Cellular and Molecular Neurobiology

, Volume 25, Issue 2, pp 371–392

Role of Nitric Oxide on Motor Behavior

  • E. A. Del Bel
  • F. S. Guimarães
  • M. Bermũdez-Echeverry
  • M. Z. Gomes
  • A. Schiaveto-de-Souza
  • F. E. Padovan-Neto
  • V. Tumas
  • A. P. Barion-Cavalcanti
  • M. Lazzarini
  • L. P. Nucci-da-Silva
  • D. de Paula-Souza1
Article

Abstract

The present review paper describes results indicating the influence of nitric oxide (NO) on motor control. Our last studies showed that systemic injections of low doses of inhibitors of NO synthase (NOS), the enzyme responsible for NO formation, induce anxiolytic effects in the elevated plus maze whereas higher doses decrease maze exploration. Also, NOS inhibitors decrease locomotion and rearing in an open field arena.

These results may involve motor effects of this compounds, since inhibitors of NOS, NG-nitro-L-arginine (L-NOARG), NG-nitro-L-arginine methylester (L-NAME), NG-monomethyl-L-arginine (L-NMMA), and 7-Nitroindazole (7-NIO), induced catalepsy in mice. This effect was also found in rats after systemic, intracebroventricular or intrastriatal administration.

Acute administration of L-NOARG has an additive cataleptic effect with haloperidol, a dopamine D2 antagonist. The catalepsy is also potentiated by WAY 100135 (5-HT1a receptor antagonist), ketanserin (5HT2a and alfa1 adrenergic receptor antagonist), and ritanserin (5-HT2a and 5HT2c receptor antagonist). Atropine sulfate and biperiden, antimuscarinic drugs, block L-NOARG-induced catalepsy in mice.

L-NOARG subchronic administration in mice induces rapid tolerance (3 days) to its cataleptic effects. It also produces cross-tolerance to haloperidol-induced catalepsy. After subchronic L-NOARG treatment there is an increase in the density NADPH-d positive neurons in the dorsal part of nucleus caudate-putamen, nucleus accumbens, and tegmental pedunculupontinus nucleus. In contrast, this treatment decreases NADPH-d neuronal number in the substantia nigra compacta.

Considering these results we suggest that (i) NO may modulate motor behavior, probably by interfering with dopaminergic, serotonergic, and cholinergic neurotransmission in the striatum; (ii) Subchronic NO synthesis inhibition induces plastic changes in NO-producing neurons in brain areas related to motor control and causes cross-tolerance to the cataleptic effect of haloperidol, raising the possibility that such treatments could decrease motor side effects associated with antipsychotic medications.

Finally, recent studies using experimental Parkinson’s disease models suggest an interaction between NO system and neurodegenerative processes in the nigrostriatal pathway. It provides evidence of a protective role of NO. Together, our results indicate that NO may be a key participant on physiological and pathophysiological processes in the nigrostriatal system.

Keywords

catalepsy L-NOARG 7-NIO nitric oxide synthase L-arginine haloperidol tolerance dopamine NADPH-diaphorase intracerebral injection anxiogenic anxiolytic Parkinson 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abekawa, T., Ohmori, T., and Koyama, T. (1994). Effect of NO synthase inhibition on behavioral changes induced by a single administration of methamphetamine. Brain Res. 666:147–150.CrossRefPubMedGoogle Scholar
  2. Agid, Y., Javoy-Agid, F., and Ruberg, M. (1987). Biochemistry of neurotransmitters in Parkinson’s disease. In Marsden, C. D., and Fahn, S. (eds.), Movement Disorders, Butterworths, London, pp. 166–230.Google Scholar
  3. Allikmets, L. H., Zarkovsky, A. M., and Nurk, A. M. (1981). Changes in catalepsy and receptor sensitivity following chronic neuroleptic treatment. Eur. J. Pharmacol. 75:145–147.PubMedGoogle Scholar
  4. Amalric, M., Moukhles, H., Nieoullon, A., and Daszuta, A. (1995). Complex deficits on reaction time performance following bilateral intrastriatal 6-OHDA infusion in the rat. Eur. J. Neurosci. 7:972–980.PubMedGoogle Scholar
  5. Araki, T., Mizutani, H., Matsubara, M., Imai, Y., Mizugaki, M., and Itoyama, Y. (2001). Nitric oxide synthase inhibitors cause motor deficits in mice. Eur. Neuropsychopharmacol. 11:125–133.PubMedGoogle Scholar
  6. Ariano, M. A. (1983). Distribution of components of the guanosine 3′,5′-phosphate system in rat caudate-putamen. Neuroscience 10:707–723.PubMedGoogle Scholar
