Cellular and Molecular Neurobiology

, Volume 25, Issue 2, pp 245–282

Imaging Brain Activity With Voltage- and Calcium-Sensitive Dyes

  • Bradley J. Baker
  • Efstratios K. Kosmidis
  • Dejan Vucinic
  • Chun X. Falk
  • Lawrence B. Cohen
  • Maja Djurisic
  • Dejan Zecevic


This paper presents three examples of imaging brain activity with voltage- or calcium-sensitive dyes and then discusses the methodological aspects of the measurements that are needed to achieve an optimal signal-to-noise ratio.

Internally injected voltage-sensitive dye can be used to monitor membrane potential in the dendrites of invertebrate and vertebrate neurons in in vitro preparations.

Both invertebrate and vertebrate ganglia can be bathed in voltage-sensitive dyes to stain all of the cell bodies in the preparation. These dyes can then be used to follow the spike activity of many neurons simultaneously while the preparations are generating behaviors.

Calcium-sensitive dyes that are internalized into olfactory receptor neurons in the nose will, after several days, be transported to the nerve terminals of these cells in the olfactory bulb. There they can be used to measure the input from the nose to the bulb.

Three kinds of noise are discussed. a. Shot noise from the random emission of photons from the preparation. b. Vibrational noise from external sources. c. Noise that occurs in the absence of light, the dark noise.

Three different parts of the light measuring apparatus are discussed: the light sources, the optics, and the cameras.

The major effort presently underway to improve the usefulness of optical recordings of brain activity are to find methods for staining individual cell types in the brain. Most of these efforts center around fluorescent protein sensors of activity.


