Cellular and Molecular Neurobiology

, Volume 25, Issue 1, pp 181–199 | Cite as

Mechanisms of the Blood–Brain Barrier Disruption in HIV-1 Infection

  • Michal ToborekEmail author
  • Yong Woo Lee
  • Govinder Flora
  • Hong Pu
  • Ibolya E. András
  • Edward Wylegala
  • Bernhard Hennig
  • Avindra Nath


1. Alterations of brain microvasculature and the disruption of the blood–brain barrier (BBB) integrity are commonly associated with human immunodeficiency virus type 1 (HIV-1) infection. These changes are most frequently found in human immunodeficiency virus-related encephalitis (HIVE) and in human immunodeficiency virus-associated dementia (HAD).

2. It has been hypothesized that the disruption of the BBB occurs early in the course of HIV-1 infection and can be responsible for HIV-1 entry into the CNS.

3. The current review discusses the mechanisms of injury to brain endothelial cells and alterations of the BBB integrity in HIV-infection with focus on the vascular effects of HIV Tat protein. In addition, this review describes the mechanisms of the BBB disruption due to HIV-1 or Tat protein interaction with selected risk factors for HIV infection, such as substance abuse and aging.

Key words

HIV AIDS blood–brain barrier brain endothelial cells inflammatory responses tight junction Tat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acheampong, E., Mukhtar, M., Parveen, Z., Ngoubilly, N., Ahmad, N., Patel, C., and Pomerantz, R. J. (2002). Ethanol strongly potentiates apoptosis induced by HIV-1 proteins in primary human brain microvascular endothelial cells. Virology 304:222–234.PubMedCrossRefGoogle Scholar
  2. Adamson, D. C., Dawson, T. M., Zink, M. C., Clements, J. E., and Dawson, V. L. (1996). Neurovirulent simian immunodeficiency virus infection induces neuronal, endothelial, and glial apoptosis. Mol. Med. 2:417–428.PubMedCrossRefGoogle Scholar
  3. Adler, W. H., Baskar, P. V., Chrest, F. J., Dorsey-Cooper, B., Winchurch, R. A., and Nagel, J. E. (1997). HIV infection and aging: Mechanisms to explain the accelerated rate of progression in the older patient. Mech. Ageing Dev. 96:137–155.PubMedCrossRefGoogle Scholar
  4. Albini, A., Soldi, R., Giunciuglio, D., Giraudo, E., Benelli, R., Primo, L., Noonan, D., Salio, M., Camussi, G., Rockl, W., and Bussolino, F. (1996). The angiogenesis induced by HIV-1 tat protein is mediated by the Flk-1/KDR receptor on vascular endothelial cells. Nat. Med. 2:1371–1375.PubMedCrossRefGoogle Scholar
  5. An, S. F., Groves, M., Gray, F., and Scaravilli, F. (1999). Early entry and widespread cellular involvement of HIV-1 DNA in brains of HIV-1 positive asymptomatic individuals. J. Neuropathol. Exp. Neurol. 58:1156–1162.PubMedCrossRefGoogle Scholar
  6. András, I. E., Pu, H., Deli, M. A., Nath, A., Hennig, B., and Toborek, M. (2003). HIV-1 Tat protein alters tight junction protein expression and distribution in cultured brain endothelial cells. J. Neurosci. Res. 74:255–265.PubMedCrossRefGoogle Scholar
  7. Annunziata, P., Cioni, C., Toneatto, S., and Paccagnini, E. (1998). HIV-1 gp120 increases the permeability of rat brain endothelium cultures by a mechanism involving substance P. AIDS 12:2377–2385.PubMedCrossRefGoogle Scholar
  8. Arese, M., Ferrandi, C., Primo, L., Camussi, G., and Bussolino, F. (2001). HIV-1 Tat protein stimulates in vivo vascular permeability and lymphomononuclear cell recruitment. J. Immunol. 166:1380–1388.PubMedGoogle Scholar
  9. Avison, M. J., Nath, A., and Berger, J. R. (2002). Understanding pathogenesis and treatment of HIV dementia: A role for magnetic resonance? Trends Neurosci. 25:468–473.PubMedCrossRefGoogle Scholar
  10. Bagasra, O., Bachman, S. E., Jew, L., Tawadros, R., Cater, J., Boden, G., Ryan, I., and Pomerantz, R. J. (1996). Increased human immunodeficiency virus type 1 replication in human peripheral blood mononuclear cells induced by ethanol: Potential immunopathogenic mechanisms. J. Infect. Dis. 173:550–558.PubMedGoogle Scholar
