Cellular and Molecular Neurobiology

, Volume 25, Issue 1, pp 59–127 | Cite as

Permeability Studies on In Vitro Blood–Brain Barrier Models: Physiology, Pathology, and Pharmacology

  • Mária A. Deli
  • Csongor S. Ábrahám
  • Yasufumi Kataoka
  • Masami Niwa


1. The specifically regulated restrictive permeability barrier to cells and molecules is the most important feature of the blood–brain barrier (BBB). The aim of this review was to summarize permeability data obtained on in vitro BBB models by measurement of transendothelial electrical resistance and by calculation of permeability coefficients for paracellular or transendothelial tracers.

2. Results from primary cultures of cerebral microvascular endothelial cells or immortalized cell lines from bovine, human, porcine, and rodent origin are presented. Effects of coculture with astroglia, neurons, mesenchymal cells, blood cells, and conditioned media, as well as physiological influence of serum components, hormones, growth factors, lipids, and lipoproteins on the barrier function are discussed.

3. BBB permeability results gained on in vitro models of pathological conditions including hypoxia and reoxygenation, neurodegenerative diseases, or bacterial and viral infections have been reviewed. Effects of cytokines, vasoactive mediators, and other pathogenic factors on barrier integrity are also detailed.

4. Pharmacological treatments modulating intracellular cyclic nucleotide or calcium levels, and activity of protein kinases, protein tyrosine phosphatases, phospholipases, cyclooxygenases, or lipoxygenases able to change BBB integrity are outlined. Barrier regulation by drugs involved in the metabolism of nitric oxide and reactive oxygen species, as well as influence of miscellaneous treatments are also listed and evaluated.

5. Though recent advances resulted in development of improved in vitro BBB model systems to investigate disease modeling, drug screening, and testing vectors targeting the brain, there is a need for checking validity of permeability models and cautious interpretation of data.

Key words

blood–brain barrier cerebral endothelial cells coculture in vitro model permeability transendothelial electrical resistance. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, N. J. (2000). Inflammatory mediators and modulation of blood–brain barrier permeability. Cell. Mol. Neurobiol. 20:131–147.CrossRefPubMedGoogle Scholar
  2. Abbott, N. J. (2002). Astrocyte-endothelial interactions and the blood–brain barrier permeability. J. Anat. 200:629–638.CrossRefPubMedGoogle Scholar
  3. Abbott N. J. (2005). Dynamics of CNS barriers: Evolution, differentiation and modulation. Cell. Mol. Neurobiol. 25:5–23.CrossRefPubMedGoogle Scholar
  4. Abbott, N. J., Hughes, C. C. W., Revest, P. A., and Greenwood, J. (1992). Development and characterisation of a rat brain capillary endothelial culture: Towards an in vitro blood–brain barrier. J. Cell Sci. 103:23–37.PubMedGoogle Scholar
  5. Abbruscato, T. J., and Davis, T. P. (1999a). Combination of hypoxia/aglycemia compromises in vitro blood–brain barrier integrity. J. Pharmacol. Exp. Ther. 289:668–675.Google Scholar
  6. Abbruscato, T. J., and Davis, T. P. (1999b). Protein expression of brain endothelial cell E-cadherin after hypoxia/aglycemia: Influence of astrocyte contact. Brain Res. 842:277–286.CrossRefGoogle Scholar
  7. Anda, T., Yamashita, H., Khalid, H., Tsutsumi, K., Fujita, H., Tokunaga, Y., and Shibata, S. (1997). Effect of tumor necrosis factor-alpha on the permeability of bovine brain microvessel endothelial cell monolayers. Neurol. Res. 19:369–376.PubMedGoogle Scholar
  8. Annunziata, P., Cioni, C., Santonini, R., and Paccagnini, E. (2002). Substance P antagonist blocks leakage and reduces activation of cytokine-stimulated rat brain endothelium. J. Neuroimmunol. 131:41–49.CrossRefPubMedGoogle Scholar
  9. Annunziata, P., Cioni, C., Toneatto, S., and Paccagnini, E. (1998). HIV-1 gp120 increases the permeability of rat brain endothelium cultures by a mechanism involving substance P. AIDS 12:2377–2385.CrossRefPubMedGoogle Scholar
  10. Arthur, F. E., Shivers, R. R., and Bowman, P. D. (1987). Astrocyte-mediated induction of tight junctions in brain capillary endothelium: An efficient in vitro model. Brain Res. 433:155–159.PubMedGoogle Scholar
  11. Audus, K. L., and Borchardt, R. T. (1986a). Characterization of an in vitro blood–brain barrier model system for studying drug transport and metabolism. Pharm. Res. 3:81–87.CrossRefGoogle Scholar
  12. Audus, K. L., and Borchardt, R. T. (1986b). Characteristics of the large neutral amino acid transport system of bovine brain microvessel endothelial cell monolayers. J. Neurochem. 47:484–488.CrossRefGoogle Scholar
  13. Badger, J. L., Stins, M. F., and Kim, K. S. (1999). Citrobacter freundii invades and replicates in human brain microvascular endothelial cells. Infect. Immun. 67:4208–4215.PubMedGoogle Scholar
  14. Banks, W. A. (1999). Physiology and pathology of the blood–brain barrier: Implications for microbial pathogenesis, drug delivery and neurodegenerative disorders. J. Neurovirol. 5:538–555.CrossRefPubMedGoogle Scholar
  15. Banks, W. A., and Broadwell, R. D. (1994). Blood to brain and brain to blood passage of native horseradish peroxidase, wheat germ agglutinin, and albumin: Pharmacokinetic and morphological assessments. J. Neurochem. 62:2404–2419.PubMedCrossRefGoogle Scholar
  16. Bauer, H. C., and Bauer, H. (2000). Neural induction of the blood–brain barrier: Still an enigma. Cell. Mol. Neurobiol. 20:13–28.CrossRefPubMedGoogle Scholar
  17. Blasig, I. E., Giese, H., Schroeter, M. L., Sporbert, A., Utepbergenov, D. I., Buchwalow, I. B., Neubert, K., Schönfelder, G., Freyer, D., Schimke, I., Siems, W.-E., Paul, M., Haseloff, R. F., and Blasig, R. (2001). *NO and oxyradical metabolism in new cell lines of rat brain capillary endothelial cells forming the blood–brain barrier. Microvasc. Res. 62:114–127.CrossRefPubMedGoogle Scholar
  18. Blasig, I. E., Mertsch, K., and Haseloff, R. F. (2002). Nitronyl nitroxides, a novel group of protective agents against oxidative stress in endothelial cells forming the blood–brain barrier. Neuropharmacology 43:1006–1014.CrossRefPubMedGoogle Scholar
  19. Borges, N., Shi, F., Azevedo, I., and Audus, K. L. (1994). Changes in brain microvessel endothelial cell monolayer permeability induced by adrenergic drugs. Eur. J. Pharmacol. 269:243–248.CrossRefPubMedGoogle Scholar
  20. Bowman, P. D., Betz, A. L., Wolinsky, J. S., Penny, J. B., Shivers, R. R., and Goldstein, G. W. (1981). Primary cultures of capillary endothelium from rat brain. In Vitro 17:353–362.CrossRefPubMedGoogle Scholar