optical recording voltage-sensitive dyes calcium-sensitive dyes signal-to-noise ratio 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, E. (1953). Sensory messages and sensation. The response of the olfactory organ to different smells. Acta Physiol. Scand. 29:5–14.PubMedGoogle Scholar
  2. Antic, S., Major, G., and Zecevic, D. (1999). Fast optical recording of membrane potential changes from dendrites of pyramidal neurons. J. Neurophysiol. 82:1615–1621.PubMedGoogle Scholar
  3. Antic, S., Wuskell, J. P., Loew, L., and Zecevic, D. (2000). Functional profile of the giant metacerebral neuron of helix aspersa: Temporal and spatial dynamics of electrical activity in situ. J. Physiol. (Lond.) 527:55–69.CrossRefGoogle Scholar
  4. Antic, S., and Zecevic, D. (1995). Optical signals from neurons with internally applied voltage-sensitive dyes. J. Neurosci. 15:1392–1405.PubMedGoogle Scholar
  5. Ataka, K., and Pieribone, V. A. (2002). A genetically-targetable fluorescent probe of channel gating with rapid kinetics. Biophys. J. 82:509–516.PubMedGoogle Scholar
  6. Baker, B. J., Cohen, L. B., Pieribone, V., and Kosmidis, E. (2004). Expression of the GFP-voltage sensor SPARC in HEK 293 cells. Biophysical J. 86:425A–425A Part 2 Suppl. S.Google Scholar
  7. Ben-Oren, I., Peleg, G., Lewis, A., Minke, B., and Loew, L. (1996). Infrared nonlinear optical measurements of membrane potential in photoreceptor cells. Biophys. J. 71:1616–1620.PubMedGoogle Scholar
  8. Berger, T., Larkum, M. E., and Luscher, H. R. (2001). High I(h) channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. J. Neurophysiol. 85:855–868.PubMedGoogle Scholar
  9. Bischofberger, J., and Jonas, P. (1997). Action potential propagation into the presynaptic dendrites of rat mitral cells. J. Physiol. (Lond.) 504:359–365.Google Scholar
  10. Blasdel, G. G., and Salama, G. (1986). Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321:579–585.PubMedGoogle Scholar
  11. Bouevitch, O., Lewis, A., Pinevsky, I., Wuskell, J., and Loew, L. (1993). Probing membrane potential with nonlinear optics. Biophys. J. 65:672–679.PubMedGoogle Scholar
  12. Boyle, M. B., and Cohen, L. B. (1980). Birefringence signals that monitor membrane potential in cell bodies of molluscan neurons. Fed. Proc. 39:2130.Google Scholar
  13. Braddick, H. J. J. (1960). Photoelectric photometry. Rep. Prog. Phys. 23:154–175.Google Scholar
  14. Bullen, A., Patel, S. S., and Saggau, P. (1997). High-speed, random-access fluorescence microscopy: I. High resolution optical recording with voltage-sensitive dyes and ion indicators. Biophys. J. 73:477–491.PubMedGoogle Scholar
  15. Campagnola, P. J., Wei, M.-d., Lewis, A., and Loew, L. M. (1999). High resolution optical imaging of live cells by second harmonic generation. Biophys. J. 77:3341–3349.PubMedGoogle Scholar
  16. Chen, W. R., Midtgaard, J., and Shepherd, G. M. (1997). Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells. Science 278:463–467.PubMedGoogle Scholar
  17. Christie, J. M., and Westbrook, G. L. (2003). Regulation of backpropagating action potentials in mitral cell lateral dendrites by A-type potassium currents. J. Neurophysiol. 89:2466–2472.PubMedGoogle Scholar
  18. Cinelli, A. R., Neff, S. R., and Kauer, J. S. (1995). Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. I. Characterization of the recording system. J. Neurophysiol. 73:2017–2032.PubMedGoogle Scholar
  19. Cohen, L. B., and Lesher, S. (1986). Optical monitoring of membrane potential: Methods of multisite optical measurement. Soc. Gen. Physiol. Ser. 40:71–99.PubMedGoogle Scholar
  20. Cohen, L. B., and Salzberg, B. M. (1978). Optical measurement of membrane potential. Rev. Physiol. Biochem. Pharmacol. 83:35–88.PubMedGoogle Scholar
  21. Dainty, J. C. (1984). Laser Speckle and Related Phenomena, Springer-Verlag, New York.Google Scholar
  22. Davila, H. V., Cohen, L. B., Salzberg, B. M., and Shrivastav, B. B. (1974). Changes in ANS and TNS fluorescence in giant axons from Loligo. J. Membr. Biol. 15:29–46.PubMedGoogle Scholar
  23. Davila, H. V., Salzberg, B. M., Cohen, L. B., and Waggoner, A. S. (1973). A large change in axon fluorescence that provides a promising method for measuring membrane potential. Nat. New Biol. 241:159–160.PubMedGoogle Scholar
  24. Denk, W., Piston, D. W., and Webb, W. (1995). Two-photon molecular excitation in laser-scanning microscopy. In Pawley, J. W. (ed.), Handbook of Biological Confocal Microscopy, Plenum, New York, pp. 445–458.Google Scholar