  11. Bagasra, O., Kajdacsy-Balla, A., and Lischner, H. W. (1989). Effects of alcohol ingestion on in vitro susceptibility of peripheral blood mononuclear cells to infection with HIV and of selected T-cell functions. Alcohol Clin. Exp. Res. 13:636–643.PubMedCrossRefGoogle Scholar
  12. Balla, A. K., Lischner, H. W., Pomerantz, R. J., and Bagasra, O. (1994). Human studies on alcohol and susceptibility to HIV infection. Alcohol 11:99–103.PubMedCrossRefGoogle Scholar
  13. Banks, W. A. (1999). Physiology and pathology of the blood–brain barrier: Implications for microbial pathogenesis, drug delivery and neurodegenerative disorders. J. Neurovirol. 5:538–555.PubMedCrossRefGoogle Scholar
  14. Banks, W. A., Akerstrom, V., and Kastin, A. J. (1998). Adsorptive endocytosis mediates the passage of HIV-1 across the blood–brain barrier: Evidence for a post-internalization coreceptor. J. Cell Sci. 111:533–540.PubMedGoogle Scholar
  15. Banks, W. A., Kastin, A. J., Brennan, J. M., and Vallance, K. L. (1999). Adsorptive endocytosis of HIV-1gp120 by blood–brain barrier is enhanced by lipopolysaccharide. Exp. Neurol. 156:165–171.PubMedCrossRefGoogle Scholar
  16. Berliner, J. A., Navab, M., Fogelman, A. M., Frank, J. S., Demer, L. L., Edwards, P. A., Watson, A. D., and Lusis, A. J. (1995). Atherosclerosis: Basic mechanisms. Oxidation, inflammation, and genetics. Circulation 91:2488–2496.PubMedGoogle Scholar
  17. Biglan, A., Metzler, C. W., Wirt, R., Ary, D., Noell, J., Ochs, L., French, C., and Hood, D. (1990). Social and behavioral factors associated with high-risk sexual behavior among adolescents. J. Behav. Med. 13:245–161.PubMedCrossRefGoogle Scholar
  18. Botchkina, G. I., Meistrell, M. E. III, Botchkina, I. L., and Tracey, K. J. (1997). Expression of TNF and TNF receptors (p55 and p75) in the rat brain after focal cerebral ischemia . Mol. Med. 3:765–781.PubMedGoogle Scholar
  19. Boven, L. A., Middel, J., Verhoef, J., De Groot, C. J., and Nottet, H. S. (2000). Monocyte infiltration is highly associated with loss of the tight junction protein zonula occludens in HIV-1-associated dementia. Neuropathol. Appl. Neurobiol. 26:356–360.PubMedCrossRefGoogle Scholar
  20. Brayton, J., Qing, Z., Hart, M. N., VanGilder, J. C., and Fabry, Z. (1998). Influence of adhesion molecule expression by human brain microvessel endothelium on cancer cell adhesion. J. Neuroimmunol. 89:104–112.PubMedCrossRefGoogle Scholar
  21. Bruce-Keller, A. J., Barger, S. W., Moss, N. I., Pham, J. T., Keller, J. N., and Nath, A. (2001). Pro-inflammatory and pro-oxidant properties of the HIV protein Tat in a microglial cell line: Attenuation by 17 beta-estradiol. J. Neurochem. 78:1315–1324.PubMedCrossRefGoogle Scholar
  22. Budka, H. (1991). Neuropathology of human immunodeficiency virus infection. Brain Pathol. 1:163–175.PubMedCrossRefGoogle Scholar
  23. Buonaguro, L., Barillari, G., Chang, H. K., Bohan, C. A., Kao, V., Morgan, R., Gallo, R. C., and Ensoli, B. (1992). Effects of the human immunodeficiency virus type 1 Tat protein on the expression of inflammatory cytokines. J. Virol. 66:7159–7167.PubMedGoogle Scholar
  24. Buttner, A., Mehraein, P., and Weis, S. (1996). Vascular changes in the cerebral cortex in HIV-1 infection. II. An immunohistochemical and lectinhistochemical investigation. Acta Neuropathol. 92:35–41.PubMedCrossRefGoogle Scholar
  25. Cavallaro, U., Mariotti, M., Wu, Z. H., Soria, M. R., and Maier, J. A. (1997). Fibronectin modulates endothelial response to HIV type 1 Tat. AIDS Res. Hum. Retroviruses 13:1341–1448.PubMedGoogle Scholar
  26. CDC, Division of HIV/AIDS Prevention, National Center for HIV, STD, and TB Prevention. The HIV/AIDS Surveillance Report.