  7. Ariano, M. A., Lewicki, J. A., Brandwein, H. J., and Murad, F. (1982). Immunohistochemical localization of guanylate cyclase within neurons of rat brain. Proc. Natl. Acad. Sci. U.S.A 79:1316–1320.PubMedGoogle Scholar
  8. Ariano, M. A., and Matus, A. I. (1981). Ultrastructural localization of cyclic GMP and cyclic AMP in rat striatum. J. Cell Biol. 91:287–292.PubMedGoogle Scholar
  9. Babbedge, R. C., Hart, S. L., and Moore, P. K. (1993a). Anti-nociceptive activity of nitric oxide synthase inhibitors in the mouse: Dissociation between the effect of L-NAME and L-NMMA. J. Pharm. Pharmacol. 45:77–79.Google Scholar
  10. Babbedge, R. C., Wallace, P., Gaffen, Z. A., Hart, S. L., and Moore, P. K. (1993b). L-NG-nitro arginine p-nitroanilide (L-NAPNA) is anti-nociceptive in the mouse. Neuroreport 4:307–310.Google Scholar
  11. Barjavel, M. J., and Bhargava, H. N. (1995). Nitric oxide synthase activity in brain regions and spinal cord of mice and rats: Kinetic analysis. Pharmacology 50:168–174.PubMedGoogle Scholar
  12. Barneoud, P., Parmentier, S., Mazadier, M., Miquet, J. M., Boireau, A., Dubedat, P., and Blanchard, J. C. (1995). Effects of complete and partial lesions of the dopaminergic mesotelencephalic system on skilled forelimb use in the rat. Neuroscience 67:837–848.PubMedGoogle Scholar
  13. Black, M. D., Matthews, E. K., and Humphrey, P. P. (1994). The effects of a photosensitive nitric oxide donor on basal and electrically-stimulated dopamine efflux from the rat striatum in vitro. Neuropharmacology 33:1357–1365.PubMedGoogle Scholar
  14. Bohme, G. A., Bon, C., Stutzmann, J. M., Doble, A., and Blanchard, J. C. (1991). Possible involvement of nitric oxide in long-term potentiation. Eur. J. Pharmacol. 199:379–381.PubMedGoogle Scholar
  15. Bredt, D. S. (1999). Endogenous nitric oxide synthesis: Biological functions and pathophysiology. Free Radic. Res. 31:577–596.PubMedGoogle Scholar
  16. Bredt, D. S., Hwang, P. M., and Snyder, S. H. (1990). Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770.CrossRefPubMedGoogle Scholar
  17. Bredt, D. S., and Snyder, S. H. (1990). Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. U.S.A 87:682–685.PubMedGoogle Scholar
  18. Bredt, D. S., and Snyder, S. H. (1992). Nitric oxide, a novel neuronal messenger. Neuron 8:3–11.CrossRefPubMedGoogle Scholar
  19. Buisson, A., Margaill, I., Callebert, J., Plotkine, M., and Boulu, R. G. (1993). Mechanisms involved in the neuroprotective activity of a nitric oxide synthase inhibitor during focal cerebral ischemia. J. Neurochem. 61:690–696.PubMedGoogle Scholar
  20. Calabresi, P., Pisani, A., Centonze, D., and Bernardi, G. (1997). Synaptic plasticity and physiological interactions between dopamine and glutamate in the striatum. Neurosci. Biobehav. Rev. 21:519–523.PubMedGoogle Scholar
  21. Carreau, A., Duval, D., Poignet, H., Scatton, B., Vige, X., and Nowicki, J. P. (1994). Neuroprotective efficacy of N omega-nitro-L-arginine after focal cerebral ischemia in the mouse and inhibition of cortical nitric oxide synthase. Eur. J. Pharmacol. 256:241–249.PubMedGoogle Scholar
  22. Castagnoli, K., Palmer, S., and Castagnoli, N., Jr. (1999). Neuroprotection by (R)-deprenyl and 7-nitroindazole in the MPTP C57BL/6 mouse model of neurotoxicity. Neurobiology (Bp) 7:135–149.Google Scholar
  23. Caton, P. W., Tousman, S. A., and Quock, R. M. (1994). Involvement of nitric oxide in nitrous oxide anxiolysis in the elevated plus-maze. Pharmacol. Biochem. Behav. 48:689–692.PubMedGoogle Scholar
  24. Cavas, M., and Navarro, J. F. (2002). Coadministration of L-NOARG and tiapride: Effects on catalepsy in male mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 26:69–73.PubMedGoogle Scholar
  25. Cheramy, A., Leviel, V., and Glowinski, J. (1981). Dendritic release of dopamine in the substantia nigra. Nature 289:537–542.PubMedGoogle Scholar
  26. Choi, D. W. (1993). Nitric oxide: Foe or friend to the injured brain? Proc. Natl. Acad. Sci. U.S.A. 90:9741–9743.PubMedGoogle Scholar
  27. Clarke, K. A., and Still, J. (1999). Gait analysis in the mouse. Physiol. Behav. 66:723–729.PubMedGoogle Scholar
  28. Coderre, T. J. (1993). The role of excitatory amino acid receptors and intracellular messengers in persistent nociception after tissue injury in rats. Mol. Neurobiol. 7:229–246.PubMedGoogle Scholar
  29. Cohen, G. (1987). Monoamine oxidase, hydrogen peroxide, and Parkinson’s disease. Adv. Neurol. 45:119–125.PubMedGoogle Scholar