  21. Bowman, P. D., Ennis, S. R., Rarey, K. E., Betz, A. L., and Goldstein, G. W. (1983). Brain microvessel endothelial cells in tissue culture: A model for study of blood–brain barrier permeability. Ann. Neurol. 14:396–402.CrossRefPubMedGoogle Scholar
  22. Brightman, M. W., and Reese, T. S. (1969). Junctions between intimately apposed cell membranes in the vertebrate brain J. Cell Biol. 40:648–677.CrossRefPubMedGoogle Scholar
  23. Brillault, J., Berezowski, V., Cecchelli, R., and Dehouck, M.-P. (2002). Intercommunications between brain capillary endothelial cells and glial cells increase the transcellular permeability of the blood–brain barrier during ischaemia. J. Neurochem. 83:807–817.CrossRefPubMedGoogle Scholar
  24. Brown, J., Reading, S. J., Jones, S., Fitchett, C. J., Howl, J., Martin, A., Longland, C. L., Michelangeli, F., Dubrova, Y. E., and Brown, C. A. (2000). Critical evaluation of ECV304 as a human endothelial cell model defined by genetic analysis and functional responses: A comparison with the human bladder cancer derived epithelial cell line T24/83. Lab. Invest. 80:37–45.CrossRefPubMedGoogle Scholar
  25. Brown, R. C., Mark, K. S., Egleton, R. D., Huber, J. D., Burroughs, A. R., and Davis, T. P. (2003). Protection against hypoxia-induced increase in blood–brain barrier permeability: Role of tight junction proteins and NF κB. J. Cell Sci. 116:693–700.CrossRefPubMedGoogle Scholar
  26. Brückener, K. E., el Bayâ, A., Galla, H.-J., and Schmidt, M. A. (2003). Permeabilization in a cerebral endothelial barrier model by pertussis toxin involves the PKC effector pathway and is abolished by elevated levels of cAMP. J. Cell Sci. 116:1837–1846.CrossRefPubMedGoogle Scholar
  27. Carpentier, M., Descamps, L., Allain, F., Denys, A., Durieux, S., Fenart, L., Kieda, C., Cecchelli, R., and Spik, G. (1999). Receptor-mediated transcytosis of cyclophilin B through the blood–brain barrier. J. Neurochem. 73:260–270.CrossRefPubMedGoogle Scholar
  28. Cecchelli, R., Dehouck, B., Descamps, L., Fenart, L., Buée-Scherrer, V., Duhem, C., Lundquist, S., Rentfel, M., Torpier, G., and Dehouck, M.-P. (1999). In vitro model for evaluating drug transport across the blood–brain barrier. Adv. Drug Deliv. Rev. 36:165–178.CrossRefPubMedGoogle Scholar
  29. Cestelli, A., Catania, C., D’Agostino, S., Di Liegro, I., Licata, L., Schiera, G., Pitarresi, G. L., Savettieri, G., De Caro, V., Giandalia, G., and Giannola, L. I. (2001). Functional feature of a novel model of blood brain barrier: Studies on permeation of test compounds. J. Control. Release 76:139–147.CrossRefPubMedGoogle Scholar
  30. Chopineau, J., Robert, S., Fénart, L., Cecchelli, R., Lagoutte, B., Paitier, S., Dehouck, M.-P., and Domurado, D. (1998). Monoacylation of ribonuclease A enables its transport across an in vitro model of the blood–brain barrier. J. Control. Release 56:231–237.CrossRefPubMedGoogle Scholar
  31. Collard, C. D., Park, K. A., Montalto, M. C., Alapati, S., Buras, J. A., Stahl, G. L., and Colgan, S. P. (2002). Neutrophil-derived glutamate regulates vascular endothelial barrier function. J. Biol. Chem. 277:14801–14811.CrossRefPubMedGoogle Scholar
  32. Crone, C., and Olesen, S. P. (1982). Electrical resistance of brain microvascular endothelium. Brain Res. 241:49–55.CrossRefPubMedGoogle Scholar
  33. Cucullo, L., McAllister, M. S., Kight, K., Krizanac-Bengez, L., Marroni, M., Mayberg, M. R., Stanness, K. A., and Janigro, D. (2002). A new dynamic in vitro model for the multidimensional study of astrocyte-endothelial cell interactions at the blood–brain barrier. Brain Res. 951:243–254.CrossRefPubMedGoogle Scholar
  34. DeBault, L. E., and Cancilla, P. A. (1980). Gamma-glutamyl transpeptidase in isolated brain endothelial cells: Induction by glial cells in vitro. Science 207:653–655.CrossRefPubMedGoogle Scholar
  35. de Boer, A. G., Gaillard, P. J., and Breimer, D. D. (1999). The transference of results between blood–brain barrier cell culture systems. Eur. J. Pharm. Sci. 8:1–4.CrossRefPubMedGoogle Scholar
  36. de Boer, A. G., van der Sandt, I. C. J., and Gaillard, P. J. (2003). The role of drug transporters at the blood–brain barrier. Annu. Rev. Pharmacol. Toxicol. 43:629–656.CrossRefPubMedGoogle Scholar
  37. Dehouck, B., Fenart, L., Dehouck, M.-P., Pierce, A., Torpier, G., and Cecchelli, R. (1997). A new function for the LDL receptor: Transcytosis across the blood–brain barrier. J. Cell Biol. 138:877–889.CrossRefPubMedGoogle Scholar
  38. Dehouck, M.-P., Cecchelli, R., Green, A. R., Renftel, M., and Lindquist, S. (2002). In vitro blood–brain barrier permeability and cerebral endothelial cell uptake of the neuroprotective nitrone compound NXY-059 in normoxic, hypoxic and ischemic conditions. Brain Res. 955:229–235.CrossRefPubMedGoogle Scholar
  39. Dehouck M.-P., Jolliet-Riant, P., Brée, F., Fruchart, J.-C., Cecchelli, R., and Tillement, J.-P. (1992b). Drug transfer across the blood–brain barrier: Correlation between in vitro and in vivo models. J. Neurochem. 58:1790–1797.CrossRefGoogle Scholar
  40. Dehouck, M.-P., Méresse, S., Dehouck, B., Fruchart, J. C., and Cecchelli, R. (1992a). In vitro reconstituted blood–brain barrier. J. Control. Release 21:81–92.CrossRefGoogle Scholar
  41. Dehouck, M.-P., Méresse, S., Delorme, P., Fruchart, J. C., and Cecchelli, R. (1990). An easier, reproducible, and mass-production method to study the blood–brain barrier in vitro. J. Neurochem. 54:1798–1801.CrossRefPubMedGoogle Scholar
  42. Deli, M. A., Ábrahám, C. S., Niwa, M., and Falus, A. (2003). N,N-diethyl-2-[4-(phenylmethyl)phenoxy]-ethanamide increases the permeability of primary mouse cerebral endothelial cell monolayers. Inflamm. Res. 52:S39–S40.CrossRefPubMedGoogle Scholar
  43. Deli, M. A., Dehouck, M.-P., Ábrahám, C. S., Cecchelli, R., and Joó, F. (1995a). Penetration of small molecular weight substances through cultured bovine brain capillary endothelial cells: The early effects of 3′,5′-cyclic adenosine monophosphate. Exp. Physiol. 80:675–678.Google Scholar
  44. Deli, M. A., Dehouck, M.-P., Cecchelli, R., Ábrahám, C. S., and Joó, F. (1995b). Histamine induces a selective albumin permeation through the blood–brain barrier in vitro. Inflamm. Res. 44:S56–S57.CrossRefGoogle Scholar
  45. Deli, M. A., Descamps, L., Dehouck, M.-P., Cecchelli, R., Joó, F., Ábrahám, C. S., and Torpier, G. (1995c). Exposure of tumor necrosis factor α to the luminal membrane induces a delayed increase of permeability and formation of cytoplasmic actin stress fibers in brain capillary endothelial cells cocultured with astrocytes. J. Neurosci. Res. 41:717–726.CrossRefGoogle Scholar
  46. Deli, M. A., and Joó, F. (1996). Cultured vascular endothelial cells of the brain. Keio J. Med. 45:183–198.PubMedGoogle Scholar