  27. Chen, D., Wang, M., Zhou, S., and Zhou, Q. (2002). HIV-1 Tat targets microtubules to induce apoptosis, a process promoted by the pro-apoptotic Bcl-2 relative Bim. EMBO J. 21:6801–6810.PubMedCrossRefGoogle Scholar
  28. Cinque, P., Vago, L., Mengozzi, M., Torri, V., Ceresa, D., Vicenzi, E., Transidico, P., Vagani, A., Sozzani, S., Mantovani, A., Lazzarin, A., and Poli, G. (1998). Elevated cerebrospinal fluid levels of monocyte chemotactic protein-1 correlate with HIV-1 encephalitis and local viral replication. AIDS 12:1327–1332.PubMedCrossRefGoogle Scholar
  29. Cohen, B., and McArthur, J. C. (2001). HIV-associated neurologic disease incidence changes: Multicenter AIDS cohort study, 1990–1998. Neurology 56:257–260.PubMedGoogle Scholar
  30. Conant, K., Garzino-Demo, A., Nath, A., McArthur, J. C., Halliday, W., Power, C., Gallo, R. C., and Major, E. O. (1998). Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc. Natl Acad. Sci. USA 95:3117–3121.PubMedCrossRefGoogle Scholar
  31. Conant, K., Ma, M., Nath, A., and Major, E. O. (1996). Extracellular human immunodeficiency virus type 1 Tat protein is associated with an increase in both NF-kappa B binding and protein kinase C activity in primary human astrocytes. J. Virol. 70:1384–1389.PubMedGoogle Scholar
  32. Corder, E. H., Robertson, K., Lannfelt, L., Bogdanovic, N., Eggertsen, G., Wilkins, J., and Hall, C. (1998). HIV-infected subjects with the E4 allele for APOE have excess dementia and peripheral neuropathy . Nat. Med. 4:1182–1184.PubMedCrossRefGoogle Scholar
  33. Couraud, P. O. (1998). Infiltration of inflammatory cells through brain endothelium. Pathol. Biol. 46:176–180.PubMedGoogle Scholar
  34. Dallasta, L. M., Pisarov, L. A., Esplen, J. E., Werley, J. V., Moses, A. V., Nelson, J. A., and Achim, C. L. (1999). Blood–brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis. Am. J. Pathol. 155:1915–1927.PubMedGoogle Scholar
  35. Defazio, G., Trojano, M., Ribatti, D., Nico, B., Giorelli, M., De Salvia, R., Russo, G., Roncali, L., and Livrea, P. (1998). ICAM 1 expression and fluid phase endocytosis of cultured brain microvascular endothelial cells following exposure to interferon beta-1a and TNFalpha. J. Neuroimmunol. 88:13–20.PubMedCrossRefGoogle Scholar
  36. Dejana, E., Spagnuolo, R., and Bazzoni, G. (2001). Interendothelial junctions and their role in the control of angiogenesis, vascular permeability and leukocyte transmigration. Thromb. Haemost. 86:308–315.PubMedGoogle Scholar
  37. Dollard, S. C., James, H. J., Sharer, L. R., Epstein, L. G., Gelbard, H. A., and Dewhurst, S. (1995). Activation of nuclear factor kappa B in brains from children with HIV-1 encephalitis. Neuropathol. Appl. Neurobiol. 21:518–528.CrossRefPubMedGoogle Scholar
  38. Dougherty, R. H., Skolasky, R. L., Jr., and McArthur, J. C. (2002). Progression of HIV-associated dementia treated with HAART. AIDS Read. 12:69–74.PubMedGoogle Scholar
  39. Dufour, A., Corsini, E., Gelati, M., Ciusani, E., Zaffaroni, M., Giombini, S., Massa, G., and Salmaggi, A. (1998). Modulation of ICAM-1, VCAM-1 and HLA-DR by cytokines and steroids on HUVECs and human brain endothelial cells. J. Neurol. Sci. 157:117–121.PubMedCrossRefGoogle Scholar
  40. Edinger, A. L., Mankowski, J. L., Doranz, B. J., Margulies, B. J., Lee, B., Rucker, J., Sharron, M., Hoffman, T. L., Berson, J. F., Zink, M. C., Hirsch, V. M., Clements, J. E., and Doms, R. W. (1997). CD4-independent, CCR5-dependent infection of brain capillary endothelial cells by a neurovirulent simian immunodeficiency virus strain. Proc. Natl Acad. Sci. USA 94:14742–14747.PubMedCrossRefGoogle Scholar
  41. Ehret, A., Li-Weber, M., Frank, R., and Krammer, P. H. (2001). The effect of HIV-1 regulatory proteins on cellular genes: Derepression of the IL-2 promoter by Tat . Eur. J. Immunol. 31:1790–1799.PubMedCrossRefGoogle Scholar
  42. Ellis, R. J., Deutsch, R., Heaton, R. K., Marcotte, T. D., McCutchan, J. A., Nelson, J. A., Abramson, I., Thal, L. J., Atkinson, J. H., Wallace, M. R., and Grant, I. (1997) Neurocognitive impairment is an independent risk factor for death in HIV infection. San Diego HIV Neurobehavioral Research Center Group. Arch. Neurol. 54:416–424.PubMedGoogle Scholar
  43. Esiri, M. M., Biddolph, S. C., and Morris, C. S. (1998). Prevalence of Alzheimer plaques in AIDS. J. Neurol. Neurosurg. Psychiatry 65:29–33.PubMedCrossRefGoogle Scholar