  30. Contestabile, A. (2000). Roles of NMDA receptor activity and nitric oxide production in brain development. Brain Res. Brain Res. Rev. 32:476–509.PubMedGoogle Scholar
  31. Costall, B., Marsden, C. D., Naylor, R. J., and Pycock, C. J. (1976). The relationship between striatal and mesolimbic dopamine dysfunction and the nature of circling responses following 6-hydroxydopamine and electrolytic lesions of the ascending dopamine systems of rat brain. Brain Res. 118:87–113.PubMedGoogle Scholar
  32. Costall, B., and Naylor, R. J. (1975). A comparison of circling models for the detection of antiparkinson activity. Psychopharmacologia 41:57–64.PubMedGoogle Scholar
  33. Dall’Igna, O. P., Dietrich, M. O., Hoffmann, A., Neto, W., Vendite, D., Souza, D. O., and Lara, D. R. (2001). Catalepsy and hypolocomotion induced by a nitric oxide donor: Attenuation by theophylline. Eur. J. Pharmacol. 432:29–33.PubMedGoogle Scholar
  34. Danysz, W., Gossel, M., Zajaczkowski, W., Dill, D., and Quack, G. (1994). Are NMDA antagonistic properties relevant for antiparkinsonian-like activity in rats?—Case of amantadine and memantine. J. Neural Transm. Park Dis. Dement. Sect. 7:155–166.PubMedGoogle Scholar
  35. Dawson, T. M., Bredt, D. S., Fotuhi, M., Hwang, P. M., and Snyder, S. H. (1991). Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc. Natl. Acad. Sci. U.S.A. 88:7797–7801.PubMedGoogle Scholar
  36. de Medinaceli, L., Freed, W. J., and Wyatt, R. J. (1982). An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Exp. Neurol. 77:634–643.PubMedGoogle Scholar
  37. De Oliveira, C. L., Del Bel, E. A., and Guimaraes, F. S. (1997a). Effects of L-NOARG on plus-maze performance in rats. Pharmacol. Biochem. Behav. 56:55–59.Google Scholar
  38. De Oliveira, C. L., Del Bel, E. A., and Guimaraes, F. S. (1997b). Effects of L-NOARG on plus-maze performance in rats. Pharmacol. Biochem. Behav. 56:55–59.Google Scholar
  39. De Oliveira, R. M., Del Bel, E. A., and Guimaraes, F. S. (2001). Effects of excitatory amino acids and nitric oxide on flight behavior elicited from the dorsolateral periaqueductal gray. Neurosci. Biobehav. Rev. 25:679–685.PubMedGoogle Scholar
  40. Del Bel, E. A., da Silva, C. A., and Guimaraes, F. S. (1998). Catalepsy induced by nitric oxide synthase inhibitors. Gen. Pharmacol. 30:245–248.PubMedGoogle Scholar
  41. Del Bel, E. A., da Silva, C. A., Guimaraes, F. S., and Bermudez-Echeverry, M. (2004). Catalepsy induced by intra-striatal administration of nitric oxide synthase inhibitors in rats. Eur. J. Pharmacol. 485:175–181.PubMedGoogle Scholar
  42. Del Bel, E. A., and Guimaraes, F. S. (2000). Sub-chronic inhibition of nitric-oxide synthesis modifies haloperidol-induced catalepsy and the number of NADPH-diaphorase neurons in mice. Psychopharmacology (Berl) 147:356–361.Google Scholar
  43. Del Bel, E. A., Oliveira, P. R., Oliveira, J. A., Mishra, P. K., Jobe, P. C., and Garcia-Cairasco, N. (1997). Anticonvulsant and proconvulsant roles of nitric oxide in experimental epilepsy models. Braz. J. Med. Biol. Res. 30:971–979.PubMedGoogle Scholar
  44. Del Bel, E. A., Souza, A. S., Guimaraes, F. S., da Silva, C. A., and Nucci-da-Silva, L. P. (2002). Motor effects of acute and chronic inhibition of nitric oxide synthesis in mice. Psychopharmacology (Berl) 161:32–37.Google Scholar
  45. Deumens, R., Blokland, A., and Prickaerts, J. (2002). Modeling Parkinson’s disease in rats: An evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp. Neurol. 175:303–317.PubMedGoogle Scholar
  46. Dwyer, M. A., Bredt, D. S., and Snyder, S. H. (1991). Nitric oxide synthase: Irreversible inhibition by L-NG-nitroarginine in brain in vitro and in vivo. Biochem. Biophys. Res. Commun. 176:1136–1141.PubMedGoogle Scholar
  47. Dzoljic, E., De Vries, R., and Dzoljic, M. R. (1997). New and potent inhibitors of nitric oxide synthase reduce motor activity in mice. Behav. Brain Res. 87:209–212.PubMedGoogle Scholar
  48. Elliott, P. J., Close, S. P., Walsh, D. M., Hayes, A. G., and Marriott, A. S. (1990). Neuroleptic-induced catalepsy as a model of Parkinson’s disease. I. Effect of dopaminergic agents. J. Neural Transm. Park Dis. Dement. Sect. 2:79–89.PubMedGoogle Scholar
  49. Esplugues, J. V. (2002). NO as a signalling molecule in the nervous system. Br. J. Pharmacol. 135:1079–1095.PubMedGoogle Scholar
  50. Eve, D. J., Nisbet, A. P., Kingsbury, A. E., Hewson, E. L., Daniel, S. E., Lees, A. J., Marsden, C. D., and Foster, O. J. (1998). Basal ganglia neuronal nitric oxide synthase mRNA expression in Parkinson’s disease. Brain Res. Mol. Brain Res. 63:62–71.PubMedGoogle Scholar