  47. Demeule, M., Poirier, J., Jodoin, J., Bertrand, Y., Desrosiers, R. R., Dagenais, C., Nguyen, T., Lanthier, J., Gabathuler, R., Kennard, M., Jefferies, W. A., Karkan, D., Tsai, S., Fenart, L., Cecchelli, R., and Beliveau, R. (2002). High transcytosis of melanotransferrin (P97) across the blood–brain barrier. J. Neurochem. 83:924–933.CrossRefPubMedGoogle Scholar
  48. Demeuse, P., Kerkhofs, A., Struys-Ponsar, C., Knoops, B., Remacle, C., and van den Bosch de Aguilar, P. (2002). Compartmentalized coculture of rat brain endothelial cells and astrocytes: A syngenic model to study the blood–brain barrier. J. Neurosci. Methods 121:21–31.CrossRefPubMedGoogle Scholar
  49. Descamps, L., Cecchelli, R., and Torpier, G. (1997). Effects of tumor necrosis factor on receptor-mediated endocytosis and barrier functions of bovine brain capillary endothelial cell monolayers. J. Neuroimmunol. 74:173–184.CrossRefPubMedGoogle Scholar
  50. Descamps, L., Coisne, C., Dehouck, B., Cecchelli, R., and Torpier, G. (2003). Protective effect of glial cells against lipopolysaccharide-mediated blood–brain barrier injury. Glia 42:46–58.CrossRefPubMedGoogle Scholar
  51. de Vries, H. E., Blom-Roosemalen, M. C., de Boer, A. G., van Berkel, T. J., Breimer, D. D., and Kuiper, J. (1996a). Effect of endotoxin on permeability of bovine cerebral endothelial cell layers in vitro. J. Pharmacol. Exp. Ther. 277:1418–1423.Google Scholar
  52. de Vries, H. E., Blom-Roosemalen, M. C., van Oosten, M., de Boer, A. G., van Berkel, T. J., Breimer, D. D., and Kuiper, J. (1996b). The influence of cytokines on the integrity of the blood–brain barrier in vitro. J. Neuroimmunol. 64:37–43.CrossRefGoogle Scholar
  53. Didier, N., Banks W. A., Creminon, C., Dereuddre-Bosquet, N., and Mabondzo, A. (2002). HIV-1-induced production of endothelin-1 in an in vitro model of the human blood–brain barrier. Neuroreport 13:1179–1183.CrossRefPubMedGoogle Scholar
  54. Didier, N., Romero, I. A., Creminon, C., Wijkhuisen, A., Grassi, J., and Mabondzo, A. (2003). Secretion of interleukin-1β by astrocytes mediates endothelin-1 and tumour necrosis factor-α effects on human brain microvascular endothelial cell permeability. J. Neurochem. 86:246–254.CrossRefPubMedGoogle Scholar
  55. Dobbie, M. S., Hurst, R. D., Klein, N. J., and Surtees, R. A. H. (1999). Upregulation of intracellular adhesion molecule-1 expression on human endothelial cells by tumour necrosis factor-α in an in vitro model of the blood–brain barrier. Brain Res. 830:330–336.CrossRefPubMedGoogle Scholar
  56. Dohgu, S., Kataoka, Y., Ikesue, H., Naito, M., Tsuruo, T., Oishi, R., and Sawada, Y. (2000). Involvement of glial cells in cyclosporine-increased permeability of brain endothelial cells. Cell. Mol. Neurobiol. 20:781–786.CrossRefPubMedGoogle Scholar
  57. Duport, S., Robert, F., Muller, D., Grau, G., Parisi, L., and Stoppini, L. (1998). An in vitro blood–brain barrier model: Cocultures between endothelial cells and organotypic brain slice cultures. Proc. Natl Acad. Sci. USA 95:1840–1845.CrossRefPubMedGoogle Scholar
  58. Easton, A. S., and Abbott, J. N. (2002). Bradykinin increases permeability by calcium and 5-lipoxygenase in the ECV304/C6 cell culture model of the blood–brain barrier. Brain Res. 953:157–169.CrossRefPubMedGoogle Scholar
  59. Eddy, E. P., Maleef, B. E., Hart, T. K., and Smith, P. L. (1997). In vitro models to predict blood–brain barrier. Adv. Drug Delivery Rev. 23:185–198.CrossRefGoogle Scholar
  60. Fenart, L., Buee-Scherrer, V., Descamps, L., Duhem, C., Poullain, M. G., Cecchelli, R., and Dehouck, M. P. (1998). Inhibition of P-glycoprotein: Rapid assessment of its implication in blood–brain barrier integrity and drug transport to the brain by an in vitro model of the blood–brain barrier. Pharm. Res. 15:993–1000.CrossRefPubMedGoogle Scholar
  61. Fenart, L., Casanova, A., Dehouck, B., Duhem, C., Slupek, S., Cecchelli, R., and Betbeder, D. (1999). Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the blood–brain barrier. J. Pharmacol. Exp. Ther. 291:1017–1022.PubMedGoogle Scholar
  62. Fiala, M., Looney, D. J., Stins, M., Way, D. D., Zhang, L., Gan, X., Chiappelli, F., Schweitzer, E. S., Shapshak, P., Weinand, M., Graves, M. C., Witte, M., and Kim, K. S. (1997). TNF-alpha opens a paracellular route for HIV-1 invasion across the blood–brain barrier. Mol. Med. 3:553–564.PubMedGoogle Scholar
  63. Fillebeen, C., Dehouck, B., Benaïssa, M., Dhennin-Duthille, I., Cecchelli, R., and Pierce, A. (1999a). Tumor necrosis factor-α increases lactoferrin transcytosis through the blood–brain barrier. J. Neurochem. 73:2491–2500.CrossRefGoogle Scholar
  64. Fillebeen, C., Descamps, L., Dehouck, M. P., Fenart, L., Benaïssa, M., Spik, G., Cecchelli, R., and Pierce, A. (1999b). Receptor-mediated transcytosis of lactoferrin through the blood–brain barrier. J. Biol. Chem. 274:7011–7017.CrossRefGoogle Scholar
  65. Fischer, S., Clauss, M., Wiesnet, M., Renz, D., Schaper, W., and Karliczek, G. F. (1999a). Hypoxia induces permeability in brain microvessel endothelial cells via VEGF and NO. Am. J. Physiol. Cell Physiol. 276:C812–C820.Google Scholar
  66. Fischer, S., Renz, D., Schaper, W., and Karliczek, G. F. (1995). In vitro effects of fentanyl, methohexital, and thiopental brain endothelial permeability. Anesthesiology 82:451–458.CrossRefPubMedGoogle Scholar
  67. Fischer, S., Renz, D., Schaper, W., and Karliczek, G. F. (1996). Effects of barbiturates on hypoxic cultures of brain derived microvascular endothelial cells. Brain Res. 707:47–53.CrossRefPubMedGoogle Scholar
  68. Fischer, S., Renz, D., Schaper, W., and Karliczek, G. F. (1998). Barbiturates decreases the expression of vascular endothelial growth factor in hypoxic cultures of porcine brain derived microvascular endothelial cells. Mol. Brain Res. 60:89–97.CrossRefPubMedGoogle Scholar
  69. Fischer, S., Renz, D., Schaper, W., and Karliczek, G. F. (2001). In vitro effects of dexamethasone on hypoxia-induced hyperpermeability and expression of vascular endothelial growth factor. Eur. J. Pharmacol. 411:231–243.CrossRefPubMedGoogle Scholar
  70. Fischer, S., Renz, D., Wiesnet, M., Schaper, W., and Karliczek, G. F. (1999b). Hypothermia abolishes hypoxia-induced hyperpermeability in brain microvessel endothelial cells. Mol. Brain Res. 74:135–144.CrossRefGoogle Scholar
  71. Fischer, S., Wobben, M., Kleinstück, J., Renz, D., and Schaper, W. (2000). Effect of astroglial cells on hypoxia-induced permeability in PBMEC cells. Am. J. Physiol. Cell Physiol. 279:C935–C944.PubMedGoogle Scholar
  72. Franke, H., Galla, H.-J., and Beuckmann, C. T. (1999). An improved low-permeability in vitro-model of the blood–brain barrier: Transport studies on retinoids, sucrose, haloperidol, caffeine and mannitol. Brain Res. 818:65–71.CrossRefPubMedGoogle Scholar