  44. Fein, G., Biggins, C. A., and MacKay, S. (1995). Alcohol abuse and HIV infection have additive effects on frontal cortex function as measured by auditory evoked potential P3A latency. Biol. Psychiatry 37:183–195.PubMedCrossRefGoogle Scholar
  45. Ferro, S., and Salit, I. E. (1992). HIV infection in patients over 55 years of age. J. Acquir. Immune. Defic. Syndr. 5:348–353.PubMedGoogle Scholar
  46. Feuerstein, G. Z., Liu, T., and Barone, F. C. (1994). Cytokines, inflammation, and brain injury: Role of tumor necrosis factor-alpha. Cerebrovasc. Brain. Metab. Rev 6:341–60.PubMedGoogle Scholar
  47. Filippi, C. G., Sze, G., Farber, S. J., Shahmanesh, M., and Selwyn, P. A. (1998). Regression of HIV encephalopathy and basal ganglia signal intensity abnormality at MR imaging in patients with AIDS after the initiation of protease inhibitor therapy. Radiology 206:491–498.PubMedGoogle Scholar
  48. Flora G., Lee, Y. W., Nath, A., Hennig, B., Maragos, W., and Toborek, M. (2003). Methamphetamine potentiates HIV-1 Tat protein-mediated activation of redox-sensitive pathways in discrete regions of the brain. Exp. Neurol. 179:60–70.PubMedCrossRefGoogle Scholar
  49. Frigerio, S., Gelati, M., Ciusani, E., Corsini, E., Dufour, A., Massa, G., and Salmaggi, A. (1998). Immunocompetence of human microvascular brain endothelial cells: Cytokine regulation of IL-1beta, MCP-1, IL-10, sICAM-1 and sVCAM-1. J. Neurol. 245:727–730.PubMedCrossRefGoogle Scholar
  50. Furuse, M., Sasaki, H., Fujimoto, K., and Tsukita, S. (1998). A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J. Cell Biol. 143:391–401.PubMedCrossRefGoogle Scholar
  51. Gartner, S. (2000). HIV infection and dementia. Science 287:602–604.PubMedCrossRefGoogle Scholar
  52. Gibellini, D., Re, M. C., Ponti, C., Celeghini, C., Melloni, E., La Placa, M., and Zauli G. (2001). Extracellular Tat activates c-fos promoter in low serum-starved CD4+ T cells. Br. J. Haematol. 112:663–670.PubMedCrossRefGoogle Scholar
  53. Gibellini, D., Zauli, G., Re, M. C., Milani, D., Furlini, G., Caramelli, E., Capitani, S., and La Placa, M. (1994). Recombinant human immunodeficiency virus type-1 (HIV-1) Tat protein sequentially up-regulates IL-6 and TGF-beta 1 mRNA expression and protein synthesis in peripheral blood monocytes. Br. J. Haematol. 88:261–267.PubMedCrossRefGoogle Scholar
  54. Giovannoni, G., Miller, R. F., Heales, S. J., Land, L. M., Harrison, M. J., and Thompson, E. J. (1998). Elevated cerebrospinal fluid and serum nitrate and nitrite levels in patients with central nervous system complications of HIV-1 infection: A correlation with blood–brain-barrier dysfunction. J. Neurol. Sci. 156:53–58.PubMedCrossRefGoogle Scholar
  55. Gonzalez-Mariscal, L., Betanzos, A., and Avila-Flores, A. (2000). MAGUK proteins: Structure and role in the tight junction. Semin. Cell Dev. Biol. 11:315–324.PubMedCrossRefGoogle Scholar
  56. Goodkin, K., Wilkie, F. L., Concha, M., Hinkin, C. H., Symes, S., Baldewicz, T. T., Asthana, D., Fujimura, R. K., Lee, D., van Zuilen, M. H., Khamis, I., Shapshak, P., and Eisdorfer, C. (2001). Aging and neuro-AIDS conditions and the changing spectrum of HIV-1-associated morbidity and mortality. J. Clin. Epidemiol. 54(Suppl. 1):S35–S43.PubMedCrossRefGoogle Scholar
  57. Haughey, N. J., and Mattson, M. P. (2002). Calcium dysregulation and neuronal apoptosis by the HIV-1 proteins Tat and gp120. J. Acquir. Immune. Defic. Syndr. 31(Suppl. 2):S55–S61.PubMedGoogle Scholar
  58. Haughey, N. J., Nath, A., Mattson, M. P., Slevin, J. T., and Geiger, J. D. (2001). HIV-1 Tat through phosphorylation of NMDA receptors potentiates glutamate excitotoxicity. J. Neurochem. 78:457–467.PubMedCrossRefGoogle Scholar
  59. Heidenreich, F., Arendt, G., Jander, S., Jablonowski, H., and Stoll, G. (1994). Serum and cerebrospinal fluid levels of soluble intercellular adhesion molecule 1 (sICAM-1) in patients with HIV-1 associated neurological diseases. J. Neuroimmunol. 52:117–126.PubMedCrossRefGoogle Scholar
  60. Hess, D. C., Bhutwala, T., Sheppard, J. C., Zhao, W., and Smith, J. (1994). ICAM-1 expression on human brain microvascular endothelial cells. Neurosci. Lett. 168:201–204.PubMedCrossRefGoogle Scholar