  51. Ezrin-Waters, C., and Seeman, P. (1977). Tolerance of haloperidol catalepsy. Eur. J. Pharmacol. 41:321–327.PubMedGoogle Scholar
  52. Fahn, S. (1988). Parkinsonism. In Wyngaarden, J. B., and Smith, L. H., Jr. (eds.), Cecil’s Textbook of medicine, Saunders, Philadelphia, pp. 2143–2147.Google Scholar
  53. Faria, M. S., Muscara, M. N., Moreno, J. H., Teixeira, S. A., Dias, H. B., De Oliveira, B., Graeff, F. G., and De Nucci, G. (1997). Acute inhibition of nitric oxide synthesis induces anxiolysis in the plus maze test. Eur. J. Pharmacol. 323:37–43.PubMedGoogle Scholar
  54. Forstermann, U., Schmidt, H. H., Pollock, J. S., Sheng, H., Mitchell, J. A., Warner, T. D., Nakane, M., and Murad, F. (1991). Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochem. Pharmacol. 42:1849–1857.PubMedGoogle Scholar
  55. Garthwaite, J. (1991). Glutamate, nitric oxide and cell–cell signalling in the nervous system. Trends Neurosci. 14:60–67.PubMedGoogle Scholar
  56. Gerlach, M., and Riederer, P. (1996). Animal models of Parkinson’s disease: An empirical comparison with the phenomenology of the disease in man. J. Neural Trans. 103:987–1041.Google Scholar
  57. Goldberger, M. E., Bregman, B. S., Vierck, C. J., Jr., and Brown, M. (1990). Criteria for assessing recovery of function after spinal cord injury: Behavioral methods. Exp. Neurol. 107:113–117.PubMedGoogle Scholar
  58. Gomes, M. Z., and Del Bel, E. A. (2003). Effects of electrolytic and 6-hydroxydopamine lesions of rat nigrostriatal pathway on nitric oxide synthase and nicotinamide adenine dinucleotide phosphate diaphorase. Brain Res. Bull. 62:107–115.PubMedGoogle Scholar
  59. Graeff, F. G. (1990). Brain defense system and anxiety. In Burrows, G. D., Roth, M., and Noyes, R. (eds.), Handbook of Anxiety, Elsevier Science, Amsterdam, pp. 307–354.Google Scholar
  60. Graveland, G. A., Williams, R. S., and DiFiglia, M. (1985). Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease. Science 227:770–773.PubMedGoogle Scholar
  61. Graybiel, A. M. (1990). Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci. 13:244–254.PubMedGoogle Scholar
  62. Graybiel, A. M., Besson, M. J., and Weber, E. (1989). Neuroleptic-sensitive binding sites in the nigrostriatal system: Evidence for differential distribution of sigma sites in the substantia nigra, pars compacta of the cat. J. Neurosci. 9:326–338.PubMedGoogle Scholar
  63. Greenberg, J. H., Hamada, J., and Rysman, K. (1997). Distribution of N(omega)-nitro-L-arginine following topical and intracerebroventricular administration in the rat. Neurosci. Lett. 229:1–4.PubMedGoogle Scholar
  64. Guevara-Guzman, R., Emson, P. C., and Kendrick, K. M. (1994). Modulation of in vivo striatal transmitter release by nitric oxide and cyclic GMP. J. Neurochem. 62:807–810.PubMedGoogle Scholar
  65. Guimaraes, F. S., de Aguiar, J. C., Del Bel, E. A., and Ballejo, G. (1994). Anxiolytic effect of nitric oxide synthase inhibitors microinjected into the dorsal central grey. Neuroreport 5:1929–1932.PubMedGoogle Scholar
  66. Hantraye, P., Brouillet, E., Ferrante, R., Palfi, S., Dolan, R., Matthews, R. T., and Beal, M. F. (1996). Inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in baboons. Nat. Med. 2:1017–1021.PubMedGoogle Scholar
  67. Hauber, W. (1998). Involvement of basal ganglia transmitter systems in movement initiation. Prog. Neurobiol. 56:507–540.PubMedGoogle Scholar
  68. Hecker, M., Mitchell, J. A., Harris, H. J., Katsura, M., Thiemermann, C., and Vane, J. R. (1990). Endothelial cells metabolize NG-monomethyl-L-arginine to L-citrulline and subsequently to L-arginine. Biochem. Biophys. Res. Commun. 167:1037–1043.PubMedGoogle Scholar
  69. Hirsch, E. C., Graybiel, A. M., Duyckaerts, C., and Javoy-Agid, F. (1987). Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc. Natl. Acad. Sci. U.S.A. 84:5976–5980.PubMedGoogle Scholar
  70. Hope, B. T., Michael, G. J., Knigge, K. M., and Vincent, S. R. (1991). Neuronal NADPH diaphorase is a nitric oxide synthase. Proc. Natl. Acad. Sci. U.S.A 88:2811–2814.PubMedGoogle Scholar
  71. Hoyt, K. R., Tang, L. H., Aizenman, E., and Reynolds, I. J. (1992). Nitric oxide modulates NMDA-induced increases in intracellular Ca2+ in cultured rat forebrain neurons. Brain Res. 592:310–316.PubMedGoogle Scholar