  73. Gaillard, P. J., and de Boer, A. G. (2000). Relationship between permeability status of the blood–brain barrier and in vitro permeability coefficient of a drug. Eur. J. Pharm. Sci. 12:95–102.CrossRefPubMedGoogle Scholar
  74. Gaillard, P. J., de Boer, A. G., and Breimer, D. D. (1996). Blood–brain barrier permeability and stress: A study on excitotoxic stress and vasogenic edema. Eur. J. Pharm. Sci. 4:S195.CrossRefGoogle Scholar
  75. Gaillard, P. J., de Boer, A. G., and Breimer, D. D. (2003). Pharmacological investigation on lipopolysaccharide-induced permeability changes in the blood–brain barrier in vitro. Microvasc. Res. 65:24–31.CrossRefPubMedGoogle Scholar
  76. Gaillard, P. J., Voorwinden, H., Nielsen, J., Ivanov, A., Atsumi, R., Engman, H., Ringbom, C., de Boer, A. G., and Breimer, D. D. (2001). Establishment and functional characterization of an in vitro model of the blood–brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. Eur. J. Pharm. Sci. 13:215–222.CrossRefGoogle Scholar
  77. Giese, H., Mertsch, K., and Blasig, I. E. (1995). Effect of MK-801 and U83836 on a porcine brain capillary endothelial cell barrier during hypoxia. Neurosci. Lett. 191:169–172.CrossRefPubMedGoogle Scholar
  78. Giri, R., Shen, Y., Stins, M., Yan, S. D., Schmidt, A. M., Stern, D., Kim, K.-S., Zlokovic, B., and Kalra, V. K. (2000). β-Amyloid-induced migration of monocytes across human brain endothelial cells involve RAGE and PECAM-1. Am. J. Physiol. Cell Physiol. 279:C1772–C1781.PubMedGoogle Scholar
  79. Girod, J., Fenart, L., Régina, A., Dehouck, M.-P., Hong, G., Scherrmann, J.-M., Cecchelli, R., and Roux, F. (1999). Transport of cationized anti-tetanus Fab′2 fragments across an in vitro blood–brain barrier model: Involvement of the transcytosis pathway. J. Neurochem. 73:2002–2008.PubMedGoogle Scholar
  80. Gloor, S. M., Weber, A., Adachi, N., and Frei, K. (1997). Interleukin-1 modulates protein tyrosine phosphatase activity and permeability of brain endothelial cells. Biochem. Biophys. Res. Commun. 239:804–809.CrossRefPubMedGoogle Scholar
  81. Grabb, P. A., and Gilbert, M. R. (1995). Neoplastic and pharmacological influence on the permeability of an in vitro blood–brain barrier. J. Neurosurg. 82:1053–1058.PubMedCrossRefGoogle Scholar
  82. Greenwood, J., Pryce, G., Devine, L., Male, D. K., dos Santos, W. L., Calder, V. L., and Adamson, P. (1996). SV40 large immortalised cell lines of the rat blood–brain and blood-retinal barriers retain their phenotypic and immunological characteristics. J. Neuroimmunol. 71:51–63.CrossRefPubMedGoogle Scholar
  83. Gu, X., Zhang, J., Brann, D. W., and Yu, F.-S. X. (2003). Brain and retinal vascular endothelial cells with extended life span established by ectopic expression of telomerase. Invest. Ophthalmol. Vis. Sci. 44:3219–3225.CrossRefPubMedGoogle Scholar
  84. Guillot, F. L., and Audus, K. L. (1991). Angiotensin peptide regulation of bovine brain microvessel endothelial cell monolayer permeability. J. Cardiovasc. Pharmacol. 18:212–218.CrossRefPubMedGoogle Scholar
  85. Gumbleton, M., and Audus, K. L. (2001). Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood–brain barrier. J. Pharm. Sci. 90:1681–1698.CrossRefPubMedGoogle Scholar
  86. Hamm, S., Dehouck, B., Kraus, J., Wolburg-Buchholz, K., Wolburg, H., Risau, W., Cecchelli, B., Engelhardt, B., and Dehouck, M. P. (2004). Astrocyte mediated modulation of blood–brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts. Cell Tissue Res. 315:157–166.CrossRefPubMedGoogle Scholar
  87. Hart, M. N., VanDyk, L. F., Moore, S. A., Shasby, D. M., and Cancilla, P. A. (1987). Differential opening of the brain endothelial barrier following neutralization of the endothelial luminal anionic charge in vitro. J. Neuropathol. Exp. Neurol. 46:141–153.CrossRefPubMedGoogle Scholar
  88. Haseloff, R. F., Blasig, I. E., Bauer, H.-C., and Bauer, H. (2005). In search of the astrocytic factor(s) modulating blood–brain barrier functions in brain capillary endothelial cells in vitro. Cell. Mol. Neurobiol. 25:25–39.CrossRefPubMedGoogle Scholar
  89. Hoheisel, D., Nitz, T., Franke, H., Wegener, J., Hakvoort, A., Tilling, T., and Galla, H.-J. (1998). Hydroocortisone reinforces the blood–brain barrier properties in a serum free cell culture system. Biochem. Biophys. Res. Commun. 247:312–315.CrossRefPubMedGoogle Scholar
  90. Homma, M., Suzuki, H., Kusuhara, H., Naito, M., Tsuruo, T., and Sugiyama, Y. (1999). High-affinity efflux transport system for glutathione conjugates on the luminal membrane of a mouse brain capillary endothelial cell line (MBEC4). J. Pharmacol. Exp. Ther. 288:198–203.PubMedGoogle Scholar
  91. Hosoya, K., Tetsuka, K., Nagase, K., Tomi, M., Saeki, S., Ohtsuki, S., and Terasaki, T. (2000). Conditionally immortalized brain capillary endothelial cell lines established from a transgenic mouse harboring temperature-sensitive simian virus 40 large T-antigen gene. AAPS PharmSci. 2(3):E27, 1–11. [].CrossRefGoogle Scholar
  92. Hurst, R. D., Azam, S., Hurst, A., and Clark, J. B. (2001). Nitric-oxide-induced inhibition of glyceraldehyde-3-phosphate dehydrogenase may mediate reduced endothelial cell monolayer integrity in an in vitro model blood–brain barrier. Brain Res. 894:181–188.CrossRefPubMedGoogle Scholar
  93. Hurst, R. D., and Clark, J. B. (1997). Nitric oxide-induced blood–brain barrier dysfunction is not mediated by inhibition of mitochondrial respiratory chain activity and/or energy depletion. Nitric Oxide 1:121–129.CrossRefPubMedGoogle Scholar
  94. Hurst, R. D., and Clark, J. B. (1998). Alterations in transendothelial electrical resistance by vasoactive agonists and cyclic AMP in a blood–brain barrier model system. Neurochem. Res. 23:149–154.CrossRefPubMedGoogle Scholar
  95. Hurst, R. D., and Clark, J. B. (1999). Butyric acid mediated induction of enhanced transendothelial resistance in an in vitro model blood–brain barrier system. Neurochem. Int. 35:261–267.CrossRefPubMedGoogle Scholar
  96. Hurst, R. D., and Fritz, I. B. (1996). Properties of an immortalised vascular endothelial/glioma cell co-culture model of the blood–brain barrier. J. Cell. Physiol. 167:81–88.CrossRefPubMedGoogle Scholar
  97. Hurst, R. D., Heales, S. J. R., Dobbie, M. S., Barker, J. E., and Clark, J. B. (1998). Decreased endothelial cell glutathione and increased sensitivity to oxidative stress in an in vitro blood–brain barrier model system. Brain Res. 802:232–240.CrossRefPubMedGoogle Scholar
  98. Ichikawa, N., Naora, K., Hirano, H., Hashimoto, M., Masumara, S., and Iwamoto K. (1996). Isolation and primary culture of rat cerebral microvascular endothelial cells for studying drug transport in vitro. J. Pharmacol. Toxicol. Methods 36:45–52.CrossRefPubMedGoogle Scholar