  61. Hofman, F. M., Chen, P., Jeyaseelan, R., Incardona, F., Fisher, M., and Zidovetzki, R. (1998). Endothelin-1 induces production of the neutrophil chemotactic factor interleukin-8 by human brain-derived endothelial cells. Blood 92:3064–3072.PubMedGoogle Scholar
  62. Hofman, F. M., Dohadwala, M. M., Wright, A. D., Hinton, D. R., and Walker, S. M. (1994). Exogenous tat protein activates central nervous system-derived endothelial cells. J. Neuroimmunol. 54:19–28.PubMedCrossRefGoogle Scholar
  63. Hudson, L., Liu J., Nath, A., Jones, M., Raghavan, R., Narayan, O., Male, D., and Everall, I. (2000). Detection of the human immunodeficiency virus regulatory protein tat in CNS tissues. J. Neurovirol. 6:145–155.PubMedCrossRefGoogle Scholar
  64. Husain, S. R., Leland, P., Aggarwal, B. B., and Puri, R. K. (1996). Transcriptional up-regulation of interleukin 4 receptors by human immunodeficiency virus type 1 tat gene. AIDS Res. Hum. Retroviruses 12:1349–1359.PubMedCrossRefGoogle Scholar
  65. Iurlaro, M., Benelli, R., Masiello, L., Rosso, M., Santi, L., and Albini, A. (1998). Beta Interferon inhibits HIV-1 Tat-induced angiogenesis: Synergism with 13-cis retinoic acid. Eur. J. Cancer 34:570–576.PubMedCrossRefGoogle Scholar
  66. Jayanthi, S., Ladenheim, B., and Cadet, J. L. (1998). Methamphetamine-induced changes in antioxidant enzymes and lipid peroxidation in copper/zinc-superoxide dismutase transgenic mice. Ann. N Y Acad. Sci. 844:92–102.PubMedCrossRefGoogle Scholar
  67. Jiang, Y., Beller, D. I., Frendl, G., and Graves, D. T. (1992). Monocyte chemoattractant protein-1 regulates adhesion molecule expression and cytokine production in human monocytes. J. Immunol. 148:2423–2428.PubMedGoogle Scholar
  68. Jokelainen, K., Reinke, L. A., and Nanji, A. A. (2001). NF-κB activation is associated with free radical generation and endotoxemia and precedes pathological liver injury in experimental alcoholic liver disease. Cytokine 16:36–39.PubMedCrossRefGoogle Scholar
  69. Jones, M., Olafson, K., Del Bigio, M. R., Peeling, J., and Nath, A. (1998). Intraventricular injection of human immunodeficiency virus type 1 (HIV-1) tat protein causes inflammation, gliosis, apoptosis, and ventricular enlargement. J. Neuropathol. Exp. Neurol. 57:563–570.PubMedCrossRefGoogle Scholar
  70. Justice, A. C., Landefeld, C. S., Asch, S. M., Gifford, A. L., Whalen, C. C., and Covinsky, K. E. (2001). Justification for a new cohort study of people aging with and without HIV infection. J. Clin. Epidemiol. 54(Suppl. 1): S3–S8.PubMedCrossRefGoogle Scholar
  71. Kelder, W., McArthur, J. C., Nance-Sproson, T., McClernon, D., and Griffin, D. E. (1998). Beta-chemokines MCP-1 and RANTES are selectively increased in cerebrospinal fluid of patients with human immunodeficiency virus-associated dementia. Ann. Neurol. 44:831–835.PubMedCrossRefGoogle Scholar
  72. Kim, T. A., Avraham, H. K., Koh, Y. H., Jiang, S., Park, I. W., and Avraham, S. (2003). HIV-1 Tat-mediated apoptosis in human brain microvascular endothelial cells. J. Immunol. 170:2629–2637.PubMedGoogle Scholar
  73. Kruman, I. I., Nath, A., Maragos, W. F., Chan, S. L., Jones, M., Rangnekar, V. M., Jakel, R. J., and Mattson, M. P. (1999). Evidence that Par-4 participates in the pathogenesis of HIV encephalitis. Am. J. Pathol. 155:39–46.PubMedGoogle Scholar
  74. Kruman, I. I., Nath, A., and Mattson, M. P. (1998). HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp. Neurol. 154:276–288.PubMedCrossRefGoogle Scholar
  75. Kumar, A., Manna, S. K., Dhawan, S., and Aggarwal, B. B. (1998). HIV-Tat protein activates c-Jun N-terminal kinase and activator protein-1. J. Immunol. 161:776–781.PubMedGoogle Scholar
  76. Lan, K. C., Lin, Y. F., Yu, F. C., Lin, C. S., and Chu, P. J. (1998). Clinical manifestations and prognostic features of acute methamphetamine intoxication. Formos. Med. Assoc. 97:528–533.Google Scholar
  77. Lee, Y. W., Hennig, B., Yao, J., and Toborek, M. (2001). Methamphetamine induces AP-1 and NF-kappaB binding and transactivation in human brain endothelial cells. J. Neurosci. Res. 66:583–591.PubMedCrossRefGoogle Scholar
  78. Liebner, S., Fischmann, A., Rascher, G., Duffner, F., Grote, E. H., Kalbacher, H., and Wolburg, H. (2000). Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta. Neuropathol. 100:323–331.PubMedCrossRefGoogle Scholar
  79. Lipton, S. A., and Gendelman, H. E. (1995). Seminars in medicine of the Beth Israel Hospital, Boston. Dementia associated with the acquired immunodeficiency syndrome. N. Engl. J. Med. 332:934–940.PubMedCrossRefGoogle Scholar