  72. Hughes, R. N. (1993). Effects on open-field behavior of diazepam and buspirone alone and in combination with chronic caffeine. Life Sci. 53:1217–1225.PubMedGoogle Scholar
  73. Hunot, S., Boissiere, F., Faucheux, B., Brugg, B., Mouatt-Prigent, A., Agid, Y., and Hirsch, E. C. (1996). Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 72:355–363.PubMedGoogle Scholar
  74. Iadecola, C., Xu, X., Zhang, F., Hu, J., and el Fakahany, E. E. (1994). Prolonged inhibition of brain nitric oxide synthase by short-term systemic administration of nitro-L-arginine methyl ester. Neurochem. Res. 19:501–505.PubMedGoogle Scholar
  75. Inglis, W. L., and Winn, P. (1995). The pedunculopontine tegmental nucleus: Where the striatum meets the reticular formation. Prog. Neurobiol. 47:1–29.PubMedGoogle Scholar
  76. Iravani, M. M., Millar, J., and Kruk, Z. L. (1998). Differential release of dopamine by nitric oxide in subregions of rat caudate putamen slices. J. Neurochem. 71:1969–1977.PubMedGoogle Scholar
  77. Iversen, S. D., Howells, R. B., and Hughes, R. P. (1980). Behavioral consequences of long-term treatment with neuroleptic drugs. Adv. Biochem. Psychopharmacol. 24:305–313.PubMedGoogle Scholar
  78. Iwamoto, E. T., Loh, H. H., and Way, E. L. (1976). Circling behavior in rats with 6-hydroxydopamine or electrolytic nigral lesions. Eur. J. Pharmacol. 37:339–356.PubMedGoogle Scholar
  79. Johnsson, G. (1983). Chemical lesioning techniques:monoamine neurotoxins. In Bjorklund, A., and Hokfelt, T. (eds.), Handbook of Chemical Neuroanatomy, Sciences Publishers, Amsterdam, pp. 463–507.Google Scholar
  80. Johnston, H. M., and Morris, B. J. (1994). NMDA and nitric oxide increase microtubule-associated protein 2 gene expression in hippocampal granule cells. J. Neurochem. 63:379–382.PubMedGoogle Scholar
  81. Kawaguchi, Y. (1993). Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J. Neurosci. 13:4908–4923.PubMedGoogle Scholar
  82. Keifer, J., and Kalil, K. (1991). Effects of infant versus adult pyramidal tract lesions on locomotor behavior in hamsters. Exp. Neurol. 111:98–105.PubMedGoogle Scholar
  83. Kiss, J. P., and Vizi, E. S. (2001). Nitric oxide: A novel link between synaptic and nonsynaptic transmission. Trends Neurosci. 24:211–215.PubMedGoogle Scholar
  84. Klatt, P., Heinzel, B., John, M., Kastner, M., Bohme, E., and Mayer, B. (1992). Ca2+/calmodulin-dependent cytochrome c reductase activity of brain nitric oxide synthase. J. Biol. Chem. 267:11374–11378.PubMedGoogle Scholar
  85. Klemm, W. R. (1983). Cholinergic-dopaminergic interactions in experimental catalepsy. Psychopharmacology (Berl) 81:24–27.Google Scholar
  86. Klemm, W. R. (1985). Evidence for a cholinergic role in haloperidol-induced catalepsy. Psychopharmacology (Berl) 85:139–142.Google Scholar
  87. Koffer, K. B., Berney, S., and Hornykiewicz, O. (1978). The role of the corpus striatum in neuroleptic- and narcotic-induced catalepsy. Eur. J. Pharmacol. 47:81–86.PubMedGoogle Scholar
  88. Kolesnikov, Y. A., Pick, C. G., and Pasternak, G. W. (1992). NG-nitro-L-arginine prevents morphine tolerance. Eur. J. Pharmacol. 221:399–400.PubMedGoogle Scholar
  89. Koob, G. F., Simon, H., Herman, J. P., and Le Moal, M. (1984). Neuroleptic-like disruption of the conditioned avoidance response requires destruction of both the mesolimbic and nigrostriatal dopamine systems. Brain Res. 303:319–329.PubMedGoogle Scholar
  90. Korf, J., and Sebens, J. B. (1987). Relationship between dopamine receptor occupation by spiperone and acetylcholine levels in the rat striatum after long-term haloperidol treatment depends on dopamine innervation. J. Neurochem. 48:516–521.PubMedGoogle Scholar
  91. Kriegsfeld, L. J., Eliasson, M. J., Demas, G. E., Blackshaw, S., Dawson, T. M., Nelson, R. J., and Snyder, S. H. (1999). Nocturnal motor coordination deficits in neuronal nitric oxide synthase knock-out mice. Neuroscience 89:311–315.PubMedGoogle Scholar
  92. Kulig, B. M., Vanwersch, R. A., and Wolthuis, O. L. (1985). The automated analysis of coordinated hindlimb movement in rats during acute and prolonged exposure to toxic agents. Toxicol. Appl. Pharmacol. 80:1–10.PubMedGoogle Scholar
  93. Kunkel-Bagden, E., Dai, H. N., and Bregman, B. S. (1993). Methods to assess the development and recovery of locomotor function after spinal cord injury in rats. Exp. Neurol. 119:153–164.PubMedGoogle Scholar