  99. Igarashi, Y., Utsumi, H., Chiba, H., Yamada-Sasamori, Y., Tobioka, H., Kamimura, Y., Furuuchi, K., Kokai, Y., Nakagawa, T., Mori, M., and Sawada, N. (1999). Glial cell-line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood–brain barrier. Biochem. Biophys. Res. Commun. 261:108–112.CrossRefPubMedGoogle Scholar
  100. Imaizumi, S., Kondo, T., Deli, M. A., Gobbel, G., Joó, F., Epstein, C. J., Yoshimoto, T., and Chan, P. H. (1996). The influence of oxygen free radicals on the permeability of the monolayer of cultured brain endothelial cells. Neurochem. Int. 29:205–211.CrossRefPubMedGoogle Scholar
  101. Jong, A. Y., Stins, M. F., Huang, S.-H., Chen, S. H. M., and Kim, K. S. (2001). Traversal of Candida albicans across human blood–brain barrier in vitro. Infect. Immun. 69:4536–4544.CrossRefPubMedGoogle Scholar
  102. Joó, F. (1985). The blood–brain barrier in vitro: Ten years of research on microvessels isolated from the brain. Neurochem. Int. 7:1–25.CrossRefPubMedGoogle Scholar
  103. Joó, F. (1992). The cerebral microvessels in culture, an update. J. Neurochem. 58:1–17.CrossRefPubMedGoogle Scholar
  104. Joó, F. (1993). The blood–brain barrier in vitro: The second decade. Neurochem. Int. 23:499–521.CrossRefPubMedGoogle Scholar
  105. Joó, F., and Karnushina, I. (1973). A procedure for the isolation of capillaries from rat brain. Cytobios 8:41–48.PubMedGoogle Scholar
  106. Kannan, R., Chakrabarti, R., Tang, D., Kim, K. J., and Kaplowitz, N. (2000). GSH transport in human cerebrovascular endothelial cells and human astrocytes: Evidence for luminal localization of Na+-dependent GSH transport in HCEC. Brain Res. 852:374–382.CrossRefPubMedGoogle Scholar
  107. Kása, P., Pákáski, M., Joó, F., and Lajtha, A. (1991). Endothelial cells from human fetal brain microvessels may be cholinoceptive, but do not synthesize acetylcholine. J. Neurochem. 56:2143–2146.CrossRefPubMedGoogle Scholar
  108. Kempski, O., Villacara, A., Spatz, M., Dodson, R. F., Corn, C., Merkel, N., and Bembry, J. (1987). Cerebromicrovascular endothelial permeability. In-vitro studies. Acta Neuropathol. (Berl). 74:329–334.CrossRefGoogle Scholar
  109. Kiessling, F., Kartenbeck, J., and Haller, C. (1999). Cell–cell contacts in the human cell line ECV304 exhibit both endothelial and epithelial characteristics. Cell Tissue Res. 297:131–140.CrossRefPubMedGoogle Scholar
  110. Kis, B., Deli, M. A., Kobayashi, H., Ábrahám, C. S., Yanagita, T., Kaiya, H., Isse, T., Nishi, R., Gotoh, S., Kangawa, K., Wada, A., Greenwood, J., Niwa, M., Yamashita, H., and Ueta, Y. (2001). Adrenomedullin regulates blood–brain barrier functions in vitro. Neuroreport 12:4139–4142.CrossRefPubMedGoogle Scholar
  111. Kochi, S., Takanaga, H., Matsuo, H., Naito, M., Tsuruo, T., and Sawada, Y. (1999). Effect of cyclosporin A or tacrolimus on the function of blood–brain barrier cells. Eur. J. Pharmacol. 372:287–295.CrossRefPubMedGoogle Scholar
  112. Kondo, T., Kinouchi, H., Kawase, M., and Yoshimoto, T. (1996). Astroglial cells inhibit the increasing permeability of brain endothelial cell monolayer following hypoxia/reoxygenation. Neurosci. Lett. 208:101–104.CrossRefPubMedGoogle Scholar
  113. Krizanac-Bengez, L., Kapural, M., Parkinson, F., Cucullo, L., Hossain, M., Mayberg, M. R., and Janigro, D. (2003). Effects of transient loss of shear stress on blood–brain barrier endothelium: Role of nitric oxide and IL-6. Brain Res. 977:239–246.CrossRefPubMedGoogle Scholar
  114. Krizbai, I. A., and Deli, M. A. (2003). Signalling pathways regulating the tight junction permeability in the blood–brain barrier. Cell Mol. Biol. (Noisy-le-grand). 49:23–31.Google Scholar
  115. Krizbai, I. A., Deli, M. A., Pestenácz, A., Siklós, L., Szabó, C. A., András, I., and Joó, F. (1998). Expression of glutamate receptors on cultured cerebral endothelial cells. J. Neurosci. Res. 54:814–819.CrossRefPubMedGoogle Scholar
  116. Kusuhara, H., and Sugiyama, Y. (2001a). Efflux transport systems for drugs at the blood–brain barrier and blood-cerebrospinal fluid barrier (Part 1). Drug Discov. Today 6:150–156.CrossRefGoogle Scholar
  117. Kusuhara, H., and Sugiyama, Y. (2001b). Efflux transport systems for drugs at the blood–brain barrier and blood-cerebrospinal fluid barrier (Part 2). Drug Discov. Today 6:206–212.CrossRefGoogle Scholar
  118. Kusuhara, H., Suzuki, H., Naito, M., Tsuruo, T., and Sugiyama, Y. (1998). Characterization of efflux transport of organic anions in a mouse brain capillary endothelial cell line. J. Pharmacol. Exp. Ther. 285:1260–1265.PubMedGoogle Scholar
  119. Lagrange, P., Romero, I. A., Minn, A., and Revest, P. A. (1999). Transendothelial permeability changes induced by free radicals in an in vitro model of the blood–brain barrier. Free Radic. Biol. Med. 27:667–672.CrossRefPubMedGoogle Scholar
  120. Lee, S.-W., Kim, W. J., Choi, Y. K., Song, H. S., Son, M. J., Gelman, I. H., Kim, Y.-J., and Kim, K.-W. (2003). SSeCKS regulates angiogenesis and tight junction formation in blood–brain barrier. Nat. Med. 9:900–906.CrossRefPubMedGoogle Scholar
  121. Letrent, S. P., Polli, J. W., Humphreys, J. E., Pollack, G. M., Brouwer, K. R., and Brouwer, K. L. R. (1999). P-Glycoprotein-mediated transport of morphine in brain capillary endothelial cells. Biochem. Pharmacol. 58:951–957.CrossRefPubMedGoogle Scholar
  122. Leveugle, B., Ding, W., Fenart, L., Dehouck, M.-P., Scanameo, A., Cecchelli, R., and Fillit, H. (1998). Heparin oligosaccharides that pass the blood–brain barrier inhibit β-amyloid precursor protein secretion and heparin binding to β-amyloid peptides. J. Neurochem. 70:736–744.PubMedCrossRefGoogle Scholar
  123. Lippoldt, A., Kniesel, U., Liebner, S., Kalbacher, H., Kirsch, T., Wolburg, H., and Haller, H. (2000). Structural alterations of tight junctions are associated with loss of polarity in stroke-prone spontaneously hypertensive rat blood–brain barrier endothelial cells. Brain Res. 885:251–261.CrossRefPubMedGoogle Scholar
  124. Liu, N. Q., Lossinsky, A. S., Popik, W., Li, X., Gujuluva, C., Kriederman, B., Roberts, J., Pushkarsky, T., Bukrinsky, M., Witte, M., Weinand, M., and Fiala, M. (2002). Human immunodeficiency virus type 1 enters brain microvascular endothelia by macropinocytosis dependent on lipid rafts and the mitogen-activated protein kinase signaling pathway. J. Virol. 76:6689–6700.CrossRefPubMedGoogle Scholar
  125. Lundquist, S., Renftel, M., Brillault, J., Fenart, L., Cecchelli, R., and Dehouck, M. P. (2002). Prediction of drug transport through the blood–brain barrier in vivo: A comparison between two in vitro cell models. Pharm. Res. 19:976–981.CrossRefPubMedGoogle Scholar