  25. Ehrenberg, B., and Berezin, Y. (1984). Surface potential on purple membranes and its sidedness studied by resonance Raman dye probe. Biophys. J. 45:663–670.PubMedGoogle Scholar
  26. Eilers, J., Callawaert, G., Armstrong, C., and Konnerth, A. (1995). Calcium signaling in a narrow somatic submembrane shell during synaptic activity in cerebellar Purkinje neurons. Proc. Natl. Acad. Sci. U.S.A. 92:10272–10276.PubMedGoogle Scholar
  27. Friedrich, R. W., and Korsching, S. I. (1997). Combinatorial, and chemotropic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron 18:737–752.PubMedGoogle Scholar
  28. Fromherz, P., Dambacher, K. H., Ephardt, H., Lambacher, A., Muller, C. O., Neigl, R., Schaden, H., Schenk, O., and Vetter, T. (1991). Fluorescent dyes as probes of voltage transients in neuron membranes: Progress report. Ber. Bunsenges. Phys. Chem. 95:1333–1345.Google Scholar
  29. Gonzalez, J. E., and Tsien, R. Y. (1995). Voltage sensing by fluorescence energy transfer in single cells. Biophys. J. 69:1272–1280.PubMedGoogle Scholar
  30. Grinvald, A., Frostig, R. D., Lieke, E., and Hildesheim, R. (1988). Optical imaging of neuronal activity. Physiol. Rev. 68:1285–1366.PubMedGoogle Scholar
  31. Grinvald, A., Hildesheim, R., Farber, I. C., and Anglister, L. (1982). Improved fluorescent probes for the measurement of rapid changes in membrane potential. Biophys. J. 39:301–308.PubMedGoogle Scholar
  32. Grinvald, A., Salzberg, B. M., Lev-Ram, V., and Hildesheim, R. (1987). Optical recording of synaptic potentials from processes of single neurons using intracellular potentiometric dyes. Biophys. J. 51:643–651.PubMedGoogle Scholar
  33. Gross, E., Bedlack, R. S., and Loew, L. M. (1994). Dual-wavelength ratiometric fluorescence measurements of the membrane dipole potential. Biophys. J. 67:208–216.PubMedGoogle Scholar
  34. Gupta, R. K., Salzberg, B. M., Grinvald, A., Cohen, L. B., Kamino, K., Lesher, S., Boyle, M. B., Waggoner, A. S., and Wang, C. H. (1981). Improvements in optical methods for measuring rapid changes in membrane potential. J. Membr. Biol. 58:123–137.PubMedGoogle Scholar
  35. Hamer, F. M. (1964). The Cyanine Dyes and Related Compounds, Wiley, New York.Google Scholar
  36. Hickie, C., Wenner, P., O’Donovan, M., Tsau, Y., Fang, J., and Cohen, L. B. (1996). Optical monitoring of activity from individual and identified populations of neurons retrogradely labeled with voltage-sensitive dyes. Abstr. Soc. Neurosci. 22:321.Google Scholar
  37. Hirota, A., Sato, K., Momose-Sato, Y., Sakai, T., and Kamino, K. (1995). A new simultaneous 1020-site optical recording system for monitoring neural activity using voltage-sensitive dyes. J. Neurosci. Methods 56:187–194.PubMedGoogle Scholar
  38. Iijima, T., Ichikawa, M., and Matsumoto, G. (1989). Optical monitoring of LTP and related phenomena. Abstr. Soc. Neurosci. 15:398.Google Scholar
  39. Inoue, S. (1986). Video Microscopy, Plenum, New York. p. 128.Google Scholar
  40. Kasowski, H. J., Kim, H., and Greer, C. A. (1999). Compartmental organization of the olfactory bulb glomerulus. J. Comp. Neurol. 407:261–274.PubMedGoogle Scholar
  41. Kauer, J. (1991). Contributions of topography and parallel processing to odor coding in the vertebrate olfactory pathway. Trends Neurosci. 14:79–85.PubMedGoogle Scholar
  42. Kazan, B., and Knoll, M. (1968). Electronic Image Storage, Academic, New York.Google Scholar
  43. Kleinfeld, D., and Delaney, K. R. (1996). Distributed representation of vibrissa movement in the upper layers of somatosensory cortex revealed with voltage-sensitive dyes. J. Comp. Neurol. 375:89–108.PubMedGoogle Scholar
  44. Kreitzer, A. C., Gee, K. R., Archer, E. A., and Regehr, W. G. (2000). Monitoring presynaptic calcium dynamics in projection fibers by in vivo loading of a novel calcium indicator. Neuron 27:25–32.PubMedGoogle Scholar
  45. Kupfermann, I., Pinsker, H., Castellucci, V., and Kandel, E. R. (1971). Central and peripheral control of gill movements in Aplysia. Science 174(1):252–256.Google Scholar
  46. Lam, Y.-w., Lawrence, B., Cohen, M. W., and Michal, R. Z. (2000). Odors elicit three different oscillations in the turtle olfactory bulb. J. Neurosci. 20:749–762.PubMedGoogle Scholar
  47. Loew, L. M. (1993). Confocal microscopy of potentiometric fluorescent dyes. Methods Cell Biol. 38:195–209.PubMedGoogle Scholar
  48. Loew, L. M., Campagnola, P., Lewis, A., and Wuskell, J. P. (2002). Confocal and non-linear optical imaging of potentiometric dyes. Methods Cell Biol. 70:429–452.PubMedGoogle Scholar