  94. Lavoie, B., and Parent, A. (1994). Pedunculopontine nucleus in the squirrel monkey: Projections to the basal ganglia as revealed by anterograde tract-tracing methods. J. Comp Neurol. 344:210–231.PubMedGoogle Scholar
  95. Linden, D. J., and Connor, J. A. (1992). Long-term depression of glutamate currents in cultured cerebellar Purkinje neurons does not require nitric oxide signalling. Eur. J. Neurosci. 4:10–15.PubMedGoogle Scholar
  96. Lipton, S. A., Choi, Y. B., Pan, Z. H., Lei, S. Z., Chen, H. S., Sucher, N. J., Loscalzo, J., Singel, D. J., and Stamler, J. S. (1993). A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364:626–632.PubMedGoogle Scholar
  97. Manzoni, O., Prezeau, L., Marin, P., Deshager, S., Bockaert, J., and Fagni, L. (1992). Nitric oxide-induced blockade of NMDA receptors. Neuron 8:653–662.PubMedGoogle Scholar
  98. Marras, R. A., Martins, A. P., Del Bel, E. A., and Guimaraes, F. S. (1995). L-NOARG, an inhibitor of nitric oxide synthase, induces catalepsy in mice. Neuroreport 7:158–160.PubMedGoogle Scholar
  99. Meffert, M. K., Premack, B. A., and Schulman, H. (1994). Nitric oxide stimulates Ca(2+)-independent synaptic vesicle release. Neuron 12:1235–1244.PubMedGoogle Scholar
  100. Mitchell, I. J., Clarke, C. E., Boyce, S., Robertson, R. G., Peggs, D., Sambrook, M. A., and Crossman, A. R. (1989). Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neuroscience 32:213–226.PubMedGoogle Scholar
  101. Mollace, V., Bagetta, G., and Nistico, G. (1991). Evidence that L-arginine possesses proconvulsant effects mediated through nitric oxide. Neuroreport 2:269–272.PubMedGoogle Scholar
  102. Moore, N. A., Blackman, A., Awere, S., and Leander, J. D. (1993). NMDA receptor antagonists inhibit catalepsy induced by either dopamine D1 or D2 receptor antagonists. Eur. J. Pharmacol. 237:1–7.PubMedGoogle Scholar
  103. Morris, B. J., Hollt, V., and Herz, A. (1988). Dopaminergic regulation of striatal proenkephalin mRNA and prodynorphin mRNA: Contrasting effects of D1 and D2 antagonists. Neuroscience 25:525–532.PubMedGoogle Scholar
  104. Morris, B. J., Simpson, C. S., Mundell, S., Maceachern, K., Johnston, H. M., and Nolan, A. M. (1997). Dynamic changes in NADPH-diaphorase staining reflect activity of nitric oxide synthase: Evidence for a dopaminergic regulation of striatal nitric oxide release. Neuropharmacology 36:1589–1599.PubMedGoogle Scholar
  105. Mufson, E. J., and Brandabur, M. M. (1994). Sparing of NADPH-diaphorase striatal neurons in Parkinson’s and Alzheimer’s diseases. Neuroreport 5:705–708.PubMedGoogle Scholar
  106. Navarro, J. F., Vera, F., Manzaneque, J. M., Martín-López, M., Santiín, L. J., and Pedraza, C. (1997). Tolerance to the cataleptic effect of L-NOARG after subchronic administration in female mice. Med. Sci. Res. 25:625–626.Google Scholar
  107. Ninan, I., and Kulkarni, S. K. (1999). Quinpirole, 8-OH-DPAT and ketanserin modulate catalepsy induced by high doses of atypical antipsychotics. Methods Find. Exp. Clin. Pharmacol. 21:603–608.PubMedGoogle Scholar
  108. Noda, Y., Yamada, K., Furukawa, H., and Nabeshima, T. (1995). Involvement of nitric oxide in phencyclidine-induced hyperlocomotion in mice. Eur. J. Pharmacol. 286:291–297.PubMedGoogle Scholar
  109. Nucci-da-Silva, L. P., Guimaraes, F. S., and Del Bel, E. A. (1999). Serotonin modulation of catalepsy induced by N(G)-nitro-L-arginine in mice. Eur. J. Pharmacol. 379:47–52.PubMedGoogle Scholar
  110. O’Dell, T. J., Hawkins, R. D., Kandel, E. R., and Arancio, O. (1991). Tests of the roles of two diffusible substances in long-term potentiation: Evidence for nitric oxide as a possible early retrograde messenger. Proc. Natl. Acad. Sci. U.S.A. 88:11285–11289.PubMedGoogle Scholar
  111. Oka, M., Yamada, K., Kamei, C., Yoshida, K., and Shimizu, M. (1979). Differential antagonism of antiavoidance, cataleptic and ptotic effects of neuroleptics by biperiden. Jpn. J. Pharmacol. 29:435–445.PubMedGoogle Scholar
  112. Onstott, D., Mayer, B., and Beitz, A. J. (1993). Nitric oxide synthase immunoreactive neurons anatomically define a longitudinal dorsolateral column within the midbrain periaqueductal gray of the rat: Analysis using laser confocal microscopy. Brain Res. 610:317–324.PubMedGoogle Scholar
  113. Osborne, P. G., O’Connor, W. T., Beck, O., and Ungerstedt, U. (1994). Acute versus chronic haloperidol: Relationship between tolerance to catalepsy and striatal and accumbens dopamine, GABA and acetylcholine release. Brain Res. 634:20–30.PubMedGoogle Scholar