  126. Mackic, J. B., Stins, M., Jovanovic, S., Kim, K. S., Bartus, R. T., and Zlokovic, B. V. (1999). Cereport (RMP-7) increases the permeability of human brain microvascular endothelial cell monolayers. Pharm. Res. 16:1360–1365.CrossRefPubMedGoogle Scholar
  127. Mackic, J. B., Stins, M., McComb, J. G., Calero, M., Ghiso, J., Kim, K. S., Yan, S. D., Stern, D., Schmidt, A. M., Frangione, B., and Zlokovic, B. V. (1998). Human blood–brain barrier receptors for Alzheimer’s amyloid-beta 1–40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer. J. Clin. Invest. 102:734–743.CrossRefPubMedGoogle Scholar
  128. Madara, J. L. (1998). Regulation of the movement of solutes across tight junctions. Annu. Rev. Physiol. 60:143–159.CrossRefPubMedGoogle Scholar
  129. Mark, K. S., Burroughs, A. R., Brown, R. C., Huber, J. D., and Davis, T. P. (2004). Nitric oxide mediates hypoxia-induced changes in paracellular permeability of cerebral microvasculature. Am. J. Physiol. Heart Circ. Physiol. 286:H174–H180.CrossRefPubMedGoogle Scholar
  130. Mark, K. S., and Davis, T. P. (2002). Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation. Am. J. Physiol. Heart Circ. Physiol. 282:H1485–H1494.PubMedGoogle Scholar
  131. Mark, K. S., and Miller, D. W. (1999). Increased permeability of primary cultured brain microvessel endothelial cell monolayers following TNF-α exposure. Life Sci. 64:1941–1953.CrossRefPubMedGoogle Scholar
  132. Mark, K. S., Trickler, W. J., and Miller, D. W. (2001). Tumor necrosis factor-α induces cyclooxygenase-2 expression and prostaglandin release in brain microvessel endothelial cells. J. Pharmacol. Exp. Ther. 297:1051–1058.PubMedGoogle Scholar
  133. Matter, K., and Balda, M. (2003a). Functional analysis of tight junctions. Methods 30:228–234.CrossRefGoogle Scholar
  134. Matter, K., and Balda, M. (2003b). Holey barrier: Claudins and the regulation of brain endothelial permeability. J. Cell. Biol. 161:459–460.CrossRefGoogle Scholar
  135. Megard, I., Garrigues, A., Orlowski, S., Jorajuria, S., Clayette, P., Ezan, E., and Mabondzo, A. (2002). A co-culture-based model of human blood–brain barrier: Application to active transport of indinavir and in vivo-in vitro correlation. Brain Res. 927:153–167.CrossRefPubMedGoogle Scholar
  136. Mertsch, K., Blasig, I., and Grune, T. (2001). 4-Hydroxynonenal impairs the permeability of an in vitro rat blood–brain barrier. Neurosci. Lett. 314:135–138.CrossRefPubMedGoogle Scholar
  137. Mi, H., Haeberle, H., and Barres, B. A. (2001). Induction of astrocyte differentiation by endothelial cells. J. Neurosci. 21:1538–1547.PubMedGoogle Scholar
  138. Muruganandam, A., Herx, L. M., Monette, R., Durkin, J. P., and Stanimirovic, D. (1997). Development of immortalized human cerebromicrovascular endothelial cell line as an in vitro model of the human blood–brain barrier. FASEB J. 11:1187–1197.PubMedGoogle Scholar
  139. Muruganandam, A., Tanha, J., Narang, S., and Stanimirovic, D. (2002). Selection of phage-displayed llama single-domain antibodies that transmigrate across human blood–brain barrier endothelium. FASEB J. 16:240–242.PubMedGoogle Scholar
  140. Nag, S. (2003). Blood–brain barrier permeability using tracers and immunohistochemistry. In Nag, S. (ed.), The Blood–Brain Barrier: Biology and Research Protocols. Methods in Molecular Medicine, Vol. 89, Humana Press, Totowa, NJ, pp. 133–144.Google Scholar
  141. Neuhaus, J., Risau, W., and Wolburg, H. (1991). Induction of blood–brain barrier characteristics in bovine brain endothelial cells by rat astroglial cells in transfilter coculture. Ann. N. Y. Acad. Sci. 633:578–580.CrossRefPubMedGoogle Scholar
  142. Nitta, T., Hata, M., Gotoh, S., Seo, Y., Sasaki, H., Hashimoto, N., Furuse, M., and Tsukita, S. (2003). Size-selective loosening of the blood–brain barrier in claudin-5-deficient mice. J. Cell. Biol. 161:653–660.CrossRefPubMedGoogle Scholar
  143. Nitz, T., Eisenblatter, T., Psathaki, K., and Galla, H.-J. (2003). Serum-derived factors weaken the barrier properties of cultured porcine brain capillary endothelial cells in vitro. Brain Res. 981:30–40.CrossRefPubMedGoogle Scholar
  144. Omidi, Y., Campbell, L., Barar, J., Connell, D., Akhtar, S., and Gumbleton, M. (2003). Evaluation of the immortalised mouse brain capillary endothelial cell line, b.End3, as an in vitro blood–brain barrier model for drug uptake and transport studies. Brain Res. 990:95–122.CrossRefPubMedGoogle Scholar
  145. Panula, P., Joó, F., and Rechardt, L. (1978). Evidence for the presence of viable endothelial cells in cultures derived from dissociated rat brain. Experientia 34:95–97.CrossRefPubMedGoogle Scholar
  146. Pardridge, W. M. (2002). Drug and gene targeting to brain with molecular trojan horses. Nat. Rev. Drug Discov. 1:131–139.CrossRefPubMedGoogle Scholar
  147. Parkinson, F. E., Friesen, J., Krizanac-Bengez, L., and Janigro, D. (2003). Use of three-dimensional in vitro model of the rat blood–brain barrier to assay nucleoside efflux from brain. Brain Res. 980:233–241.CrossRefPubMedGoogle Scholar
  148. Pirro, J. P., Di Rocco, R. J., Narra, R. K., and Nunn, A. D. (1994). Relationship between in vitro transendothelial permeability and in vivo single-pass brain extraction. J. Nucl. Med. 35:1514–1519.PubMedGoogle Scholar
  149. Plateel, M., Dehouck, M.-P., Torpier, G., Cecchelli, R., and Teissier, E. (1995). Hypoxia increases the susceptibility of oxidant stress and the permeability of the blood–brain barrier endothelial cell monolayer. J. Neurochem. 65:2138–2145.PubMedCrossRefGoogle Scholar
  150. Plateel, M., Teissier, E., and Cecchelli, R. (1997). Hypoxia dramatically increases the nonspecific transport of blood-borne proteins to the brain. J. Neurochem. 68:874–877.PubMedCrossRefGoogle Scholar
  151. Prat, A., Biernacki, K., Wosik, K., and Antel, J. P. (2001). Glial cell influence on the human blood–brain barrier. Glia 36:145–155.CrossRefPubMedGoogle Scholar
  152. Ramsohoye, P. V., and Fritz I. B. (1998). Preliminary characterization of glial-secreted factors responsible for the induction of high electrical resistances across endothelial monolayers in a blood–brain barrier model. Neurochem. Res. 23:1545–1551.CrossRefPubMedGoogle Scholar
  153. Raub, T. J. (1996). Signal transduction and glial cell modulation of cultured brain microvessel endothelial cell tight junctions. Am. J. Physiol. Cell Physiol. 271:C495–C503.Google Scholar
  154. Raub, T. J., Kuentzel, S. L., and Sawada, G. A. (1992). Permeability of bovine brain microvessel endothelial cells in vitro: Barrier tightening by a factor released from astroglioma cells. Exp. Cell Res. 199:330–340.CrossRefPubMedGoogle Scholar
  155. Reese, T. S., and Karnovsky, M. J. (1967). Fine structural localization of a blood–brain barrier to exogenous peroxidase. J. Cell Biol. 34:207–217.CrossRefPubMedGoogle Scholar