  49. Loew, L. M., Cohen, L. B., Dix, J., Fluhler, E. N., Montana, V., Salama, G., and Wu, J. Y. (1992). A napthyl analog of the aminostyryl pyridinium class of potentiometric membrane dyes shows consistent sensitivity in a variety of tissue, cell, and model membrane preparations. J. Membr. Biol. 130:1–10.PubMedGoogle Scholar
  50. Loew, L. M., Cohen, L. B., Salzberg, B. M., Obaid, A. L., and Bezanilla, F. (1985). Charge-shift probes of membrane potential. Characterization of aminostyrylpyridinium dyes on the squid giant axon. Biophys. J. 47:71–77.PubMedGoogle Scholar
  51. London, J. A., Zecevic, D., and Cohen, L. B. (1987). Simultaneous optical recording of activity from many neurons during feeding in Navanax. J. Neurosci. 7:649–661.PubMedGoogle Scholar
  52. Magee, J. C., Christofi, G., Miyakawa, H., Christie, B., Lasser-Ross, N., and Johnston, D. (1995). Subthreshold synaptic activation of voltage-gated calcium channels mediate a localized calcium influx into dendrites of hippocampal pyramidal neurons. J. Neurophysiol. 74:1335–1342.PubMedGoogle Scholar
  53. Magee, J. C., and Johnston, D. (1995). Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268:301–304.PubMedGoogle Scholar
  54. Malmstadt, H. V., Enke, C. G., Crouch, S. R., and Harlick, G. (1974). Electronic Measurements for Scientists, Benjamin, Menlo Park, CA.Google Scholar
  55. Malnic, B., Hirono, J., Sato, T., and Buck, L. (1999). Combinatorial receptor codes for odors. Cell 96:713–723.PubMedGoogle Scholar
  56. Momose-Sato, Y., Sato, K., Sakai, T., Hirota, A., Matsutani, K., and Kamino, K. (1995). Evaluation of optimal voltage-sensitive dyes for optical measurement of embryonic neural activity. J. Membr. Biol. 144:167–176.PubMedGoogle Scholar
  57. Nakashima, M., Yamada, S., Shiono, S., Maeda, M., and Sato, F. (1992). 448-detector optical recording system: Development and application to Aplysia gill-withdrawal reflex. IEEE Trans. Biomed. Eng. 39:26–36.PubMedGoogle Scholar
  58. Nirenberg, S., and Cepko, C. (1993). Targeted ablation of diverse cell classes in the nervous system in vivo. J. Neurosci. 13:3238–3251.PubMedGoogle Scholar
  59. Obaid, A. L., Koyano, T., Lindstrom, J., Sakai, T., and Salzberg, B. M. (1999). Spatiotemporal patterns of activity in an intact mammalian network with single-cell resolution: Optical studies of nicotinic activity in an enteric plexus. J. Neurosci. 19:3073–3093.PubMedGoogle Scholar
  60. O’Donovan, M. J., Ho, S., Sholomenko, G., and Yee, W. (1993). Real-time imaging of neurons retrogradely and anterogradely labeled with calcium sensitive dyes. J. Neurosci. Methods 46:91–106.PubMedGoogle Scholar
  61. Orbach, H. S., and Cohen, L. B. (1983). Optical monitoring of activity from many areas of the in vitro and in vivo salamander olfactory bulb: A new method for studying functional organization in the vertebrate central nervous system. J. Neurosci. 3:2251–2262.PubMedGoogle Scholar
  62. Orbach, H. S., Cohen, L. B., and Grinvald, A. (1985). Optical mapping of electrical activity in rat somatosensory and visual cortex. J. Neurosci. 5:1886–1895.PubMedGoogle Scholar
  63. Petran, M., and Hadravsky, M. (1966). Czechoslovakian Patent 7720.Google Scholar
  64. Rohr, S., and Salzberg, B. M. (1994). Multiple site optical recording of transmembrane voltage in patterned growth heart cell cultures: Assessing electrical behavior, with microsecond resolution, on a cellular and subcellular scale. Biophys. J. 67:1301–1315.PubMedGoogle Scholar
  65. Ross, W. N., Salzberg, B. M., Cohen, L. B., Grinvald, A., Davila, H. V., Waggoner, A. S., and Wang, C. H. (1977). Changes in absorption, fluorescence, dichroism, and birefringence in stained giant axons: Optical measurement of membrane potential. J. Membr. Biol. 33:141–183.PubMedGoogle Scholar
  66. Rubin, B., and Katz, L. (1999). Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 23:499–511.PubMedGoogle Scholar
  67. Sakai, R., Repunte-Canonigo, V., Raj, C. D., and Knopfel, T. (2001). Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur. J. Neurosci. 13:2314–2318.PubMedGoogle Scholar
  68. Salzberg, B. M. (1983). Optical recording of electrical activity in neurons using molecular probes. In Barker, J. L., and McKelvy, J. F. (eds.), Current Methods in Cellular Neurobiology, Wiley, New York, pp. 139–187.Google Scholar
  69. Salzberg, B. M., Davila, H. V., and Cohen, L. B. (1973). Optical recording of impulses in individual neurones of an invertebrate central nervous system. Nature 246:508–509.PubMedGoogle Scholar
  70. Salzberg, B. M., Grinvald, A., Cohen, L. B., Davila, H. V., and Ross, W. N. (1977). Optical recording of neuronal activity in an invertebrate central nervous system: Simultaneous monitoring of several neurons. J. Neurophysiol. 40:1281–1291.PubMedGoogle Scholar