  80. Liu, Y., Tang, X. P., McArthur, J. C., Scott, J., and Gartner, S. (2000). Analysis of human immunodeficiency virus type 1 gp160 sequences from a patient with HIV dementia: Evidence for monocyte trafficking into brain. J. Neurovirol. 6:70–81.Google Scholar
  81. Luabeya, M. K., Dallasta, L. M., Achim, C. L., Pauza, C. D., and Hamilton, R. L. (2000). Blood–brain barrier disruption in simian immunodeficiency virus encephalitis. Neuropathol. Appl. Neurobiol. 26:454–462.PubMedCrossRefGoogle Scholar
  82. Manna, S. K., and Aggarwal, B. B. (2000). Differential requirement for p56lck in HIV-tat versus TNF-induced cellular responses: Effects on NF-κB, activator protein-1, c-Jun N-terminal kinase, and apoptosis. J. Immunol. 164:5156–5166.PubMedGoogle Scholar
  83. Maragos, W. F., Young, K. L., Turchan, J. T., Guseva, M., Pauly, J. R., Nath, A., and Cass, W. A. (2002). Human immunodeficiency virus-1 Tat protein and methamphetamine interact synergistically to impair striatal dopaminergic function. J. Neurochem. 83:955–963.PubMedCrossRefGoogle Scholar
  84. Martin, T., Cardarelli, P. M., Parry, G. C., Felts, K. A., and Cobb, R. R. (1997). Cytokine induction of monocyte chemoattractant protein-1 gene expression in human endothelial cells depends on the cooperative action of NF-kappa B and AP-1. Eur. J. Immunol. 27:1091–1097.PubMedCrossRefGoogle Scholar
  85. Mattson, M. P. (2002). Oxidative stress, perturbed calcium homeostasis, and immune dysfunction in Alzheimer’s disease. J. Neurovirol. 8:539–550.PubMedCrossRefGoogle Scholar
  86. McArthur, J. C., Nance-Sproson, T. E., Griffin, D. E., Hoover, D., Selnes, O. A., Miller, E. N., Margolick, J. B., Cohen, B. A., Farzadegan, H., and Saah, A. (1992). The diagnostic utility of elevation in cerebrospinal fluid beta 2-microglobulin in HIV-1 dementia. Multicenter AIDS cohort study. Neurology 42:1707–1712.PubMedGoogle Scholar
  87. Meyerhoff, D. J., MacKay, S., Sappey-Marinier, D., Deicken, R., Calabrese, G., Dillon, W. P., Weiner, M. W., and Fein, G. (1995). Effects of chronic alcohol abuse and HIV infection on brain phosphorus metabolites. Alcohol Clin. Exp. Res. 19:685–692.PubMedCrossRefGoogle Scholar
  88. Morita, K., Furuse, M., Fujimoto, K., and Tsukita, S. (1999). Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands . Proc. Natl Acad. Sci. USA 96:511–516.PubMedCrossRefGoogle Scholar
  89. Moses, A. V., and Nelson J. A. (1994). HIV infection of human brain capillary endothelial cells-implications for AIDS dementia. Adv. Neuroimmunol. 4:239–247.PubMedCrossRefGoogle Scholar
  90. Mukaida, N., Harada, A., and Matsushima, K. (1998). Interleukin-8 (IL-8) and monocyte chemotactic and activating factor (MCAF/MCP-1), chemokines essentially involved in inflammatory and immune reactions. Cytokine Growth Factor Rev. 9:9–23.PubMedCrossRefGoogle Scholar
  91. Nath, A., Conant, K., Chen, P., Scott, C., and Major, E. O. (1999). Transient exposure to HIV-1 Tat protein results in cytokine production in macrophages and astrocytes. A hit and run phenomenon. J. Biol.Chem. 274:17098–17102.PubMedCrossRefGoogle Scholar
  92. Nath, A., and Geiger, J. (1998). Neurobiological aspects of human immunodeficiency virus infection: Neurotoxic mechanisms. Prog. Neurobiol. 54:19–33.PubMedCrossRefGoogle Scholar
  93. Nath, A., Hauser, K. F., Wojna, V., Booze, R. M., Maragos, W., Prendergast, M., Cass, W., and Turchan, J. T. (2002). Molecular basis for interactions of HIV and drugs of abuse . J. Acquir. Immune. Defic. Syndr. 31(Suppl. 2):S62–S69.PubMedGoogle Scholar
  94. Nebuloni, M., Pellegrinelli, A., Ferri, A., Bonetto, S., Boldorini, R., Vago, L., Grassi, M. P., and Costanzi, G. (2001). Beta amyloid precursor protein and patterns of HIV p24 immunohistochemistry in different brain areas of AIDS patients. AIDS 15:571–575.PubMedCrossRefGoogle Scholar
  95. Nottet, H. S., Persidsky, Y., Sasseville, V. G., Nukuna, A. N., Bock, P., Zhai, Q. H., Sharer, L. R., McComb, R. D., Swindells, S., Soderland, C., and Gendelman, H. E. (1996). Mechanisms for the transendothelial migration of HIV-1-infected monocytes into brain. J. Immunol. 156:1284–1295.PubMedGoogle Scholar