  156. Reichel, A., Begley, D. J., and Abbott, N. J. (2003). An overview of in vitro techniques for blood–brain barrier studies. In Nag, S. (ed.), The Blood–Brain Barrier: Biology and Research Protocols. Methods in Molecular Medicine, Vol. 89, Humana Press, Totowa, NJ, pp. 307–324.Google Scholar
  157. Rist, R. J., Romero, I. A., Chan, M. W. K., and Abbott, N. J. (1996). Effects of energy deprivation induced by fluorocitrate in immortalised rat brain microvessel endothelial cells. Brain Res. 730:87–94.PubMedGoogle Scholar
  158. Rist, R. J., Romero, I. A., Chan, M. W. K., Couraud, P.-O., Roux, F., and Abbott, N. J. (1997). F-Actin cytoskeleton and sucrose permeability of immortalised rat brain microvascular endothelial cell monolayers: Effects of cyclic AMP and astrocytic factors. Brain Res. 768:10–18.CrossRefPubMedGoogle Scholar
  159. Romero, I. A., Prevost, M.-C., Perret, E., Adamson, P., Greenwood, J., Couraud, P.-O., and Ozden, S. (2000). Interactions between brain endothelial cells and human T-cell leukemia virus type 1-infected lymphocytes: Mechanisms of viral entry into the central nervous system. J. Virol. 74:6021–6030.CrossRefPubMedGoogle Scholar
  160. Romero, I. A., Radewicz, K., Jubin, E., Michel, C. C., Greenwood, J., Couraud, P.-O., and Adamson, P. (2003). Changes in cytoskeletal and tight junctional proteins correlate with decreased permeability induced by dexamethasone in cultured rat brain endothelial cells. Neurosci. Lett. 344:112–116.CrossRefPubMedGoogle Scholar
  161. Romero, I. A., Rist, R. J., Aleshaiker, A., and Abbott, N. J. (1997a). Metabolic and permeability changes caused by thiamine deficiency in immortalized rat brain microvessel endothelial cells. Brain Res. 756:133–140.CrossRefGoogle Scholar
  162. Romero, I. A., Rist, R. J., Chan, M W., and Abbott, N. J. (1997b). Acute energy deprivation syndromes: Investigation of m-dinitrobenzene and alpha-chlorhydrin toxicity on immortalized rat brain microvessel endothelial cells. Neurotoxicology 18:781–791.Google Scholar
  163. Roux, F., and Couraud, P.-O. (2005). Rat brain endothelial cell lines for the study of blood–brain barrier permeability and transport functions. Cell. Mol. Neurobiol. 25:41–58.CrossRefPubMedGoogle Scholar
  164. Rubin, L. L., Hall, D. E., Porter, S., Barbu, K., Cannon, C., Horner, H. C., Janatpour, M., Liaw, C. W., Manning, K., Morales, J., Tanner, L. I., Tomaselli, K. J., and Bard, F. (1991). A cell culture model of the blood–brain barrier. J. Cell Biol. 115:1725–1735.CrossRefPubMedGoogle Scholar
  165. Rubin, L. L., and Staddon, J. M. (1999). The cell biology of the blood–brain barrier. Annu. Rev. Neurosci. 22:11–28.CrossRefPubMedGoogle Scholar
  166. Ruchoux, M.-M., Brulin, P., Brillault, J., Dehouck, M.-P., Cecchelli, R., and Bataillard, M. (2002). Lessons from CADASIL. Ann. N. Y. Acad. Sci. 977:224–231.PubMedCrossRefGoogle Scholar
  167. Rutten, M. J., Hoover, R. L., and Karnovsky, M. J. (1987). Electrical resistance and macromolecular permeability of brain endothelial monolayer cultures. Brain Res. 425:301–310.CrossRefPubMedGoogle Scholar
  168. Sahagun, G., Moore, S. A., and Hart, M. N. (1990). Permeability of neutral vs. anionic dextrans in cultured brain microvascular endothelium. Am. J. Physiol. 259:H162–H166.PubMedGoogle Scholar
  169. Schaddelee, M. P., Voorwinden, H. L., van Tilburg. E. W., Pateman, T. J., Ijzerman, A. P., Danhof, M., and de Boer, A. G. (2003). Functional role of adenosine receptor subtypes in the regulation of blood–brain barrier permeability: Possible implications for the design of synthetic adenosine derivatives. Eur. J. Pharm. Sci. 19:13–22.CrossRefPubMedGoogle Scholar
  170. Schirmacher, A., Winters, S., Fischer, S., Goeke, J., Galla, H. J., Kullnick, U., Ringelstein, E. B., and Stogbauer, F. (2000). Electromagnetic fields (1.8 GHz) increase the permeability to sucrose of the blood–brain barrier in vitro. Bioelectromagnetics 21:338–345.CrossRefPubMedGoogle Scholar
  171. Schulze, C., Smales, C., Rubin, L. L., and Staddon, J. M. (1997). Lysophosphatidic acid increases tight junction permeability in cultured brain endothelial cells. J. Neurochem. 68:991–1000.PubMedCrossRefGoogle Scholar
  172. Scism, J. L., Laska, D. A., Horn, J. W., Gimple, J. L., Pratt, S. E., Shepard, R. L., Dantzig, A. H., and Wrighton, S. A. (1999). Evaluation of an in vitro coculture model for the blood–brain barrier: Comparison of human umbilical vein endothelial cells (ECV304) and rat glioma cells from two commercial sources. In Vitro Cell Dev. Biol. Anim. 35:580–592.CrossRefPubMedGoogle Scholar
  173. Semenza, G. L. (2001). Hypoxia-inducible factor 1: Oxygen homeostasis and disease pathophysiology. Trends Mol. Med. 7:345–350.CrossRefPubMedGoogle Scholar
  174. Sharp, C. D., Hines, I., Houghton, J., Warren, A., Jackson, T. H. IV, Jawahar, A., Nanda, A., Elrod, J. W., Long, A., Chi, A., Minagar, A., and Alexander, J. S. (2003). Glutamate causes a loss in human cerebral endothelial barrier integrity through activation of NMDA receptor. Am. J. Physiol. Heart Circ. Physiol. 285:H2592–H2598.PubMedGoogle Scholar
  175. Smith, K. R., and Borchardt, R. T. (1989). Permeability and mechanism of albumin, cationized albumin, and glycosylated albumin transcellular transport across monolayers of cultured bovine brain capillary endothelial cells. Pharm. Res. 6:466–473.CrossRefPubMedGoogle Scholar
  176. Sobue, K., Yamamoto, N., Yoneda, K., Hodgson, M.E., Yamashiro, K., Tsuruoka, N., Tsuda, T., Katsuya, H., Miura, Y., Asai, K., and Kato, T. (1999). Induction of blood–brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors. Neurosci. Res. 35:155–164.CrossRefPubMedGoogle Scholar
  177. Song, H. S., Son, M. J., Lee, Y. M., Kim, W. J., Lee, S.-W., Kim, C. W., and Kim, K.-W. (2002). Oxygen tension regulates the maturation of the blood–brain barrier. Biochem. Biophys. Res. Commun. 290:325–331.CrossRefPubMedGoogle Scholar
  178. Staddon, J. M., Herrenknecht, K., Smales, C., and Rubin, L. L. (1995). Evidence that tyrosine phosphorylation may increase tight junction permeability. J. Cell Sci. 108:609–619.PubMedGoogle Scholar
  179. Stanness, K. A., Neumaier, J. F., Sexton, T. J., Grant, G. A., Emmi, A., Maris, D. O., and Janigro, D. (1999). A new model of the blood–brain barrier: Co-culture of neuronal, endothelial, and glial cells under dynamic conditions. Neuroreport 10:3725–3731.CrossRefPubMedGoogle Scholar
  180. Stins, M. F., Badger, J., and Kim, K. S. (2001). Bacterial invasion and transcytosis in transfected human brain microvascular endothelial cells. Microb. Pathog. 30:19–28.CrossRefPubMedGoogle Scholar
  181. Suda, K., Rothen-Rutishauser, B., Gunthert, M., and Wunderli-Allenspach, H. (2001). Phenotypic characterization of human umbilical vein endothelial (ECV304) and urinary carcinoma (T24) cells: Endothelial versus epithelial features. In Vitro Cell Dev. Biol. Anim. 37:505–514.CrossRefPubMedGoogle Scholar