  114. Papa, S. M., Engber, T. M., Boldry, R. C., and Chase, T. N. (1993). Opposite effects of NMDA and AMPA receptor blockade on catalepsy induced by dopamine receptor antagonists. Eur. J. Pharmacol. 232:247–253.PubMedGoogle Scholar
  115. Ponzoni, S., Guimaraes, F. S., Del Bel, E. A., and Garcia-Cairasco, N. (2000). Behavioral effects of intra-nigral microinjections of manganese chloride: Interaction with nitric oxide. Prog .Neuropsychopharmacol. Biol. Psychiatry 24:307–325.PubMedGoogle Scholar
  116. Prinssen, E. P., Colpaert, F. C., and Koek, W. (2002). 5-HT1A receptor activation and anti-cataleptic effects: High-efficacy agonists maximally inhibit haloperidol-induced catalepsy. Eur. J. Pharmacol. 453:217–221.PubMedGoogle Scholar
  117. Pycock, C., Dawbarn, D., and O’Shaughnessy, C. (1982). Behavioural and biochemical changes following chronic administration of L-dopa to rats. Eur. J. Pharmacol. 79:201–215.PubMedGoogle Scholar
  118. Pycock, C. J. (1980). Turning behaviour in animals. Neuroscience 5:461–514.PubMedGoogle Scholar
  119. Quock, R. M., and Nguyen, E. (1992). Possible involvement of nitric oxide in chlordiazepoxide-induced anxiolysis in mice. Life Sci. 51:L255–L260.Google Scholar
  120. Rosa, W. C., Oliveira, G. M., and Nakamura-Palacios, E. M. (1994). Effects of the antihypertensive drugs alpha-methyldopa and hydralazine on the performance of spontaneously hypertensive rats in the elevated plus-maze. Braz. J. Med. Biol. Res. 27:55–59.PubMedGoogle Scholar
  121. Royland, J. E., Delfani, K., Langston, J. W., Janson, A. M., and Di Monte, D. A. (1999). 7-Nitroindazole prevents 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine-induced ATP loss in the mouse striatum. Brain Res. 839:41–48.PubMedGoogle Scholar
  122. Salter, M., Duffy, C., and Hazelwood, R. (1995). Determination of brain nitric oxide synthase inhibition in vivo: Ex vivo assays of nitric oxide synthase can give incorrect results. Neuropharmacology 34:327–334.PubMedGoogle Scholar
  123. Sanberg, P. R., Bunsey, M. D., Giordano, M., and Norman, A. B. (1988). The catalepsy test: Its ups and downs. Behav. Neurosci. 102:748–759.PubMedGoogle Scholar
  124. Sanberg, P. R., Pevsner, J., and Coyle, J. T. (1984). Parametric influences on catalepsy. Psychopharmacology (Berl) 82:406–408.Google Scholar
  125. Sanberg, P. R., Pisa, M., Faulks, I. J., and Fibiger, H. C. (1980). Experimental influences on catalepsy. Psychopharmacology (Berl) 69:225–226.Google Scholar
  126. Sandi, C., Venero, C., and Guaza, C. (1995). Decreased spontaneous motor activity and startle response in nitric oxide synthase inhibitor-treated rats. Eur. J. Pharmacol. 277:89–97.PubMedGoogle Scholar
  127. Sandor, N. T., Brassai, A., Puskas, A., and Lendvai, B. (1995). Role of nitric oxide in modulating neurotransmitter release from rat striatum. Brain Res. Bull. 36:483–486.PubMedGoogle Scholar
  128. Saner, A., and Thoenen, H. (1971). Model experiments on the molecular mechanism of action of 6-hydroxydopamine. Mol. Pharmacol. 7:147–154.PubMedGoogle Scholar
  129. Sardo, P., Ferraro, G., Di Giovanni, G., Galati, S., and La, G. V. (2002). Inhibition of nitric oxide synthase influences the activity of striatal neurons in the rat. Neurosci. Lett. 325:179–182.PubMedGoogle Scholar
  130. Schmidt, H. H., Gagne, G. D., Nakane, M., Pollock, J. S., Miller, M. F., and Murad, F. (1992). Mapping of neural nitric oxide synthase in the rat suggests frequent co-localization with NADPH diaphorase but not with soluble guanylyl cyclase, and novel paraneural functions for nitrinergic signal transduction. J. Histochem. Cytochem. 40:1439–1456.PubMedGoogle Scholar
  131. Shibuki, K., and Okada, D. (1991). Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum. Nature 349:326–328.PubMedGoogle Scholar
  132. Silva, M. T., Rose, S., Hindmarsh, J. G., Aislaitner, G., Gorrod, J. W., Moore, P. K., Jenner, P., and Marsden, C. D. (1995). Increased striatal dopamine efflux in vivo following inhibition of cerebral nitric oxide synthase by the novel monosodium salt of 7-nitro indazole. Br. J. Pharmacol. 114:257–258.PubMedGoogle Scholar
  133. Silva, M. T., Rose, S., Hindmarsh, J. G., and Jenner, P. (2003). Inhibition of neuronal nitric oxide synthase increases dopamine efflux from rat striatum. J. Neural Transm. 110:353–362.PubMedGoogle Scholar
  134. Sistiaga, A., Miras-Portugal, M. T., and Sanchez-Prieto, J. (1997). Modulation of glutamate release by a nitric oxide/cyclic GMP-dependent pathway. Eur. J. Pharmacol. 321:247–257.PubMedGoogle Scholar