  96. Oshima T., Flores S. C., Vaitaitis, G., Coe, L. L., Joh, T., Park, J. H., Zhu, Y., Alexander, B., and Alexander, J. S. (2000). HIV-1 Tat increases endothelial solute permeability through tyrosine kinase and mitogen-activated protein kinase-dependent pathways. AIDS 14:475–482.PubMedCrossRefGoogle Scholar
  97. Persidsky, Y., Buttini, M., Limoges, J., Bock, P., and Gendelman, H. E. (1997). An analysis of HIV-1-associated inflammatory products in brain tissue of humans and SCI mice with HIV-1 encephalitis. J. Neurovirol. 3:401–416.PubMedGoogle Scholar
  98. Petito, C. K., and Cash, K. S. (1992). Blood–brain barrier abnormalities in the acquired immunodeficiency syndrome: Immunohistochemical localization of serum proteins in postmortem brain. Ann. Neurol. 32:658–666.PubMedCrossRefGoogle Scholar
  99. Portegies, P. (1995). Review of antiretroviral therapy in the prevention of HIV-related AIDS dementia complex (ADC). Drugs 49(Suppl. 1):25–31.PubMedCrossRefGoogle Scholar
  100. Power, C., Kong, P. A., Crawford, T. O., Wesselingh, S., Glass, J. D., McArthur, J. C., and Trapp, B. D. (1993). Cerebral white matter changes in acquired immunodeficiency syndrome dementia: Alterations of the blood–brain barrier. Ann. Neurol. 34:339–350.PubMedCrossRefGoogle Scholar
  101. Pu, H., Tian, J., Flora, G., Lee, Y. W., Nath, A., Hennig, B., and Toborek, M. (2003). HIV-1 Tat protein upregulates inflammatory mediators and induces monocyte invasion into the brain. Mol. Cell. Neurosci. 24:224–237.PubMedCrossRefGoogle Scholar
  102. Pulse Check. (2000). Trends in drug abuse, mid-year 2000. Office of National Drug Control Policy. Published online at
  103. Rappaport, J., Joseph, J., Croul, S., Alexander, G., Del Valle, L., Amini, S., and Khalili, K. (1999). Molecular pathway involved in HIV-1-induced CNS pathology: Role of viral regulatory protein, Tat. J. Leukoc. Biol. 65:458–465.PubMedGoogle Scholar
  104. Rhodes, R. H., and Ward, J. M. (1991). AIDS meningoencephalomyelitis. Pathogenesis and changing neuropathologic findings. Pathol. Annu. 26(Pt 2):247–276.PubMedGoogle Scholar
  105. Sastry, K. J., Reddy, H. R., Pandita, R., Totpal, K., and Aggarwal, B. B. (1990). HIV-1 tat gene induces tumor necrosis factor-beta (lymphotoxin) in a human B-lymphoblastoid cell line. J. Biol. Chem. 265:20091–20093.PubMedGoogle Scholar
  106. Sawaya, B. E., Thatikunta, P., Denisova, L., Brady, J., Khalili, K., and Amini, S. (1998). Regulation of TNFalpha and TGFbeta-1 gene transcription by HIV-1 Tat in CNS cells . J. Neuroimmunol. 87:33–42.PubMedCrossRefGoogle Scholar
  107. Scala, G., Ruocco, M. R., Ambrosino, C., Mallardo, M., Giordano, V., Baldassarre, F., Dragonetti, E., Quinto, I., and Venuta, S. (1994). The expression of the interleukin 6 gene is induced by the human immunodeficiency virus 1 TAT protein. J. Exp. Med. 179:961–971.PubMedCrossRefGoogle Scholar
  108. Secchiero, P., Zella, D., Capitani, S., Gallo, R. C., and Zauli, G. (1999). Extracellular HIV-1 tat protein up-regulates the expression of surface CXC-chemokine receptor 4 in resting CD4+ T cells. J. Immunol. 162:2427–2431.PubMedGoogle Scholar
  109. Shi, B., De Girolami, U., He, J., Wang, S., Lorenzo, A., Busciglio, J., and Gabuzda, D. (1996). Apoptosis induced by HIV-1 infection of the central nervous system. J. Clin. Invest. 98:1979–1990.PubMedCrossRefGoogle Scholar
  110. Shyy, Y. J., Li, Y. S., and Kolattukudy, P. E. (1990). Structure of human monocyte chemotactic protein gene and its regulation by TPA. Biochem. Biophys. Res. Commun. 169:346–351.PubMedCrossRefGoogle Scholar
  111. Siebenlist, U., Franzoso, G., and Brown, K. (1994). Structure, regulation and function of NF-B. Annu. Rev. Cell Biol. 10:405–455.PubMedCrossRefGoogle Scholar
  112. Singer, E. J., Syndulko, K., Fahy-Chandon, B., Schmid, P., Conrad, A., and Tourtellotte, W. W. (1994). Intrathecal IgG synthesis and albumin leakage are increased in subjects with HIV-1 neurologic disease. J. Acquir. Immune. Defic. Syndr. 7:265–271.PubMedGoogle Scholar
  113. Skolnick, A. A. (1998). Protease inhibitors may reverse AIDS dementia. JAMA 279:419.PubMedCrossRefGoogle Scholar
  114. Sporer, B., Koedel, U., Paul, R., Kohleisen, B., Erfle, V., Fontana, A., and Pfister, H. W. (2000). Human immunodeficiency virus type-1 Nef protein induces blood–brain barrier disruption in the rat: role of matrix metalloproteinase-9. J. Neuroimmunol. 102:125–130.PubMedCrossRefGoogle Scholar