  182. Tamai, I., Yamashita, J., Kido, Y., Ohnari, A., Sai, Y., Shima, Y., Naruhashi, K., Koizumi, S., and Tsuji, A. (2000). Limited distribution of new quinolone antibacterial agents into brain caused by multiple efflux transporters at the blood–brain barrier. J. Pharmacol. Exp. Ther. 295:146–152.PubMedGoogle Scholar
  183. Tan, K. H., Dobbie, M. S., Felix, R. A., Barrand, M. A., and Hurst, R. D. (2001). A comparison of the induction of immortalized endothelial cell impermeability by astrocytes. Neuroreport 12:1329–1334.CrossRefPubMedGoogle Scholar
  184. Tao-Cheng, J. H., Nagy, Z., and Brightman, M. W. (1987). Tight junctions of brain endothelium in vitro are enhanced by astroglia. J. Neurosci. 7:3293–3299.PubMedGoogle Scholar
  185. Tatsuta, T., Naito, M., Oh-hara, T., Sugawara, I., and Tsuruo, T. (1992). Functional involvement of P-glycoprotein in blood–brain barrier. J. Biol. Chem. 267:20383–20391.PubMedGoogle Scholar
  186. Terasaki, T., and Hosoya, K. (2001). Conditionally immortalized cell lines as a new in vitro model for the study of barrier functions. Biol. Pharm. Bull. 24:111–118.CrossRefPubMedGoogle Scholar
  187. Thomas, S. A., Abbruscato, T. J., Hau, V. S., Gillespie, T. J., Zsigo, J., Hruby, V. J., and Davis, T. P. (1997). Structure-activity relationships of a series of [D-Ala2]deltorphin I and II analogues; in vitro blood–brain barrier permeability and stability. J. Pharmacol. Exp. Ther. 281:817–825.PubMedGoogle Scholar
  188. Tilling, T., Korte, D., Hoheisel, D., and Galla, H.-J. (1998). Basement membrane proteins influence brain capillary endothelial barrier function in vitro. J. Neurochem. 71:1151–1157.PubMedCrossRefGoogle Scholar
  189. Trottein, F., Descamps, L., Nutten, S., Dehouck, M.-P., Angeli, V., Capron, A., Cecchelli, R., and Capron, M. (1999). Schistosoma mansoni activates host microvascular endothelial cells to acquire an anti-inflammatory phenotype. Infect. Immun. 67:3403–3409.PubMedGoogle Scholar
  190. Tsuji, A., and Tamai, I. (1999). Carrier-mediated or specialized transport of drugs across the blood–brain barrier. Adv. Drug Deliv. Rev. 36:277–290.CrossRefPubMedGoogle Scholar
  191. Tunkel, A. R., Rosser, S. W., Hansen, E. J., and Scheld, W. M. (1991). Blood–brain barrier alterations in bacterial meningitis: Development of an in vitro model and observations on the effects of lipopolysaccharide. In Vitro Cell Dev. Biol. 27A:113–120.CrossRefPubMedGoogle Scholar
  192. Utepbergenov, D. I., Mertsch, K., Sporbert, A., Tenz, K., Paul, M., Haseloff, R. F., and Blasig, I. E. (1998). Nitric oxide protects blood–brain barrier in vitro from hypoxia/reoxygenation-mediated injury. FEBS Lett. 424:197–201.CrossRefPubMedGoogle Scholar
  193. van Bree, J. B. M. M., de Boer, A. G., Danhof, M., Ginsel, L. A., and Breimer, D. D. (1988). Characterization of an “in vitro” blood–brain barrier: Effects of molecular size and lipophilicity on cerebrovascular endothelial transport rates of drugs. J. Pharmacol. Exp. Ther. 247:1233–1239.PubMedGoogle Scholar
  194. van Bree, J. B. M. M., de Boer, A. G., Verhoef, J. C., Danhof, M., and Breimer, D. D. (1989). Transport of vasopressin fragments across the blood–brain barrier: “In vitro” studies using monolayer cultures of bovine brain endothelial cells. J. Pharmacol. Exp. Ther. 249:901–905.PubMedGoogle Scholar
  195. Villacara, A., Kempski, O., and Spatz, M. (1990). Arachidonic acid and cerebromicrovascular endothelial permeability. In Long, D. (ed.), Advances in Neurology, Vol. 52, Raven Press, New York, NY, pp. 195–201.Google Scholar
  196. Wang, W., Dentler, W. L., and Borchardt, R. T. (2001). VEGF increases BMEC monolayer permeability by affecting occludin expression and tight junction assembly. Am. J. Physiol. Heart Circ. Physiol. 280:H434–H440.PubMedGoogle Scholar
  197. Wang, W., Merrill, M. J., and Borchardt, R. T. (1996). Vascular endothelial growth factor affects permeability of brain microvessel endothelial cells in vitro. Am. J. Physiol. Cell Physiol. 271:C1973–C1980.Google Scholar
  198. Wolburg, H., and Lippoldt, A. (2002). Tight junctions of the blood–brain barrier: Development, composition and regulation. Vascul. Pharmacol. 38:323–337.CrossRefPubMedGoogle Scholar
  199. Wolburg, H., Neuhaus, J., Kniesel, U., Krauß, B., Schmid, E.-M., Öcalan, M., Farrell, C., and Risau, W. (1994). Modulation of tight junction structure in blood–brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. J. Cell Sci. 107:1347–1357.PubMedGoogle Scholar
  200. Yamagata, K., Tagami, M., Nara, Y., Fujino, H., Kubota, A., Numano, F., Kato, T., and Yamori, Y. (1997). Faulty induction of blood–brain barrier functions by astrocytes isolated from stroke-prone spontaneously hypertensive rats. Clin. Exp. Pharmacol. Physiol. 24:686–691.CrossRefPubMedGoogle Scholar
  201. Yamagata, K., Tagami, M., Takenaga, F., Yamori, Y., Nara, Y., and Itoh, S. (2003). Polyunsaturated fatty acids induce tight junctions to form in brain capillary endothelial cells. Neuroscience 116:649–656.CrossRefPubMedGoogle Scholar
  202. Yang, J., Mutkus, L. A., Sumner, D., Stevens, J. T., Eldridge, J. C., Strandhoy, J. W., and Aschner, M. (2001). Transendothelial permeability of chlorpyrifos in RBE4 monolayers is modulated by astrocyte-conditioned medium. Mol. Brain Res. 97:43–50.CrossRefPubMedGoogle Scholar
  203. Youdim, K. A., Dobbie, M. S., Kuhnle, G., Proteggente, A. R., Abbott, N. J., and Rice-Evans, C. (2003). Interaction between flavonoids and the blood–brain barrier: In vitro studies. J. Neurochem. 85:180–192.PubMedCrossRefGoogle Scholar
  204. Zenker, D., Begley, D., Bratzke, H., Rübsamen-Waigmann, H., and von Briesen, H. (2003). Human blood-derived macrophages enhance barrier function of cultured brain capillary endothelial cells. J. Physiol. 551:1023–1032.CrossRefPubMedGoogle Scholar
  205. Zysk, G., Schneider-Wald, B. K., Hwang, J. H., Bejo, L., Kim, K. S., Mitchell, T. J., Hakenbeck, R., and Heinz, H.-P. (2001). Pneumolysin in the main inducer of cytotoxicity to brain microvascular endothelial cells caused by Streptococcus pneumoniae. Infect. Immun. 69:845–852.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Mária A. Deli
    • 1
  • Csongor S. Ábrahám
    • 2
  • Yasufumi Kataoka
    • 3
  • Masami Niwa
    • 4
  1. 1.Laboratory of Molecular Neurobiology, Institute of BiophysicsBiological Research Centre of the Hungarian Academy of SciencesSzegedHungary
  2. 2.N-Gene Research LaboratoriesBudapestHungary
  3. 3.Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
  4. 4.Department of Pharmacology 1Nagasaki University School of MedicineNagasakiJapan

Personalised recommendations