  135. Starr, M. S., and Starr, B. S. (1995). Do NMDA receptor-mediated changes in motor behaviour involve nitric oxide? Eur. J. Pharmacol. 272:211–217.PubMedGoogle Scholar
  136. Stewart, T. L., Michel, A. D., Black, M. D., and Humphrey, P. P. (1996). Evidence that nitric oxide causes calcium-independent release of [3H] dopamine from rat striatum in vitro. J. Neurochem. 66:131–137.PubMedGoogle Scholar
  137. Sugaya, K., and McKinney, M. (1994). Nitric oxide synthase gene expression in cholinergic neurons in the rat brain examined by combined immunocytochemistry and in situ hybridization histochemistry. Brain Res. Mol. Brain Res. 23:111–125.PubMedGoogle Scholar
  138. Traystman, R. J., Moore, L. E., Helfaer, M. A., Davis, S., Banasiak, K., Williams, M., and Hurn, P. D. (1995). Nitro-L-arginine analogues. Dose- and time-related nitric oxide synthase inhibition in brain. Stroke 26:864–869.PubMedGoogle Scholar
  139. Ungerstedt, U. (1968). 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol. 5:107–110.PubMedGoogle Scholar
  140. Ungerstedt, U. (1971a). Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand. Suppl 367:69–93.Google Scholar
  141. Ungerstedt, U. (1971b). Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour. Acta Physiol Scand. Suppl 367:49–68.Google Scholar
  142. Ushijima, I., Kawano, M., Kaneyuki, H., Suetsugi, M., Usami, K., Hirano, H., Mizuki, Y., and Yamada, M. (1997). Dopaminergic and cholinergic interaction in cataleptic responses in mice. Pharmacol. Biochem. Behav. 58:103–108.PubMedGoogle Scholar
  143. Uzbay, I. T. (2001). L-NAME precipitates catatonia during ethanol withdrawal in rats. Behav. Brain Res. 119:71–76.PubMedGoogle Scholar
  144. Vale, A. L., Green, S., Montgomery, A. M., and Shafi, S. (1998). The nitric oxide synthesis inhibitor L-NAME produces anxiogenic-like effects in the rat elevated plus-maze test, but not in the social interaction test. J. Psychopharmacol. 12:268–272.PubMedGoogle Scholar
  145. Vincent, S. R., and Kimura, H. (1992). Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46:755–784.CrossRefPubMedGoogle Scholar
  146. Volke, V., Koks, S., Vasar, E., Bourin, M., Bradwejn, J., and Mannisto, P. T. (1995). Inhibition of nitric oxide synthase causes anxiolytic-like behaviour in an elevated plus-maze. Neuroreport 6:1413–1416.PubMedGoogle Scholar
  147. West, A. R., and Galloway, M. P. (1998). Nitric oxide and potassium chloride-facilitated striatal dopamine efflux in vivo: Role of calcium-dependent release mechanisms. Neurochem. Int. 33:493–501.PubMedGoogle Scholar
  148. West, A. R., Galloway, M. P., and Grace, A. A. (2002). Regulation of striatal dopamine neurotransmission by nitric oxide: Effector pathways and Signaling mechanisms. Synapse 44:227–245.PubMedGoogle Scholar
  149. Wichmann, T., and DeLong, M. R. (1996). Functional and pathophysiological models of the basal ganglia. Curr. Opin. Neurobiol. 6:751–758.PubMedGoogle Scholar
  150. Yildiz, F., Ulak, G., Erden, B. F., and Gacar, N. (2000). Anxiolytic-like effects of 7-nitroindazole in the rat plus-maze test. Pharmacol. Biochem. Behav. 65:199–202.PubMedGoogle Scholar
  151. Yoshida, Y., Ono, T., Kawano, K., and Miyagishi, T. (1994). Distinct sites of dopaminergic and glutamatergic regulation of haloperidol-induced catalepsy within the rat caudate-putamen. Brain Res. 639:139–148.PubMedGoogle Scholar
  152. Zarrindast, M. R., Modabber, M., and Sabetkasai, M. (1993). Influences of different adenosine receptor subtypes on catalepsy in mice. Psychopharmacology (Berl) 113:257–261.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • E. A. Del Bel
    • 1
    • 5
  • F. S. Guimarães
    • 2
  • M. Bermũdez-Echeverry
    • 1
  • M. Z. Gomes
    • 1
    • 3
  • A. Schiaveto-de-Souza
    • 1
  • F. E. Padovan-Neto
    • 1
  • V. Tumas
    • 1
  • A. P. Barion-Cavalcanti
    • 1
    • 4
  • M. Lazzarini
    • 1
    • 4
  • L. P. Nucci-da-Silva
    • 1
  • D. de Paula-Souza1
    • 1
  1. 1.Department MEF PhysiologySchool of Odontology, Medical SchoolRibeirão PretoBrazil
  2. 2.Department of PharmacologyMedical SchoolRibeirão PretoBrazil
  3. 3.Department of PhysiologyMedical SchoolRibeirão PretoBrazil
  4. 4.Department of NeurologyMedical SchoolRibeirão PretoBrazil
  5. 5.DepartmentMEF-PhysiologySchool of OdontologyRibeirão PretoBrazil

Personalised recommendations