  115. Stade, B. G., Messer, G., Riethmuller, G., and Johnson, J. P. (1990). Structural characteristics of the 5′ region of the human ICAM-1 gene. Immunobiology 182:79–87.PubMedGoogle Scholar
  116. Strelow, L. I., Watry, D. D., Fox, H. S., and Nelson, J. A. (1998). Efficient infection of brain microvascular endothelial cells by an in vivo-selected neuroinvasive SIVmac variant . J. Neurovirol. 4:269–280.PubMedCrossRefGoogle Scholar
  117. Takahashi, K., Wesselingh, S. L., Griffin, D. E., McArthur, J. C., Johnson, R. T., and Glass, J. D. (1996). Localization of HIV-1 in human brain using polymerase chain reaction/in situ hybridization and immunocytochemistry. Ann. Neurol. 39:705–711.PubMedCrossRefGoogle Scholar
  118. Toborek, M., Lee, Y. W., Pu, H., Malecki, A., Flora, G., Garrido, R., Hennig, B., Bauer, H. C., and Nath, A. (2003). HIV-Tat protein induces oxidative and inflammatory pathways in brain endothelium. J. Neurochem. 84:169–179.PubMedCrossRefGoogle Scholar
  119. Tofts, P. S., and Kermode, A. G. (1991). Measurement of the blood–brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn. Reson. Med. 17:357–367.PubMedCrossRefGoogle Scholar
  120. Tsukita, S., Furuse, M., and Itoh, M. (2001). Multifunctional strands in tight junctions. Nat. Rev. Mol. Cell. Biol. 2:285–293.PubMedCrossRefGoogle Scholar
  121. Tyor, W. R., and Middaugh, L. D. (1999). Do alcohol and cocaine abuse alter the course of HIV-associated dementia complex? J. Leukoc. Biol. 65:475–481.PubMedGoogle Scholar
  122. Valle, L. D., Croul, S., Morgello, S., Amini, S., Rappaport, J., and Khalili, K. (2000). Detection of HIV-1 Tat and JCV capsid protein, VP1, in AIDS brain with progressive multifocal leukoencephalopathy. J. Neurovirol. 6:221–228.PubMedCrossRefGoogle Scholar
  123. Weeks, B. S., Lieberman, D. M., Johnson, B., Roque, E., Green, M., Loewenstein, P., Oldfield, E. H., and Kleinman, H. K. (1995). Neurotoxicity of the human immunodeficiency virus type 1 tat transactivator to PC12 cells requires the Tat amino acid 49–58 basic domain . J. Neurosci. Res. 42:34–40.PubMedCrossRefGoogle Scholar
  124. Weis, S., Haug, H., and Budka, H. (1996). Vascular changes in the cerebral cortex in HIV-1 infection: I. A morphometric investigation by light and electron microscopy. Clin. Neuropathol. 15:361–366.PubMedGoogle Scholar
  125. Weiss, J. M., Nath, A., Major, E. O., and Berman, J. W. (1999). HIV-1 Tat induces monocyte chemoattractant protein-1-mediated monocyte transmigration across a model of the human blood–brain barrier and up-regulates CCR5 expression on human monocytes. J. Immunol. 163:2953–2959.PubMedGoogle Scholar
  126. Wojtowicz, W. M., Farzan, M., Joyal, J. L., Carter, K., Babcock, G. J., Israel, D. I., Sodroski, J., and Mirzabekov, T. (2002). Stimulation of enveloped virus infection by beta-amyloid fibrils. J. Biol. Chem. 277:35019–35024.PubMedCrossRefGoogle Scholar
  127. Wu, D. T., Woodman, S. E., Weiss, J. M., McManus, C. M., D’Aversa, T. G., Hesselgesser, J., Major, E. O., Nath, A., and Berman, J. W. (2000). Mechanisms of leukocyte trafficking into the CNS. J. Neurovirol. 6(Suppl. 1):S82–S85.PubMedGoogle Scholar
  128. Zhang, W., Smith, C., Shapiro, A., Monette, R., Hutchison, J., and Stanimirovic, D. (1999). Increased expression of bioactive chemokines in human cerebromicrovascular endothelial cells and astrocytes subjected to simulated ischemia in vitro. J. Neuroimmunol. 101:148–160.PubMedCrossRefGoogle Scholar
  129. Zidovetzki, R., Wang, J. L., Chen, P., Jeyaseelan, R., and Hofman, F. (1998). Human immunodeficiency virus Tat protein induces interleukin 6 mRNA expression in human brain endothelial cells via protein kinase C- and cAMP-dependent protein kinase pathways. AIDS Res. Hum. Retroviruses 14:825–833.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Michal Toborek
    • 1
    • 5
    Email author
  • Yong Woo Lee
    • 1
  • Govinder Flora
    • 1
  • Hong Pu
    • 1
  • Ibolya E. András
    • 1
  • Edward Wylegala
    • 2
  • Bernhard Hennig
    • 3
  • Avindra Nath
    • 4
  1. 1.Department of SurgeryUniversity of KentuckyLexington
  2. 2.Department of OphthalmologyRailway HospitalKatowicePoland
  3. 3.College of AgricultureUniversity of KentuckyLexingtonKentucky
  4. 4.Department of NeurologyJohns Hopkins UniversityBaltimore
  5. 5.Department of Surgery, Division of NeurosurgeryUniversity of Kentucky Medical CenterLexington

Personalised recommendations