of the Leech. Cold Spring Harbor Publications, Cold Spring Harbor, NY.Google Scholar
  37. Neely, M. D. (1993). Role of substrate and calcium in neurite retraction of leech neurons following depolarization. J. Neurosci. 13:1292–1301.PubMedGoogle Scholar
  38. Nicholls, J. G. (1987). The Search for Connections: Studies of Regeneration in the Nervous System of the Leech. Sinauer, Sunderland, MA.Google Scholar
  39. Nicholls, J. G., Adams, W. B., Eugenin, J., Geisler, R., Lepre, M., Luque, J. M., and Winzler, M. (1999). Why does the central nervous system not regenerate after injury? Survey Opthalmol. 43 (Suppl. 1), S136–S141.Google Scholar
  40. Pellegrino, M., Nencioni, B., and Matteoli, M. (1984). Response to axotomy of an identified leech neuron, in vivo and in culture. Brain Res. 298:347–352.PubMedGoogle Scholar
  41. Pinder, J. C., Clark, S. E., Baines, A. J., Morris, E., and Gratzer, W. B. (1981). The construction of the red cell cytoskeleton. Prog. Clin. Biol. Res. 55:343–361.PubMedGoogle Scholar
  42. Ready, D. F., and Nicholls, J. G. (1979). Identified neurons isolated from leech CNS make selective connections in culture. Nature 281:67–69.PubMedGoogle Scholar
  43. Retzius, G. (1891). Zur kenntniss des Zentralen Nervensystems der Würmer. Biologische Untersuchungen, Neue Folge 2:1–28.Google Scholar
  44. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning, A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.Google Scholar
  45. Scott, C., and Baines, A. J. (1998). Identification of protein 4.1 isotypes at the postsynaptic density. Mol.r Biol. Cell 9 SS:213.Google Scholar
  46. Scott, C., Bellamy, M. L., Hayes, N. V. L., and Baines, A. J. (1998). Distribution and activities of neuronal protein 4.1 isotypes. Biochem. Soc. Transactions 26:S106.Google Scholar
  47. Shen, M., Liang, F., Walensky, L. D., and Huganir, R. L. (2000). Regulation of AMPA receptor GluR1 subunit surface expression by a 4.1N linked actin cytoskeletal association. J. Neurosci. 20:7932–7940.PubMedGoogle Scholar
  48. Singleton, R. H., Zhu, J., Stone, J. R., and Povlishock, J. T. (2002). Traumatically induced axotomy adjacent to the soma does not result in acute neuronal death. J. Neurosci. 22(3):791–802.PubMedGoogle Scholar
  49. Song, M. H., Huang, F. Z., Chang, G. Y., and Weisblat, D. A. (2002). Expression and function of an even-skipped homolog in the leech Helobdella robusta. Development 129:3681–3692.PubMedGoogle Scholar
  50. Stein, C. A. (1995). Does antisense exist? Nature Medicine 1:1119–1121.PubMedGoogle Scholar
  51. Szczupak, L., Kristan, W. B. (1995). Widespread mechanosensory activation of the serotonergic system of the medicinal leech. J. Neurophysiol. 74:2614–2623.PubMedGoogle Scholar
  52. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 11:4673–80.Google Scholar
  53. Trueta, C., Mendez, B., and Fernandez-de-Miguel, F. (2003). Somatic exocytosis of serotonin mediated by L-type calcium channels in cultured leech neurons. J. Physiol. 547:405–416.PubMedGoogle Scholar
  54. Velazquez-Ulloa, N., Blackshaw, S. E., Szczupak, L., Trueta, C., Garcia, E., and de Miguel, F. F. (2003). Convergence of mechanosensory inputs onto neuromodulatory serotonergic neurons in the leech. J. Neurobiol. 54:604–617.PubMedGoogle Scholar
  55. von Bernhardi, R., and Muller, K. J. (1995). Repair of the Central Nervous System: Lessons from Lesions in Leeches. J. Neurobiol. 27:353–366.PubMedGoogle Scholar
  56. Walensky, L. D., Blackshaw, S., Liao, D., Watkins, C. C., Weier, H. U. G., Parra, M., Huganir, R. L., Conboy, J. G., Mohandas, N., and Snyder, S. H. (1999). A novel neuron-enriched homologue of the erythrocyte membrane cytoskeletal protein 4.1. J. Neurosci. 19:6457–6467.PubMedGoogle Scholar
  57. Wang, W. -Z., Christoffers, K., Emes, R., and Blackshaw, S. E. (2002). Genes regulated 24 h after axotomy in identified 5-HT neurons in Hirudo medicinalis. J. Physiol. 539P:107P.Google Scholar
  58. Willard, M., and Skene, J. H. P. (1982). In Nicholls, J. G. (ed.), Repair and Regeneration of the Nervous System. Dahlem Konferenzen Berlin, Heidelberg, New York, Springer-Verlag. pp. 71–90.Google Scholar
  59. Yamakawa, H., Ohara, R., Nakajima, D., Nakayama, M., and Ohara, O. (1999). Molecular characterization of a new member of the protein 4.1 family (brain 4.1) in rat brain. Mol. Brain Res. 70:197–209.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • W. -Z. Wang
    • 1
  • R. D. Emes
    • 1
    • 2
    • 3
  • K. Christoffers
    • 1
  • J. Verrall
    • 1
  • S. E. Blackshaw
    • 1
    • 4
  1. 1.Department of Human Anatomy & GeneticsUniversity of OxfordUK
  2. 2.MRC Unit of Functional Genetics, Department of Human Anatomy & GeneticsUniversity of OxfordUK
  3. 3.The Wellcome Trust Sanger InstituteHinxton, CambridgeUK
  4. 4.Department of Human Anatomy & GeneticsUniversity of OxfordUK

Personalised recommendations