  71. Shaw, R. (1979). Photographic detectors. Appl. Opt. Opt. Eng. 7:121–154.Google Scholar
  72. Siegel, M. S., and Isacoff, E. Y. (1997). A genetically encoded optical probe of membrane voltage. Neuron 19:735–741.PubMedGoogle Scholar
  73. Spruston, N., Schiller, Y., Stuart, G., and Sakmann, B. (1995). Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268:297–300.PubMedGoogle Scholar
  74. Stuart, G. J., and Sakmann, B. (1994). Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69–72.PubMedGoogle Scholar
  75. Stuart, G. J., and Hausser, M. (2001). Dendritic coincidence detection of EPSPs and action potentials. Nat. Neurosci. 4:63–71.PubMedGoogle Scholar
  76. Tank, D., and Ahmed, Z. (1985). Multiple-site monitoring of activity in cultured neurons. Biophys. J. 47:476A.Google Scholar
  77. Tsau, Y., Wu, J. Y., Hopp, H. P., Cohen, L. B., Schiminovich, D., and Falk, C. X. (1994). Distributed aspects of the response to siphon touch in Aplysia: Spread of stimulus information and cross-correlation analysis. J. Neurosci. 14:4167–4184.PubMedGoogle Scholar
  78. Tsau, Y., Wenner, P., O’Donovan, M. J., Cohen, L. B., Loew, L. M., and Wuskell, J. P. (1996). Dye screening and signal-to-noise ratio for retrogradely transported voltage-sensitive dyes. J. Neurosci. Methods 70:121–129.PubMedGoogle Scholar
  79. Vassar, R., Chao, S., Sitcheran, R., Nunez, J., Vosshall, L., and Axel, R. (1994). Topographic organization of sensory projections to the olfactory bulb. Cell 79:981–991.PubMedGoogle Scholar
  80. Vučinić, D., Cohen, L. B., and Kosmidis, E. K. (in preparation). Presynaptic centre-surround inhibition shapes sensory input to the mouse olfactory bulb.Google Scholar
  81. Wachowiak, M., and Cohen, L. B. (1999). Presynaptic inhibition of primary olfactory afferents mediated by different mechanisms in the lobster and turtle. J. Neurosci. 19:8808–8817.PubMedGoogle Scholar
  82. Wachowiak, M., Cohen, L. B., and Zochowski, M. (2002). Distributed and concentration invariant spatial representations of odorants by receptor neuron input to the turtle olfactory bulb. J. Neurophysiol. 87:1035–1045.PubMedGoogle Scholar
  83. Wachowiak, M., and Cohen, L. B. (2001). Representation of odorants by receptor neuron input to the mouse olfactory bulb. Neuron 32:725–737.Google Scholar
  84. Waggoner, A. S., and Grinvald, A. (1977). Mechanisms of rapid optical changes of potential sensitive dyes. Annu. N.Y. Acad. Sci. 303:217–241.Google Scholar
  85. Wu, J. Y., and Cohen, L. B. (1993). Fast multisite optical measurements of membrance potential. In Fluorescent and Luminescent Probes for Biological Activity., W. T. Mason ed., Academic Press, London, 389–404.Google Scholar
  86. Wu, J. Y., Tsau, Y., Hopp, H. P., Cohen, L. B., Tang, A. C., and Falk, C. X. (1994). Consistency in nervous systems: Trial-to-trial and animal-to-animal variations in the response to repeated application of a sensory stimulus in Aplysia. J. Neurosci. 14:1366–1384.PubMedGoogle Scholar
  87. Xu, F., Kida, I., Hyder, F., and Shulman, R. (2000). Assessment and discrimination of odor stimuli in rat olfactory bulb by dynamic functional MRI. Proc. Natl. Acad. Sci. U.S.A. 97:10601–10606.PubMedGoogle Scholar
  88. Yuste, R., and Denk, W. (1995). Dendritic spines as basic functional units of neuronal integration. Nature 375:682–684.PubMedGoogle Scholar
  89. Zecevic, D. (1996). Multiple spike-initiation zones in single neurons revealed by voltage-sensitive dyes. Nature 381:322–325.PubMedGoogle Scholar
  90. Zecevic, D., and Antic, S. (1998). Fast optical measurement of membrane potential changes at multiple sites on an individual nerve cell. Histochem J. 30:197–216.PubMedGoogle Scholar
  91. Zecevic, D., Wu, J. Y., Cohen, L. B., London, J. A., Hopp, H. P., and Falk, C. X. (1989). Hundreds of neurons in the Aplysia abdominal ganglion are active during the gill-withdrawal reflex. J. Neurosci. 9:3681–3689.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Bradley J. Baker
    • 1
    • 3
  • Efstratios K. Kosmidis
    • 1
  • Dejan Vucinic
    • 1
  • Chun X. Falk
    • 1
    • 2
  • Lawrence B. Cohen
    • 1
    • 2
  • Maja Djurisic
    • 1
  • Dejan Zecevic
    • 1
  1. 1.Department of Cellular and Molecular PhysiologyYale University School of MedicineNew Haven
  2. 2.RedShirtImaging, LLCFairfield
  3. 3.Department of Cellular and Molecular PhysiologyYale University School of MedicineNew Haven

Personalised recommendations